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Patients with coronavirus disease 2019 (COVID-19) have been frequently

reported to exhibit neurological manifestations and disruption of the

blood-brain barrier (BBB). Among the risk factors for BBB breakdown, the loss

of endothelial cells and pericytes has caused widespread concern. Recent

studies have revealed that severe acute respiratory syndrome coronavirus 2

envelope (S2E) protein caused cell death.We tested the hypothesis that the S2E

protein alone could induce BBB dysfunction. The S2E protein bound to human

BBB-related cells and inhibited cell viability in a dose- and time-dependent

manner. Importantly, the S2E protein disrupted barrier function in an in vitro

BBB model composed of HCMEC/D3 (brain endothelial cell line), HBVP (brain

vascular pericyte), and U87MG (astrocyte cell line) cells and suppressed the

expression ofmajor genes involved inmaintaining endothelial permeability and

function. In addition, the S2E protein crossed the HCMEC/D3 monolayer. The

S2E protein triggered inflammatory responses in HCMEC/D3 and U87MG cells.

Taken together, these results show for the first time that the S2E protein has a

negative impact on the BBB. Therapies targeting the S2E protein could protect

against and treat central nervous systemmanifestations in COVID-19 patients.

KEYWORDS

COVID-19, BBB disruption, SARS-CoV-2 envelope protein, astrocyte,

neuroinflammation

Introduction

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuing to spread around the

world, with more than 428 million cases and nearly 6 million deaths reported globally

(WHO, 2022).
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Previous work has shown that in addition to conventional

respiratory symptoms, SARS-CoV-2 also causes a wide range of

central nervous system (CNS) complications, including but not

limited to headache, loss of taste and/or smell, hallucination,

and seizure (Baig, 2020; Pezzini and Padovani, 2020). But it

remains unclear whether these are a consequence of direct

SARS-CoV-2 infection of the nervous system, an immune-

mediated para- or post-infectious condition, or sequelae of

systemic disease (Ellul et al., 2020; Iadecola et al., 2020; Mao

et al., 2020; Alonso-Bellido et al., 2021). One possibility is

that SARS-CoV-2 invades the brain via the olfactory nerves

due to the presence of viral particles at the neural-mucosal

interface in the olfactory mucosa in autopsied patient tissues

(Meinhardt et al., 2021). Alternatively, SARS-CoV-2 may cross

the blood-brain barrier (BBB), as evidenced by the detection

of viral RNA in cerebrospinal fluid (Moriguchi et al., 2020).

In human brain organoid models, SARS-CoV-2 can directly

infect neurons and choroid plexus epithelial cells (Jacob et al.,

2020). SARS-CoV-2 can also induce central neuroinflammatory

effects without directly invading the brain or crossing the

BBB, as proteins shed from SARS-CoV-2 and cytokines may

cross the BBB to affect CNS functions (Rhea et al., 2021;

Yarlagadda et al., 2021). For example, the SARS-CoV-2 spike

(S2S) protein alters BBB function by triggering proinflammatory

responses in brain endothelial cells in vitro (Buzhdygan et al.,

2020). The SARS-CoV-2 envelope (S2E) protein is the smallest

among the four major structural proteins (75 aa in length)

(Kim et al., 2020), which makes it more permeable than the

S2S protein.

In COVID-19, the S2E protein alone causes acute

respiratory distress syndrome (ARDS)-like pathological damage

by activating toll-like receptor 2 (TLR2) on macrophages

and triggering the secretion of cytokines and chemokines

(Xia et al., 2021; Zheng et al., 2021). There is an abundant

expression of TLR2 in microglia in the brain, which are

immunological surveillance cells in the CNS (Fiebich et al.,

2018). In brain endothelial cells, the expression of TLR2 was

inducible upon pathogen invasion (Faure et al., 2001). Overall,

the S2E protein may play a central role in COVID-19-associated

neuroinflammatory symptoms by disrupting BBB functions.

