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Olfactory dysfunction is one of the biomarkers for Alzheimer’s disease (AD) diagnosis
and progression. Deficits with odor identification and discrimination are common
symptoms of pre-clinical AD, preceding severe memory disorder observed in advanced
stages. As a result, understanding mechanisms of olfactory impairment is a major focus
in both human studies and animal models of AD. Pretangle tau, a precursor to tau
tangles, is first observed in the locus coeruleus (LC). In a recent animal model, LC
pretangle tau leads to LC fiber degeneration in the piriform cortex (PC), a cortical area
associated with olfactory dysfunction in both human AD and rodent models. Here, we
review the role of LC-sourced NE in modulation of PC activity and suggest mechanisms
by which pretangle tau-mediated LC dysfunction may impact olfactory processing in
preclinical stage of AD. Understanding mechanisms of early olfactory impairment in AD
may provide a critical window for detection and intervention of disease progression.

Keywords: norepinephrine, piriform cortex, olfactory dysfunction, locus coeruleus, Alzheimer’s disease, L-type
calcium channel

INTRODUCTION

Olfactory dysfunction is one of the earliest signs of Alzheimer’s Disease (AD), appearing long before
clinical memory symptoms, at which point the disease has already progressed to late stages when
intervention is difficult (Crous-Bou et al., 2017; Yan et al., 2022). Longitudinal studies demonstrate
that early odor deficits predict the subsequent rate of episodic memory decline, and that worsening
of these deficits is indicative of AD (Wilson et al., 2009). AD patients experience deficiencies in odor
detection, identification and recognition memory (Mesholam et al., 1998). As a result, olfactory
impairment has been adopted as a biomarker for pre-clinical AD, indicative of the presence of
abnormal amyloid-beta (Aβ) and hyperphosphorylated tau proteins—hallmarks of disease onset—
in otherwise cognitively healthy individuals (Xydakis and Belluscio, 2017; Murphy, 2019).

Impairment at all levels of the olfactory circuit have been implicated in AD development, from
olfactory epithelium, nerve, olfactory bulb to olfactory cortex (Reyes et al., 1993; Kovacs et al., 1999;
Arnold et al., 2010; Attems et al., 2015; Devanand, 2016; Bathini et al., 2019). Import to note,
modified activity of the piriform cortex (PC), the primary olfactory cortex central to olfactory
information encoding, is heavily implicated. Functional magnetic resonance imaging (fMRI),
positron emission tomography (PET), and diffusion tensor imaging in patients with mild cognitive
impairment (MCI) and AD symptoms show reduced PC activation during odor identification and
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perception tasks (Kareken et al., 2001; Li et al., 2010; Ebadi et al.,
2017; Vasavada et al., 2017; Kjelvik et al., 2020; Donoshita et al.,
2021). Moreover, pathological lesions observed exclusively within
the PC correlate with impairment of odor identification and
discrimination suggesting that this region plays a critical role
in early olfactory deficits (Li et al., 2010; Kjelvik et al., 2020).
In addition, both amyloid and tau generated animal models of
AD exhibit neurodegeneration in olfactory regions and olfactory
deficits (Cassano et al., 2011; Wesson et al., 2011; Saiz-Sanchez
et al., 2012; Gandy et al., 2013; Kong et al., 2018; Adlimoghaddam
et al., 2019; Ghosh et al., 2019). Several of these models point to
PC specific dysfunction, due to increased expression of Aβ, tau
and glycogen synthase kinase-3β in the PC compared to other
odor sensory regions (Macknin et al., 2004; Cassano et al., 2011;
Gandy et al., 2013), and direct disruption of PC function and
PC-olfactory bulb (OB) coupling (Martinez-Garcia et al., 2021).

Recently, we presented novel results from a pretangle tau rat
model and a new view that dysfunction of norepinephrine (NE)
regulation in the PC may underlie preclinical stage olfactory
deficiency (Ghosh et al., 2019; Omoluabi et al., 2021). In the
rat pre-tangle tau model, pseudophosphorylated human tau is
seeded in the NE-producing locus coeruleus (LC), mimicking
the human origin of tau abnormality in the LC at young ages
(Braak et al., 2011; Braak and Del Trecidi, 2015). LC pre-
tangle tau, in the absence of amyloid plaques and neurofibrillary
tangles, leads to degeneration of LC input to the PC, correlating
with impaired olfactory discrimination learning (Ghosh et al.,
2019). The degree of LC fiber degeneration within this model
is inversely correlated with olfactory learning performance and
preventing this degeneration in the PC rescued olfactory learning
deficiency (Omoluabi et al., 2021). Together, LC degeneration
is both sufficient and necessary for the olfactory discrimination
deficiency observed in this rat model, consistent with a critical
role of LC-NE input in the PC in various olfactory functions
and learning (Doucette et al., 2007; Mandairon et al., 2008;
Shakhawat et al., 2015). These findings recapitulate pre-clinical
human AD conditions where both LC degeneration and olfactory
dysfunction are predictive of AD progression (Chen et al., 2022;
Yan et al., 2022). Altogether, this motivates us to dive into the
mechanisms of noradrenergic modulation of cellular function
and neural plasticity within the PC, with the hope of better
understanding their roles in AD.

