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Astrocytes, the most numerous glial cells in the brain, play an important role in preserving
normal neural functions and mediating the pathogenesis of neurological disorders.
Recent studies have shown that astrocytes are GABAceptive and GABAergic astrocytes
express GABAA receptors, GABAB receptors, and GABA transporter proteins to capture
and internalize GABA. GABAceptive astrocytes thus influence both inhibitory and
excitatory neurotransmission by controlling the levels of extracellular GABA. Furthermore,
astrocytes synthesize and release GABA to directly regulate brain functions. In this
review, we highlight recent research progresses that support astrocytes as GABAceptive
and GABAergic cells. We also summarize the roles of GABAceptive and GABAergic
astrocytes that serve as an inhibitory node in the intercellular communication in the
brain. Besides, we discuss future directions for further expanding our knowledge on
the GABAceptive and GABAergic astrocyte signaling.
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Abbreviations: 2-DG, 2-deoxy-D-glucose; 7TM, Heptahelical transmembrane; AC, Adenylyl cyclase; ACBP, acyl-CoA-
binding protein; AgRP, Agouti-related protein; Aldh1a1, Aldehyde dehydrogenase 1 family A1; ATP, Adenosine
triphosphate; BBB, Blood-brain-barrier; BF, Basal forebrain; BGT-1, Betaine-GABA transporter; BZR, Benzodiazepine
receptor; CAOs, Copper amine oxidases; CNS, Central nervous system; CRD, Cysteine rich domain; CTR1, Copper
transporter; Cx43, Connexin 43; DA, Dopamine; DAO, Diamine oxidase; DBI, Diazepam-binding inhibitor; EAAT,
Glutamate transporter; EVs, Extracellular vesicles; GABA, Gamma-aminobutyric acid; GABAARs, GABAA receptors;
GABABRs, GABAB receptors; GAD, Glutamic acid decarboxylase; GAT, GABA transporter protein; GFAP, Glial fibrillary
acidic protein; GPCR, G-protein coupled receptors; IFNγ, Interferon-gamma; KCC2, Potassium chloride cotransporter
2; LPS, Lipopolysaccharide; MAO-B, Monoamine oxidase B; mGluR, Metabotropic glutamate receptor; mPFC, Medial
prefrontal cortex; nRT, Thalamic reticular nucleus; ODN, Octadecaneuropeptide; PDH, Pyruvate dehydrogenase; Pfkfb3,
6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3; PGE2, Prostaglandin E2; PV, Parvalbumin; SOCs, Slow outward
currents; SOM-INs, Somatostatin-expressing interneurons; TSPO, Translocator protein; TTN, Triakontatetraneuropeptide;
VFT, Venus flytrap; VGCC, Voltage-gated calcium channels.
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INTRODUCTION

Astrocytes, the most abundant glial cells in the central nervous
system (CNS), account for about 20% of the glial cells in the
neocortex of the human brain (Pelvig et al., 2008). They form
complex connections with neurons, blood vessels, and other
glial cells, and play an important role in preserving normal
brain functions via providing energy and nutritional support for
neurons, maintaining metabolic homeostasis of the CNS, and
regulating cerebral blood flow (Anderson and Nedergaard, 2003;
Bélanger et al., 2011; Scheiber and Dringen, 2013).

A single astrocyte can touch more than 100,000 synapses
in the mouse cortex via a tripartite synapse, a structure
that the astrocyte associates with the pre- and post-synapse
areas of neurons (Bushong et al., 2002). Astrocytes induce
synaptic formation, regulate the release and uptake of synaptic
neurotransmitters, and maintain synaptic cleft transmitter
homeostasis (Allen, 2014). More importantly, astrocytes
directly regulate synaptic plasticity and synaptic transmission
by releasing gliotransmitters such as glutamate, adenosine
triphosphate (ATP), taurine, glycine, and D-serine (Barakat
and Bordey, 2002; Hussy, 2002; Henneberger et al., 2010;
Bernardinelli et al., 2014; Mederos and Perea, 2019). In the
recent decade, gamma-aminobutyric acid (GABA) has emerged
as a novel gliotransmitter (Yoon and Lee, 2014). Astrocytes
express GABA receptors to interact with an extracellular GABA,
suggesting astrocytes as GABAceptive cells (Le Meur et al.,
2012; Yoon et al., 2012). Astrocytes also contain a considerable
amount of GABA that can be released to modulate the activities
of GABA receptors-expressing cells, indicating a GABAergic
role of astrocytes (Le Meur et al., 2012; Yoon et al., 2012).