The present study aimed to assess whether the SARS-CoV-

2 envelope protein negatively affects BBB functions and induces

neuroinflammatory effects in an in vitromodel of the BBB.

Abbreviations: COVID-19, coronavirus disease 2019; BBB, blood-brain

barrier; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2;

S2S, SARS-CoV-2 spike; S2E, SARS-CoV-2 envelope; CNS, central nervous

system; ARDS, alone causes acute respiratory distress syndrome; TLR2,

toll-like receptor 2; MHC-I, MHC class I; ER, endoplasmic reticulum;

HAND, HIV-associated neurocognitive disorder.

Materials and methods

Cell culture and treatment

Human immortalized cerebral microvascular endothelial

cells (HCMEC/D3), human brain vascular pericytes (HBVP),

and human glioblastoma cells (U87MG) were obtained from

Xinyu Biotechnology Co., Ltd (Shanghai, China). All cells

were maintained in a humidified incubator (37◦C, 5%

CO2). HBVP and U87MG cell lines were both cultured

in Dulbecco’s Modified Eagle Medium (DMEM, Thermo

Fisher Scientific, USA) containing 1% MEM Non-Essential

Amino Acids Solution (NEAA, Thermo Fisher Scientific,

USA), 1% GlutaMAXTM (Thermo Fisher Scientific, USA),

1% Penicillin-Streptomycin (Macgene, Beijing, China), and

10% Fetal Bovine Serum (FBS, Thermo Fisher Scientific,

USA). HCMEC/D3 cells were maintained in culture using

Endothelial Growth Medium (Xinyu Biotechnology Co., Ltd,

Shanghai, China). All cells used in the experiments were

between passages 10 and 15. The S2E protein with an

N-terminal GST tag and a C-terminal polyhistidine tag

(ENN-C5128) was obtained from Acro Biosystems (Newark,

DE, USA) and was used in this study. Cells were treated

with S2E protein at a final concentration of 100 nM for 12 h.

The untreated controls were treated with an equal volume

of DMEM. The positive controls were treated with 5mM

H2O2 for 12 h (Lee et al., 2004; Anasooya Shaji et al.,

2019).

In vitro human BBB model

A triple culture model of the BBB was constructed as

previously described (Hatherell et al., 2011; Fikatas et al.,

2021). First, HBVP cells (2.5 × 104 cells/ml) were cultured

on the underside of the Transwell inserts (pore size 0.4µm,

diameter 6.5mm) pre-coated with poly-L-Lysin (Corning, New

York, USA). After 12 h, U87MG cells (1.5 × 104 cells/ml)

were added in the same way. At the beginning of the second

day, HCMEC/D3 cells (1.5 × 104 cells/ml) were seeded onto

luminal side. Cells were tri-cultured for an additional 3 or

4 days in the incubator at 37◦C with 5% CO2 until the

resistance of HCMEC/D3 cells on the upper side was found to

be 54.1 ± 3.3Ω cm2, as previously reported (Hatherell et al.,

2011).

Measurement of TEER

The barrier integrity of the BBB model was analyzed by

measuring trans-endothelial electrical resistance (TEER).

TEER was measured by EVOM2 (World Precision

Instruments, Sarasota, FL, United States). The TEER of
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blank Transwell filters containing the cell culture medium

was subtracted from the measured TEER of models. For

each sample, TEER was measured three times and taken

the average.

FITC-dextran permeability assay

The assay was performed, as previously described with

slight modifications (Czupalla et al., 2014; Leda et al.,

2019). To detect the permeability of the BBB model,

Fluorescein isothiocyanate (FITC)-dextran (10 kDa, 0.5

mg/mL, Sigma-Aldrich, St. Louis, MO, USA) was added

to the luminal chamber for 1 h. Samples were collected

from both luminal and abluminal chambers for fluorometry

analysis. The concentrations of FITC-dextran were measured

at 490/520 nm (emission/excitation). The permeability

(Pe) coefficient of FITC-Dextran was calculated from

Pe= (A/L), where [A] is abluminal concentration, [L] is

luminal concentration.