ASTROCYTES ARE GABAceptive CELLS

Astrocytes Internalize GABA via GABA
Receptors and Transporters
GABA is the main inhibitory transmitter in adults, which
binds to GABA receptors (ionotropic GABAA receptors,
GABAARs and metabotropic GABAB receptors, GABABRs) on
neurons and inhibits neuronal activities via reducing exocytosis,
hyperpolarizing membranes, and shunting depolarization.
Astrocytes are also with GABA uptake capacity which requires
at least two sodium ions per transportable GABA molecule
(Figure 1; Larsson et al., 1980). Astrocytes express both
GABAARs and GABABRs in the soma, the synapse-surrounding
processes, and the brain vessel-contacting endfeet (Nilsson et al.,
1993; Charles et al., 2003; Meier et al., 2008). The GABAARs
consist of five protein subunits arranged around a central
pore that constitutes the ion channel. Each subunit has a large
extracellular N-terminal domain, three membrane spanning
domains (M1-3), an intracellular loop of variable length, and
a fourth membrane spanning domain (M4) with extracellular
C-terminal end. The GABAAR family comprises 19 discovered
subunits: α1–6, β1–3, γ1–3, ρ1–3, δ, ε, π, and θ, and the subunit
combinations lead to a great diversity of GABAARs (Olsen
and Sieghart, 2008, 2009; Sequeira et al., 2019). Indeed, about

20 widely occurring native GABAARs have been identified,
with the major combinations being α1β2/3γ2, α2β3γ2, α3β3γ2
(Barnard et al., 1998; Mohler, 2006). The structure diversity
confers GABAARs with distinct topology, channel kinetics,
affinity for GABA, rate of desensitization, and ability for
transient chemical modification such as phosphorylation
(Mohler, 2006). Although the exact types of astroglial GABAARs
in the brain have not been clearly distinguished, functional
GABAARs have been found on astrocytes (Fraser et al., 1995).
The mRNAs of many GABAARs subunits including α1–5,
β1–3, γ1–3, and δ have been detected in cultured primary
astrocytes isolated from rodent cerebella (Bovolin et al., 1992;
Zheng et al., 1993). A recent study on human brains reported
expressions of genes encoding α2, β1, and γ1 subunits in
astrocytes, indicating the existence of functional astroglial
α2β1γ1 receptors in humans (Sequeira et al., 2019). Extracellular
GABA can activate astroglial GABAARs to open Cl- channels
in astrocytes in primary cell culture and rodent hippocampal
slices (Kettenmann et al., 1987; MacVicar et al., 1989). The
Cl--mediated depolarization results in an influx of Ca2+ from
the extracellular space through L- and T-type voltage-gated
calcium channels (VGCC; Young et al., 2010). GABA also
activates astroglial GABABRs. Unlike GABAARs, GABABRs,
belonging to class C of G-protein coupled receptors (GPCRs),
mediate slow and prolonged inhibitory signaling in the brain via
the activation of Gi/o type G-proteins, thus lead to inhibition
of adenylyl cyclase (AC; Munk et al., 2016). GABABRs are
obligate heterodimers composed of GABAB1 and GABAB2
subunits (Evenseth et al., 2020). Each subunit consists of an
extracellular Venus flytrap (VFT) domain and a heptahelical
transmembrane (7TM) domain (Chun et al., 2012). The VFT
is connected to the 7TM by a linker without the cysteine
rich domain (CRD; Chun et al., 2012). There are multiple
isoforms of the GABAB1 subunit, but the most abundant
are GABAB1a and GABAB1b, encoded by the same gene,
GABBR1 (Kaupmann et al., 1997). GABAB1a, GABAB1b, and
GABAB2 receptor subunits are all expressed on astrocytes
(Charles et al., 2003). The activation of astroglial GABABRs
increases intracellular Ca2+, which triggers the release of
Ca2+ from intracellular IP3-sensitive Ca2+ pools (Lee et al.,
2011; Vélez-Fort et al., 2012; Mariotti et al., 2016). Gamma-
hydroxybutyric acid, a metabolite of GABA, also activates
GABABRs, which in turn stimulates astrocytes (Gould et al.,
2014). GABA is depolarizing in astrocytes as their chloride
equilibrium potential is more depolarized than their resting
membrane potential due to the lack of chloride-extruding
transporter, potassium chloride cotransporter 2 (KCC2; Kolta,
2018). The expression of GABA receptors in astrocytes is
affected by many factors. For instance, GABAARs in astrocytes
decrease with in vitro aging and cerebral ischemia, possibly
due to the overproduction of S100B in activated astrocytes
(Tateishi et al., 2006).

Besides, astrocytes express multiple GABA transporter
proteins (GATs), including GAT-1, GAT-3, and betaine-GABA
transporter (BGT-1; Schousboe et al., 2017). Although GAT-1
is predominantly expressed in GABAergic neurons for the
recycling of GABA in presynapse (Conti et al., 2004), the
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FIGURE 1 | Astrocytes are GABAceptive cells. Astrocytes express GABAA receptors (GABAARs), GABAB receptors (GABABRs), and GABA transporter proteins
(GATs). Activation of GAGAARs on astrocytes opens voltage-gated calcium channels (VGCC), leading to the influx of extracellular Ca2+ into the cell (blue arrow).
GAGABRs activation induces the release of Ca2+ from the intracellular IP3-sensitive Ca2+ pool (red arrow). Ca2+ oscillations in astrocytes affect glutamate release and
GATs expression. GATs directly transport extracellular GABA into astrocytes.

GAT-1 subtype is found in astrocytes to be responsible for
glial GABA transport (Radian et al., 1990; Schousboe et al.,
2017). Unlike GAT-1, GAT-3 is expressed exclusively by
astrocytes and is mainly located at the astroglial processes
to modulate tonic inhibitory currents in postsynaptic cells
(Durkin et al., 1995; Minelli et al., 1996; Kersante et al.,
2013; Melone et al., 2015). GAT-3 activities influence
various astroglial functions including astrocyte synaptic
proximity, inhibitory synapse efficacy regulation, excitatory
neurotransmission modulation, and heroin seeking, indicating
GAT-3 as a key glial GABA transport (Shigetomi et al.,
2011; Boddum et al., 2016; Kruyer et al., 2021). Studies
have reported conflicting results regarding the expression
of BGT-1 in astrocytes (Bitoun and Tappaz, 2000; Olsen
et al., 2005; Zhou et al., 2012; Schousboe et al., 2017).
BGT-1 expression can be detected in cultured astrocytes
(Olsen et al., 2005), however, the expression of BGT-1 in
astrocytes in vivo may be very low (Bitoun and Tappaz,
2000; Zhou et al., 2012; Schousboe et al., 2017). Thus, GAT-1
and GAT-3 appear to be the two GABA transporters that
are mainly responsible for GABA uptake (Kersante et al.,

2013) and intracellular Ca2+ signaling of astrocytes (Doengi
et al., 2009; Matos et al., 2018), even though BGT-1 may
also play a role (Schousboe et al., 2017). Interestingly,
the levels of Ca2+ signaling influence GATs expression
as the enhanced extrusion of cytosolic Ca2+ via plasma
membrane Ca2+ pump PMCA2 upregulates GATs expression
in astrocytes (Yu et al., 2018). Hence, aforementioned
literatures indicate that astroglial GATs act in concert with
GABA receptors to regulate extracellular GABA levels in the
brain.

GABA Regulates the Differentiation,
Metabolism, and Functions of Astrocytes
GABA plays an important role in the differentiation, maturation,
and morphology of astrocytes. GABA treatment significantly
promotes themorphological differentiation of neonatal and adult
astrocytes in vitro and in vivo (Matsutani and Yamamoto, 1997;
Mong et al., 2002; Runquist and Alonso, 2003). The effects can
be blocked by GABAA antagonist, suggesting the involvement
of GABAAR in GABA-induced neonatal astrocyte differentiation
(Matsutani and Yamamoto, 1997).
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GABA also influences the metabolism of astrocytes. GABA
released by starvation- or ghrelin treatment-activated agouti-
related protein (AgRP) neurons can replace glutamate as an
energy source and affect the metabolic fate of glutamate
and glucose in astrocytes, thus inducing the depolarization
of astrocytes, expression of the glial fibrillary acidic protein
(GFAP), and mitochondrial fission (McKenna and Sonnewald,
2005; Varela et al., 2021). GABA metabolism in astrocytes is
perturbed in neurological disorders. GABAmetabolism has been
found to be downregulated in astrocytes with APP or PSEN-1
mutations, which was associated with the decline of GAT-3
expression and GABA uptake (Salcedo et al., 2021). In cortical
astrocytes, both the nitrogen and carbon skeleton of GABA
can be used for glutamine synthesis (Andersen et al., 2020).
Although exogenous GABAmay not directly stimulate glycolysis
or oxidative metabolism in astrocytes, it is used as an additional
substrate for uncoupled respiration to enhance this reaction.