Real-time PCR

Total RNA was extracted from cell cultures using TRIzol

reagent (Invitrogen, California, USA). cDNA was synthesized

with 500 ng of RNA in 20 µl reaction mix using Transcriptor

High Fidelity cDNA Synthesis Kit (Roche, Basel, Switzerland)

according to manufacturer’s instruction. Quantitative real-time

PCR was performed with FastStart Universal SYBR Green

Master Mix (Roche, Basel, Switzerland) on the LightCycler 96

system (Roche, Basel, Switzerland). The primer sequences used

in the study are as follows:

GAPDH, forward, 5
′

-GACAGTCAGCCGCATCTTCT-3
′

and reverse, 5
′

-TTAAAAGCAGCCCTGGTGAC-3
′

.

ZO-1, forward, 5
′

-GTGTCCTACCTAATTCAACTCAT-3
′

and reverse, 5
′

-TTACCCTGAGAATTTGATCACC-3
′

.

PECAM1, forward, 5
′

-GAAAGCTGTCCCTGATGCCG-3
′

and reverse, 5
′

-GGAGCAGGGCAGGTTCATAA-3
′

.

PGP, forward, 5
′

-TTGATGCCGTATTCCTGGGA-3
′

and

reverse, 5
′

-TTTGACCCGCACTTCAGCTA-3
′

.

SLC2A1, forward, 5
′

-TGGCATCAACGCTGTCTTCT-3
′

,

and reverse, 5
′

-CTAGCGCGATGGTCATGAGT-3
′

.

MHC-I, forward, 5
′

-AGTGGGCTACGTGGACGACA-3
′

,

and reverse, 5
′

-ATGTAATCCTTGCCGTCGTA-3
′

.

IL-6, forward, 5
′

-CAATGAGGAGACTTGCCTG-3
′

, and

reverse, 5
′

-GTACTCATCTGCACAGCTCT-3
′

.

IL-1β , forward, 5
′

-TTCATTGCTCAAGTGTCTGAAG-3
′

,

and reverse, 5
′

-AGTCATCCTCATTGCCACTGT-3
′

.

The GAPDH gene was used as the housekeeping gene to

normalize the target gene expression. Relative mRNA levels were

calculated using the 2−11Ct formula.

Immunofluorescence staining and
imaging

At experimental endpoints, specimens were washed

with PBS and then fixed in 4% paraformaldehyde (pH 7.4)

in PBS for 20min at room temperature (RT). Blocking

and permeabilization were performed with 5% donkey

serum and 0.1% Triton X-100 in PBS for 30min at RT.

Specimens were incubated overnight at 4◦C with the following

primary antibodies: Rabbit anti-SARS-CoV-2 envelope protein

(1:200, Cat #28904-1-AP, Proteintech, Wuhan, China),

Rabbit anti-ZO-1 (1:100, Cat # 21773-1-AP, Proteintech,

Wuhan, China), Rabbit anti-MHC class I (1:200, Cat #

ab134189, Abcam, Cambridge, UK), Mouse anti-His-tag

(1:200, Cat #D291-3, MBL, Aichi, Japan) in 5% donkey

serum in PBS. Thereafter, Specimens were washed with

PBS and incubated with secondary antibodies at 1:500

dilution for 1 h at RT. All secondary antibodies (Donkey

anti-rabbit Alexa Fluor 488, Cat #ab150073 and Donkey anti-

mouse Alexa Fluor 594, Cat #ab150108) were obtained from

Abcam (Cambridge, UK). Nuclei were counterstained with

4’,6-diamidino-2-phenylindole (DAPI, 1:5000, Sigma-Aldrich,

MBD0015, St. Louis, MO, USA). To stain the plasma membrane

(Majkowski et al., 2012; Su et al., 2016), cells were incubated

with 1,1
′

-dioctadecyl-3,3,3
′

,3
′

-tetramethylindodicarbocyanine,

4-chlorobenzenesulfonate salt (DiD, Thermo Fisher Scientific,

Cat #D7757, USA) for 10min at 37◦C. For imaging, all

sections were randomly captured at least 5 fields for

each sample under 40× magnification using a Leica TCS

SP8 STED 3X Super-Resolution Confocal Microscope

(Wetzlar, Germany) and analyzed using the Leica LAS

X software.