The functions of astrocytes are under the regulation of GABA
as well. Astrocytes are an important unit of blood-brain-barrier
(BBB) via the interaction of endothelial cells (Abbott et al.,
2006). GABA released by interneurons in the basal forebrain
(BF) activates GABAARs in astrocytes that attach to microvessels
or vascular walls, thus inducing astrocyte-mediated vascular
dilation (Kaupmann et al., 1997). Similarly, astrocyte GABA
uptake trigger vasoconstriction in developing olfactory bulb
(Vélez-Fort et al., 2012).

Except for BBB regulation, GABA also influences the
molecule release capacity of astrocytes. GABA inhibited
cultured rat astrocytes from releasing endozepine (Patte
et al., 1999). Endozepines are a family of astroglia-secreted
proteins, namely diazepam-binding inhibitor/acyl-CoA-
binding protein (DBI/ACBP) and its processing fragments,
triakontatetraneuropeptide (TTN), and octadecaneuropeptide
(ODN; Guidotti et al., 1983; Knudsen et al., 1989; Rothstein
et al., 1992; Farzampour et al., 2015; Masmoudi-Kouki et al.,
2018; Lebrun et al., 2021). Although the term endozepines has
been around 40 years, endozepines remain a controversial theme
due to unclarity of the exact roles of proposed endozepines in
the brain (Tonon et al., 2020). Endozepines have been originally
isolated and characterized as natural ligands of central-type
benzodiazepine receptor (BZR), located on the GABAA receptor
complex (Guidotti et al., 1983). Following studies have reported
that endozepines interact with another BZR, the mitochondrial
translocator protein (TSPO; Slobodyansky et al., 1989), and
GPCR coupled to the PLC/PKC and/or AC/PKA pathways (Patte
et al., 1995; Marino et al., 2003). Afterwards, growing evidence
has strongly suggested that endozepines act as endogenous
regulators of anxiety-related behaviors (Guidotti et al., 1983;
De Mateos-Verchere et al., 1998), energy balance (Guillebaud
et al., 2017; Lebrun et al., 2021), neuroprotection (Ghouili
et al., 2018; Masmoudi-Kouki et al., 2018), neurogenesis,
tumorigenesis (Dumitru et al., 2017; Duman et al., 2019), and
hormonal secretions (Yoshida et al., 1999; Tonon et al., 2020).
It is also worth-noting that the identification of endozepines
is still an ongoing work. There are other endozepines such as
endozepine-2 and endozepine-4 that may be associated with
the pathogenesis of stupor (Rothstein et al., 1992). Hence,

GABA modulates astroglial function under physiological and
pathological conditions via inducing endozepines secretion.

Besides, GABA also regulates the release of ATP and
adenosine from astrocytes, which, modulates neuronal function
(Orellana and Stehberg, 2014; Matos et al., 2018). Astroglial
ATP acts on presynaptic P2X receptors to trigger a prolonged
increase of GABA release, therefore switching the plasticity
of GABA synapses in the dorsomedial hypothalamus (Crosby
et al., 2018). The GABA-driven release of astroglial adenosine
acts on presynaptic A1 receptors to mediate heterosynaptic
depression and propagation of glial activation (Newman,
2003; Serrano et al., 2006), therefore regulating mnemonic
processes (Vogt and Nicoll, 1999; Guetg et al., 2009) and the
pathogenesis of various neurological disorders including epilepsy
(Maitre et al., 1974; Heja, 2014).

GABAceptive Astrocytes Fine-Tune
Astrocyte-Neuron Crosstalk
The GABA uptake capacity confers astrocytes an essential
role in regulating inhibitory networks in the brain (Figure 2).
Interneuron-derived GABA increases GAT-1 and GAT-3
activity in astrocytes, which modulates synaptic activities of
thalamocortical neurons and striatal output neurons, thus
maintaining the tonic inhibition in the thalamus and striatum,
respectively (Pirttimaki et al., 2013; Wójtowicz et al., 2013;
Boddum et al., 2016). The activities of GAT-1 and GAT-3
also influence GABAAR-mediated inhibitory transmission
(Moldavan et al., 2017). The inhibition or knockout of GATs
induces the accumulation of extracellular GABA in the brain,
leading to extrasynaptic GABAARs activation and GABAAR-
mediated tonic current induction (Chiu et al., 2005; Song et al.,
2013). Besides, astrocytes from the somatosensory cortex and
the hippocampus can sense GABA released from parvalbumin
(PV)-expressing interneurons via GABABR, which influences
inhibitory post-synaptic current potentiation at the medial
prefrontal cortex (mPFC) circuits (Perea et al., 2016; Covelo
and Araque, 2018; Mariotti et al., 2018; Mederos et al., 2021).
The GABABR-mediated coordination of excitation-inhibitory
balance and gamma oscillations plays an important role in
goal-directed behaviors (Mederos et al., 2021). The response of
astrocytes to GABA signals depends on the type of interneurons
involved. The synaptic activities of somatostatin-expressing
interneurons (SOM-INs) can be detected by hippocampal
astrocytes via GABABR and GAT-3-dependent Ca2+ signaling
mechanisms, leading to the release of ATP and the production of
adenosine to activate SOM-IN synaptic inhibition of pyramidal
cells (Mariotti et al., 2016; Matos et al., 2018; Losi et al., 2021).
GABA-stimulated astrocytes also release prostaglandin E2
(PGE2) to activate AgRP-expressing neurons via EP2 receptor
(Varela et al., 2021). Astrocytes also regulate dopaminergic
neurotransmission by controlling extracellular uptake of GABA
(Roberts et al., 2020). Under normal circumstances, GABA
released by GABAergic striatum neurons acts on GABA
receptors located in dopamine (DA) axons, thereby inhibiting
the co-release of DA and GABA in DA axons. This process is
controlled by the activity of astrocyte GATs which internalize
GABA from extracellular space.
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FIGURE 2 | GABAceptive astrocytes fine-tune astrocyte-neuron crosstalk. (A) GABA released by interneurons on one hand inhibits glutamate release from
presynaptic neurons by acting on GABAA receptors (GABAARs) on presynaptic neurons; on the other hand, GABA acts on GABAB receptors (GABABRs),
metabotropic glutamate receptors (mGluRs), and GABA transporter proteins (GATs) on astrocytes, causing Ca2+ oscillations in astrocytes. Ca2+ oscillations regulate
the release of glutamate and ATP/adenosine. Glutamate derived from astrocytes acts on mGluRs on presynaptic neurons, thus promoting the release of glutamate
from presynaptic neurons into the synaptic cleft. In addition, astrocyte-derived glutamate also acts directly on postsynaptic neurons to partially counteract the
inhibitory effect of GABA. Besides, astrocyte-derived ATP/adenosine inhibits glutamate release from presynaptic neurons by activating presynaptic adenosine
receptors (dashed lines). (B) GABA released by GABAergic striatum neurons acts on dopamine (DA) axons and inhibits the co-release of GABA and dopamine,
which is modulated by GATs on astrocytes (blue lines). (C) GABA released by agouti-related protein (AgRP) neurons acts on astrocytes, causing astrocytes to release
prostaglandin E2 (PGE2) to activate AgRP neurons (red lines).

Interestingly, the activation of GABAceptive astrocytes
has effects on excitatory neurotransmission as well. Astrocyte
GAT3-mediated regulation of extracellular GABA in the
hippocampus plays an important role in controlling the
excitability of hippocampal cells in response to increased
network activity (Kersante et al., 2013). The GABA-induced
activation of GABABRs results in glutamate release from
astrocytes and activation of presynaptic group I metabotropic
glutamate receptors (mGluRs), which persists in the bursts of
interneuron action potential seven during the interneuron down-
state, leading to enhancement of excitatory neurotransmission
(Perea et al., 2016). Furthermore, computational modeling has
recently been utilized to investigate the effects of exposure
of astrocytes to different concentrations of exogenous
GABA on excitatory presynaptic and postsynaptic endings

(Li et al., 2020). The results show that increased GABA
concentration not only reduces neuronal spikes but also
facilitates astrocyte glutamate release by inducing Ca2+

oscillations, leading to astrocyte-mediated presynaptic
release and enhanced postsynaptic slow inward current
(i.e., depolarizing currents). Thus GABA-activated astrocytes
induce neuronal excitation that partially counteracts GABA
inhibition.