Cell viability assay

Cell viability assays were evaluated using cell counting kit-8

(CCK8,MCE, New Jersey, USA) according to themanufacturer’s

instruction. Briefly, Cells (1 × 104 cells/ml) were seeded into

96-well plates and then incubated for 24 h. After being treated

with various concentrations (0–200 nM) of S2E protein for

12 h or treated with 100 nM S2E protein for indicated times

(0–24 h), 10µl of CCK8 solution was added to each well for 12 h.

Absorbance was detected at 450 nm using a fluorescence plate

reader (BioTek Synergy H1, Winooski, USA).

Lactate dehydrogenase (LDH) assay

The cytotoxicity of S2E protein was quantified by measuring

the amounts of LDH, which was evaluated using LDH-GloTM

cytotoxicity assay (Promega, Germany), following the

manufacturer’s instruction. LDH release (cytotoxicity %)
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was calculated by dividing the value by the maximum

value. Cells were treated with 0.2% Triton X-100 for 12 h to

induce nearly complete cell damage as a positive control of

cell death.

Cytokine assay by ELISA

The culture medium was collected. IL-6 and IL-1β were

measured with an ELISA kit (Elabscience Biotechnology Co.,

Ltd,Wuhan, China) according to themanufacturer’s instruction.

Data analysis and statistics

Data were shown as mean ± standard deviation (SD) of

three independent experiments. All data obtained were analyzed

by Graphpad Prism version 8.4.3 (GraphPad Software, Inc.)

using Student’s t-test or one-way ANOVA with Tukey post-hoc

tests as appropriate. Statistical significance was set at a value

of p < 0.05.

Results

SARS-CoV-2 envelope protein inhibits
cell viability in vitro

The effects of the S2E protein on the proliferation of

human BBB-related cell lines were assessed using a CCK-8

assay. After 12 h treatment of S2E protein, a minimum dose

of 25 nM significantly decreased the viability of HCMEC/D3

cells (75.50%) and U87MG cells (87.52%), while a minimum

dose of 100 nM significantly decreased the viability of HBVP

cells (82.58%). At the maximum dose of 200 nM, all cell

viabilities dropped below 50% (Figure 1A). There was also

a time-dependent effect of the S2E protein compared to

the time point 0 h of untreated controls. At a dose of

100 nM, cell viability significantly decreased as early as 6 h

post-treatment (hpt), continued to decrease until 24 hpt,

and finally reached 50.63% in HCMEC/D3 cells, 60.94%

in HBVP cells, and 74.24% in U87MG cells (Figure 1B).

Further, we evaluated the cytotoxicity of S2E protein in

three cell lines using LDH assay. S2E protein resulted in

75.46% cytotoxicity of HCMEC/D3 cells. S2E protein did

not affect the rate of cell death of HBVP cells and U87MG

cells significantly (Supplementary Figure 1). The S2E protein

colocalized with the cell membrane in all cell lines, as

shown by immunofluorescent staining, suggesting that the

S2E protein could bind to human BBB-related cell lines

(Supplementary Figure 2).

SARS-CoV-2 envelope protein crosses
the BBB and disrupts barrier integrity and
permeability

To evaluate the effects of the S2E protein on BBB functions,

an in vitro Transwell barrier BBB model was established,

in which HCMEC/D3 cells on the luminal side served as

brain endothelial cells, while HBVP cells and U87MG cells

on the underside of the insert served as brain vascular

pericytes and astrocytes, respectively (Figure 2A). The S2E

protein was administered on the luminal side. Then, BBB

integrity was assessed by TEER, and BBB permeability was

assessed by the transmissivity of 10 kDa FITC-dextran. In

response to 100 nM S2E protein, the TEER values decreased in

a time-dependent manner to 94.39, 85.57, and 84.57% of the

baseline values at 6, 12, and 24 hpt, respectively (Figure 2B);

FITC-dextran transmissivity increased to 1.31-fold, 2.19-fold,

and 2.98-fold of the baseline values vs the 0 h time point of

untreated controls (Figure 2C). There were also dose-dependent

fluctuations in TEER and FITC-dextran transmissivity as the

S2E protein concentration increased (25–200 nM) at 12 hpt

(Figures 2D,E). Confocal imaging further revealed that the

S2E protein bound to and passed through the HCMEC/D3

monolayer (Figure 2F).

Moreover, we explored the effect of S2E protein on

endothelial cell barrier function. The expression levels of

the BBB-related genes ZO-1, PECAM1, PGP, and SLC2A1

were decreased in HCMEC/D3 cells at 12 hpt (Figure 3A).

Furthermore, immunofluorescence staining identified the

colocalization of S2E protein and ZO-1 at cell boundaries, and

the ZO-1 protein was less identified and with a discontinuous

pattern, suggesting disruption of this tight junction (TJ)-related

gene by the S2E protein (Figure 3B). Taken together, our data

strongly suggest that the S2E protein has the potential to cause

BBB leakage.

SARS-CoV-2 envelope protein triggers an
inflammatory response in HCMEC/D3
and U87MG cells

To assess whether the S2E protein triggers proinflammatory

responses in cultured HCMEC/D3 and U87MG cells, the

expression levels of MHC-I, IL-6, and IL-1β were assessed.

Immunofluorescence staining suggested that upon S2E protein

exposure, MHC class I (MHC-I) molecule expression increased

in U87MG cells but not in HCMEC/D3 cells (Figures 4A,B).

However, there were increasedmRNA levels ofMHC-I, IL-6, and

IL-1β in both cell lines compared with those in the untreated

group (Figures 4C–H). Furthermore, treating both cell lines with

S2E protein, ELISA assay showed markedly increases only in

IL-6 levels of HCMEC/D3 cells (Supplementary Figure 3).
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FIGURE 1

SARS-CoV-2 envelope protein a�ects cell viability in vitro. (A) The viability of cells after exposure to a range of S2E protein concentrations for

12h. A CCK-8 assay was performed to assess cell viability. OD, optical density. (B) Time courses of the viability of HCMEC/D3, HBVP, and U87MG

cells treated with 100nM S2E protein. The data are represented as the mean ± SD of three independent experiments. *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001.

FIGURE 2

SARS-CoV-2 envelope protein crosses and impairs the BBB model. (A) Schematic showing the various components of the in vitro BBB model.

(B) Time courses of TEER values from HCMEC/D3 monolayers exposed to the S2E protein (100nM). (C) Analysis of the permeability of

HCMEC/D3 monolayers treated with 100nM S2E protein for various times. (D) TEER values of HCMEC/D3 monolayers treated with di�erent S2E

protein concentrations for 12h. (E) HCMEC/D3 monolayer permeability after exposure to a range of S2E protein concentrations for 12h. (F)

Confocal top-down and cross-sectional views of the HCMEC/D3 monolayer. Scale bar = 20µm. The data shown are the mean ± SD of three

independent experiments. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 3

SARS-CoV-2 envelope protein impairs endothelial cell barrier function. (A) Relative mRNA levels of ZO-1, PECAM1, PGP, and SLC2A1 in

HCMEC/D3 cells, as determined by RT-PCR. (B) Immunofluorescence images of ZO-1 in HCMEC/D3 cells. Scale bar = 10µm. The data shown

are the mean ± SD of three independent experiments. *p < 0.05, **p < 0.01, ****p < 0.0001.