In addition, GABA-stimulated astrocytes can affect the
differentiation and maturation of neurons. During early
development, astrocytes internalize neuronal precursor-derived
GABA to create a microenvironment that strictly regulates
the level of GABA and the activation of GABAAR, which
is conducive to controlling the migration rate of neuronal
precursors during development (Bolteus and Bordey, 2004).
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GABA-Stimulated Astrocytes Contribute to
Neurological Disorders
GABA neurotransmission disorders have been reported in
various neurological diseases. For instance, the decline of
GABA uptake and metabolism in AD astrocytes leads to GATs
expression reduction, hereby contributing to neurotransmitter
disturbances and cognitive impairment (Salcedo et al., 2021). In
mouse models of early Parkinson’s disease, the downregulated
GATs expression in the dorsal striatum also reduces the
co-release of DA and GABA in DA axons, enhancing tonic
inhibition of DA release and accelerating disease progression
(Roberts et al., 2020). Furthermore, the activation of astrocyte
GABABR by striatal medium spiny neurons results in acute
behavioral hyperactivity and disrupted attention, revealing
the activation of GABAceptive astrocytes as a causal factor
for hyperactivity, attention deficit, and related psychiatric
disorders (Nagai et al., 2019). In hyperammonemia, astrocyte
activation and neuroinflammation have been reported to
participate in GABA neurotransmission alteration, which
causes cognitive dysfunction in hepatic encephalopathy
(Malaguarnera et al., 2019, 2021). Treatment by GABAAR
antagonist bicuculline can restore GABA neurotransmission,
leading to the recovery of spatial learning and reduction of
anxiety (Malaguarnera et al., 2019, 2021). Moreover, enhanced
GABAAR responses of astrocytes are required for endozepines
actions in the thalamic reticular nucleus (nRT), which mediates
antiepileptic and sleep-promoting effects (Christian and
Huguenard, 2013). Besides, dysfunction of GABAceptive
astrocytes alters GABAergic transmission, thus contributing to
epilepsy.

Taken together, astrocytes express GABA receptors and
transporters. The uptake of GABA regulates astrocyte
differentiation and function, therefore influencing GABA
neurotransmission and contributing to neurological disorders.

ASTROCYTES ARE GABAergic CELLS

Astrocytes Produce and Release GABA
GABA was previously thought to be produced in and
released from neurons only. However, emerging evidence
has demonstrated that similar to neurons, astrocytes are
capable of producing and releasing GABA, suggesting
astrocytes as GABAergic cells (Figure 3; Le Meur et al.,
2012). Astrocytes synthesize GABA using diverse enzymes
like monoamine oxidase B (MAO-B) and glutamic acid
decarboxylase (GAD) in different brain regions (Wu et al.,
2014; Yoon et al., 2014). In the thalamus, diamine oxidase
(DAO) and aldehyde dehydrogenase 1 family A1 (Aldh1a1)
in astrocytes convert putrescine to GABA through two
metabolic steps and release by bestrophin (Kwak et al.,
2020). In the cerebellum and hippocampus, MAO-B converts
putrescine into GABA in astrocytes (Yoon et al., 2014; Park
et al., 2019). Besides, hippocampal astrocytes utilize two
glutamate decarboxylases (GAD65 and GAD67, 65- and 67-kD
isoforms, respectively) to convert glutamate into GABA (Kwak
et al., 2020). Putrescine in astrocytes can be catabolized to

GABA under the catalysis of copper amine oxidases (CAOs;
Szabó et al., 2021).

Astrocytes release GABA post various stimulations. For
example, intracellular copper levels affect the amount of
GABA accumulated in astrocytes. After being taken up
by copper transporter (CTR1), copper enhances CAOs’
activities and GABA production, causing GABA release
and tonic inhibition (Szabó et al., 2021). Astrocyte GABA
can also be released into the extrasynaptic space by Na+

influx mediated by glutamate transporter (EAAT; Szabó
et al., 2021). Besides, activation of α-2 adrenergic receptors
also stimulates the release of GABA by astrocytes through
Giβγ subunit-associated signaling pathways (Gaidin et al.,
2020a). Thus, the GABAceptive and GABAergic characteristics
confer essential roles of GABA homeostasis maintenance
to astrocytes, making GABAergic astrocytes key nodes of
inhibitory networks in the brain. Moreover, astrocyte GABA
is co-released with glutamate, acetylcholine, dopamine, or
histamine in the presynaptic terminal, providing temporal-
spatial precise signals and regulating synaptic plasticity (Tritsch
et al., 2016).

GABAergic Astrocytes Contribute to the
Pathogenesis of Neurological Disorders
GABAergic astrocytes play a part in the pathogenesis of many
diseases including Alzheimer’s disease (AD), stroke, epilepsy,
and other neurological diseases.

In middle age AD mice, the size of astrocytes increases
significantly. Astrocytic GABA in the cortex and dentate
gyrus showed an approximately normal distribution with
animals’ age. In normal mice, only a brief increase in GABA
levels occurred in middle age. Excessive GABA is found
accumulated in and released from astrocytes even in absence
of amyloidosis in AD mice (Brawek et al., 2018). In the
dentate gyrus of AD mice, astrocyte-derived GABA inhibits
the number of ridges of granulosa cells, therefore impairing
cognitive functions (Jo et al., 2014). The blockage of GABA
production and release in reactive astrocytes restores the
memory of AD mice (Jo et al., 2014). An abnormal amount
of GABA released by astrocytes was also observed in AD
patient samples (Le Meur et al., 2012). In addition, human
hippocampal astrocytes release GABA to induce slow outward
currents (SOCs) of neurons, leading to neurotransmission
inhibition.

Besides neurodegenerative diseases, GABAergic astrocytes
dysfunction is involved in other neurological disorders. In
stroke, the internal capsular infarct induces reactive astrocyte
proliferation and GABA release in the motor cortex (Nam
et al., 2020). Reactive astrocyte-derived GABA inhibits neuronal
glucose metabolism, which can be erased by inhibiting GABA
synthase MAO-B. Therefore, MAO-B inhibitor combined
with rehabilitation therapy may be a new strategy to promote
functional recovery after stroke. In epilepsy, GABA has been
found to be progressively accumulated in reactive astrocytes
(Müller et al., 2020). The overproduction of GABA in reactive
astrocytes is mediated by both decarboxylation of glutamate
and putrescine degradation, and the excessive release of GABA
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FIGURE 3 | Astrocytes synthesize and release GABA. GABA synthesis in astrocytes has different pathways in different brain regions. In the hippocampus,
glutamate in astrocytes is converted into GABA under the action of glutamate acid decarboxylase (GAD). In the cerebellum and the hippocampus, putrescine in
astrocytes is converted into GABA under the action of monoamine oxidase B (MAO-B). In the thalamus, putrescine in astrocytes generates GABA through a
two-step interaction of diamine oxidase (DAO) and aldehyde dehydrogenase 1 family A1 (Aldh1a1). The transformation of putrescine to GABA is affected by the
levels of intracellular copper ion which is regulated by copper transporter (CTR). GABA synthesized by astrocytes can be further converted into glutamine to enter
glutamine-glutamate cycle. GABA is released out of cells by either GABA transporter proteins (GATs) under the action of glutamate transporter (EAAT) or through
bestrophin (Best1). α-2 adrenergic receptors also modulate the release of GABA through Giβγsubunit-associated signaling pathways.

preserves tonic inhibitory currents in the epileptic brain (Eid
et al., 2013; Müller et al., 2020). In depression, the blockage
of GABA synthesis in astrocytes restores prominent plasticity
in the prefrontal cortex in depressed rats (Srivastava et al.,
2020). Under acute hyperammonemia, the release of astrocyte
GABA induced by α-2 adrenergic receptor agonists plays
a neuroprotective role (Gaidin et al., 2020b). One possible
mechanism is that astrocyte GABA act on GABAceptive
microglia with GABAARs and GABABRs, which may
inhibit microglial activation and alleviate neuroinflammation
(Malaguarnera et al., 2021).

FUTURE DIRECTIONS TO COMBINE WITH
CURRENT RESEARCH HOTSPOTS

Although mounting evidence has indicated important roles
of astrocytes as GABAceptive and GABAergic cells in the
regulation of neural functions, there are still many questions to
be addressed. Here, we summarize current research hotspots and
provide our thoughts that may inspire future studies.

Are Exosomes Able to Mediate
GABAceptive and GABAergic
Astrocyte-Dependent Regulation of
Neuronal Cells?
Exosomes, a subtype of small bilipid layer extracellular vesicles
(EVs), serve as an essential regulator of neural functions
(Chivet et al., 2012, 2014). We recently proposed a model that
exosomes might serve as novel neurotransmitters (Xia et al.,
2022). Given that, whether exosomes mediate GABAceptive
and GABAergic astrocyte-dependent regulation of neuronal
cells has emerged as an interesting question. It has been
reported that exosomes derived from GABA-treated intestinal
cells or from the serum of GABA-treated mice are able to
activate neuronal cells in vitro by affecting the expression
of genes related to memory in the hippocampus (Inotsuka
et al., 2021). Besides, although in the absence of direct
causal evidence, hyperactivation of GABA receptors and the
abnormal release of exosomes have been closely linked to
neurological disorders including epilepsy (Khalyfa and Sanz-
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Rubio, 2019). These studies implied a positive answer to this
question, which needs to be exhaustively examined in future
works.