Discussion

The widespread neurological complications and sequelae in

patients with COVID-19 (Erickson et al., 2021) indicate that

SARS-CoV-2 itself or its products can trigger CNS damage. It

is unclear whether these effects are directly induced by the virus

or viral products (Trypsteen et al., 2020). It has been reported

that the S2E protein, which affects ion channels, attacks host

cells, and triggers inflammation as a virulence factor (Xia et al.,

2021). In this study, we examined the ability of the S2E protein

to cross the BBB by disrupting the endothelial barrier and

triggering inflammatory responses in glial cells in an in vitro BBB

model. The S2E protein was able to reduce viability in all three

BBB-related cell lines, disrupt BBB integrity and the expression

levels of BBB-specific genes, and trigger BBB inflammation.

The S2E protein forms viroporins on the plasma membrane

of host cells, which have ion channel activities and are permeable

to cations, as reported in other coronaviruses (Schoeman and

Fielding, 2019). The massive efflux of intracellular ions leads to

cell shrinkage and stimulates the apoptotic cascade by disrupting

the negative transmembrane potential (Kunzelmann, 2016).

Viroporins can further induce endoplasmic reticulum (ER)

stress by inhibiting ER folding capacity, delaying glycoprotein

trafficking or membrane remodelling, and ultimately initiating

the apoptosis cascade (Fung et al., 2015). Viroporins also

stimulate pyroptosis through inflammasome activation (Guo

et al., 2015). Pyroptosis is characterized by the formation of

pores in the plasma membrane, resulting in the influx/efflux

of ions that ultimately leads to cell lysis and the release

of intracellular inflammatory substances (Bergsbaken et al.,
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FIGURE 4

SARS-CoV-2 envelope protein induces inflammation in HCMEC/D3 and U87MG cells. (A,B) Immunofluorescence staining and semiquantitative

analysis of MHC-I. Scale bar = 10µm. (C–H) Relative mRNA levels of MHC-I, IL-6, and IL-1β, as determined by RT-PCR. The data are shown as

the mean ± SD of three independent experiments. *p < 0.05, ***p < 0.001, ****p < 0.0001.
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FIGURE 5

A schematic diagram depicting the potential mechanism by

which the SARS-CoV-2 envelope protein crosses the BBB. The

S2E protein disrupts BBB integrity, leading to inflammation in

endothelial cells and astrocytes.

2009). In CNS pathological conditions such as Parkinson’s

disease, Alzheimer’s disease, and HIV-associated neurocognitive

disorder (HAND), brain cells undergo pyroptosis, causing

neuroinflammation and neurodegeneration (McKenzie et al.,

2020). For example, in HAND, the HIV-1 envelope protein

gp120 is required for the formation of the NLRP3 inflammasome

prior to the initiation of NLRP3-dependent pyroptosis and

IL-1β production in microglia (He et al., 2020). Similarly, the

S2E protein was able to induce Nlrp3 expression by activating

TLR2 on macrophages (Zheng et al., 2021). TLR2-dependent

signalling induced the production of proinflammatory cytokines

during coronavirus infection independent of viral entry (Zheng

et al., 2021).

The S2E protein disrupted BBB tight junctions by negatively

affecting the expression level and subcellular distribution of the

TJ protein ZO-1. After S2E protein challenge, ZO-1 mRNA

levels were decreased in HCMEC/D3 cells, and less well-

defined and discontinuous distribution of ZO-1 protein was

observed at cell boundaries. ZO proteins belong to the family

of membrane-associated guanylate kinases, which have several

conserved domains, including N-terminal PDZ, SH3, and GUK

domains, as well as a C-terminal actin filament binding site

(Fanning et al., 1998; Itoh et al., 1999). ZO proteins are key

scaffolds that bridge components of the TJ complex and are

key indicators of BBB integrity (Wolburg and Lippoldt, 2002;

Shin and Margolis, 2006). It has been reported that the S2E

protein can interact with the PDZ domain of ZO-1 on host

cells, which disrupts the dimerization of ZO proteins or the

aggregation of TJ proteins (such as occludins and claudins) into

an intact barrier (Utepbergenov et al., 2006; Rodgers et al., 2013;

Shepley-McTaggart et al., 2021). In addition, the S2E protein

may facilitate the endocytosis of ZO-1 in a PDZ-binding motif-

dependent manner by hijacking the binding sites for PLAZ1

and connexin 43 (Giepmans and Moolenaar, 1998; Teoh et al.,

2010).