Is GABA Able to Regulate Inflammatory
Responses of Astrocytes?
Since the first publication that proposed an A1/A2 model for
reactive astrocytes in 2017, this field has explosively expanded
(Liddelow et al., 2017). Currently, multiple neurotoxic or
inflammatory stimuli have been identified to trigger A1 or
A2-like reactive phenotypes of astrocytes (Li et al., 2019; Peng
et al., 2020). However, the roles that GABA plays in astrocyte
inflammatory responses remain controversial. It has been
reported that GABA receptors participate in the activation of
astrocytes post lipopolysaccharide (LPS) and interferon-gamma
(IFNγ) stimulation (Lee et al., 2011). This study implicated
GABA as an anti-inflammatorymolecule that decreases astroglial
activation and inhibits pro-inflammatory pathways. In contrast,
another study has demonstrated that GABA treatment and
the subsequent activation of GABAARs induce activation
of astrocytes, ascertained by enhanced expression of GFAP
(Runquist and Alonso, 2003). These conflicting observations
indicate that astrocytes are a highly heterogeneous population
and the effects of GABA on astrocyte inflammatory responses are
highly dynamic. Therefore, more comprehensive investigations
are urgently needed to expand our understanding in this
field.

Is GABA Able to Mediate Metabolic
Reprogramming of Astrocytes?
Metabolic reprogramming is the alteration of energy metabolism
modes that were firstly reported in cancer cells. Cancer
cells can switch their metabolism mode to a glycolytic one
even under aerobic conditions for rapid energy generation.
This switch meets cancer cells’ bioenergetic and biosynthetic
demands to support their rapid proliferation (Ward and
Thompson, 2012). Hence, cancer cells get energy via high
consumption of glucose and its conversion into lactic acid
by glycolysis mostly, whereas normal cells mainly utilize
mitochondrial oxidative phosphorylation (Biswas, 2015). Recent
studies reveal that activated normal cells also undergo a
distinct metabolic shift that significantly impacts their biological
functions. Under resting conditions, astrocytes in adult brains
almost exclusively utilize the complete oxidative metabolism
of glucose for energy supply (Hertz, 2011). Under other
conditions, however, astrocytes have the capacity to switch
to a mode with a high glycolytic rate and lower oxidative
metabolism as evidenced by the high expression of 6-
phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (Pfkfb3),
a key positive modulator of glycolysis, and low activities
of pyruvate dehydrogenase (PDH), the enzymatic complex
that generates TCA cycle substrate acetyl-CoA (Herrero-
Mendez et al., 2009; Halim et al., 2010). These observations
reveal that the metabolic states of astrocytes are altered
with environmental changes. Interestingly, 2-deoxy-D-glucose
(2-DG), a glucose analog that inhibits glycolytic enzymes, has
been reported to potentiate GABAergic tonic inhibition via

neurosteroid-mediated activation of extrasynaptic GABAARs
in the brain granule cells (Forte et al., 2016). A similar
phenomenon may exist in astrocytes as well. In addition, the
integration between glycolysis and the glutamate-glutamine
cycle has been reported to participate in the regulation of
astroglial activation (Hertz and Chen, 2017). Since GABA
is the substrate and product of glutamate-glutamine cycle,
intracellular GABA is likely to modulate glycolytic rates of
astrocytes viamodulating glutamate production (Cabrera-Pastor
et al., 2019). Therefore, the potential reciprocal regulation
between GABA and metabolic reprogramming may significantly
manipulate astrocyte functions, especially under inflammatory
conditions.

In summary, there are knowledge gaps in current
understandings of the functions and regulations of
GABAceptive and GABAergic astrocytes. More in-depth
and systematic researches are needed to unmask the
unknowns of GABAceptive and GABAergic astrocytes in
the future.

CONCLUSIONS

Recent studies identified GABA as a novel gliotransmitter
in the CNS. The activities of GABAceptive astrocytes driven
by inhibitory cells regulate both inhibitory and excitatory
neurotransmission. More importantly, astrocytes themselves
produce and release GABA to influence the brain function
directly. The GABAceptive and GABAergic features make
astrocytes a key regulator in both the maintenance of
the proper function of the CNS and the pathogenesis
of various neurological disorders. More comprehensive
investigations will unveil the physiological and pathological
roles of GABAceptive and GABAergic astrocytes yet to
be discovered, and will greatly promote the progress of
neuroscience to shed light on the development of novel astrocyte-
dependent therapeutic strategies in treating neurological
disorders.
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