The S2E protein may trigger CNS inflammatory responses

by activating astrocytes when crossing the leaky BBB. In viral

infection, viral proteins can be sensed by MHC-I molecules on

immune cells and further initiate antigen presentation cascades

(Croft et al., 2019).Moreover,MHC-I is widely expressed in CNS

neurons and glial cells (Janeway et al., 2001). In vivo and in vitro

evidence suggested that MHC-I expression was upregulated

in astrocytes following systemic immune activation by the

administration of polyinosinic-polycytidylic acid (Sobue et al.,

2018; Li et al., 2021). The expression of astrocytic MHC-I in the

brain significantly activated microglial cells, reduced dendritic

spine density, and impaired sociability and recognition memory

in mice (Sobue et al., 2018). It is possible that overreactive

astrocytes enhanced synaptic pruning in neurons (Oliveira et al.,

2004; Freria et al., 2010). In contrast, inhibition of MHC-I

in astrocytes stabilized synapses and diminished astrogliosis

(Scorisa et al., 2011; Bombeiro et al., 2017). The present study

showed that S2E protein administration increased the mRNA

levels ofMHC-I, IL-6, and IL-1β in U87MG astroglia, suggesting

the occurrence of CNS inflammation. Thus, it is important

to keep in mind that the hazard of the COVID-19 pandemic

is not only the SARS-CoV-2 virus itself and that multisystem

inflammatory damage caused by viral proteins may cause broad

and lasting side effects.

The possible mechanism by which the S2E protein crosses

the BBB is shown in Figure 5. During infection, the envelope

protein can bind to brain endothelial cells and traverse the

BBB, leading to damaging the BBB and inducing inflammatory

responses in astrocytes. In addition, the inflammatory factors

produced by brain endothelial cells and astrocytes, in turn, may

exacerbate BBB damage.

This study has several limitations. First, the in vitro BBB

model used in this study lacks further microglia and neuronal

interactions. The breakdown of the BBB can induce microglial

activation and trigger CNS inflammation (da Fonseca et al.,

2014; Bowman et al., 2018). Evidence suggests that overactivated

microglia induce abnormal axonal dendritic pruning and

even neuronal demyelination, ultimately leading to behavioural

sickness (Harry, 2013). An in vivo S2E protein challenge

model is required in future studies. Second, there was a

dose accumulation effect of the S2E protein in our study,

suggesting an association between S2E protein load and BBB

breakdown. Even though the S2E protein has been detected

in multiple tissues of the human body (such as pharyngeal

discharge, lung tissues, microvascular endothelial cells, and

cerebrospinal fluid), there is a lack of sufficient information on

the S2E protein load, as well as that of other viral proteins, in

patients with COVID-19 (Benameur et al., 2020; Nuovo et al.,

2020; Magro et al., 2021). More importantly, the relationship

between S2E protein load and SARS-CoV-2 viral load, as well

as its relationship with COVID-19-related neuropsychiatric
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complications, remains unclear. Therefore, in future studies,

it will be necessary to measure the viral protein load in

these patients.

In conclusion, our study indicated that the SARS-CoV-2

envelope protein could bind to brain endothelial cells and cross

the BBB, leading to neuroinflammation. Our findings improve

the understanding of the mechanisms of SARS-CoV-2 invasion

in the CNS and suggest that blocking the SARS-CoV-2 envelope

protein could be an important therapeutic strategy for the

neurological complications of COVID-19 patients.
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