ANATOMY AND SYNAPTIC PLASTICITY
OF THE PIRIFORM CORTEX

In mammals, the PC is central to olfactory information
processing and is situated in the ventrolateral forebrain. It
receives afferent input from the OB, rendering it as a critical
site for odor discrimination, contextualization, and associative
memory formation (Wilson and Sullivan, 2011; Bekkers and
Suzuki, 2013; Blazing and Franks, 2020). Located parallel to the
lateral olfactory tract (LOT), the PC extends from the anteriorly
located OB to the lateral entorhinal cortex. In rodents, this
rostro-caudal localization can be divided into distinct regions:
the anterior (aPC) and posterior (pPC) piriform cortical regions,

based on cell layer thickness and the location of the parallel
LOT. Although they share similar input connections, the aPC and
pPC vary in input distribution. This heterogeneity in anatomical
structure may be important for the diverse roles of the PC in
encoding sensory information (Wang et al., 2020).

At its core, the PC possesses a unique laminar cytoarchitecture
that is amenable to the integration of afferent input with long
lasting changes to synaptic strength (Figure 1A). Near the ventral
surface, the LOT relays information from the OB via afferent
synaptic connections (layer Ia) from cell body layers (layers II/III)
consisting of pyramidal and semilunar cells. Adjacent to layer Ia,
the layer of intrinsic associative connections (Ib) is indispensable
for cortico-cortical signaling involved in associative memory
formation. High frequency stimulation of either the associative
or afferent layers in ex vivo slices can produce an N-methyl-D-
aspartate receptor (NMDAR) dependent long-term potentiation
(LTP) in pyramidal neurons, which is suggested to be essential for
olfactory-based learning (Jung et al., 1990; Kanter and Haberly,
1990). LTP can also be produced by cooperative weak stimulation
of separate associative fiber populations, or by co-activation of
both afferent and intrinsic associative fibers in the presence
of GABAA inhibitors (Kanter and Haberly, 1993). With low
frequency stimulation, long term depression (LTD) can also be
induced and contributes to network stability following olfactory
based learning (Lebel et al., 2001; Quinlan et al., 2004; Rajani
et al., 2021 see Figure 1B for a summary of different types
of synaptic plasticity). Afferent-mediated synaptic plasticity,
however, seems limited to early developmental stages while
associative plasticity persists in adult and aging rodents and may
be modified by disease, aging, and learning states (Lebel et al.,
2001; Poo and Isaacson, 2007; Rajani et al., 2021).

MODULATION OF THE PIRIFORM
CORTEX BY NOREPINEPHRINE

The LC is the main source of noradrenergic input to the
PC, providing a homogeneous distribution of NE projections
across anterior and posterior regions (Datiche and Cattarelli,
1996). Based on in vitro observations, released NE is suggested
to activate inhibitory interneurons within the PC, producing
inhibitory post-synaptic potentials (IPSPs) within the pyramidal
cell layer (II) (Gellman and Aghajanian, 1993; Ghosh et al., 2015).
NE signaling causes a higher suppression of associative layer (Ib)
than afferent (Ia)-mediated excitatory postsynaptic potentials
(EPSPs) of pyramidal neurons in ex vivo slices (Hasselmo et al.,
1997). Computational models suggest that this dichotomous LC-
mediated NE suppression enhances the signal-to-noise ratio of
incoming afferent signals to increase odor learning (Hasselmo
et al., 1997; de Almeida et al., 2015; Figure 1A).

Several rodent in vivo studies support the role of LC-NE in
a diverse range of olfactory behaviors. Fitting with improving
the signal-to-noise ratio, blocking α and β adrenergic receptors
within the OB impaired similar odor discrimination in awake-
behaving animals (Doucette et al., 2007), and modified the
odor threshold required to perform reward-motivated odor tasks
(Escanilla et al., 2010, 2012). Moreover, α1 and β receptors within
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FIGURE 1 | Anatomy and synaptic plasticity of the piriform cortex. (A) The unique laminar cytoarchitecture of the piriform cortex, consisting of cell body layers (II/III),
the associative layer (Ib) and the afferent input layer (Ia). LC-sourced NE leads to stronger inhibition of associative connections in Ib and enhanced afferent signal-to
noise ratio in Ia. (B) LTP can be induced by high frequence stimulation (HFS) of either the associative or afferent layers. Weak cooperative stimulation of either
separate associative connections or co-activation of both afferent and associative fibers can also induce LTP in the presence of GABAA inhibition. Low frequence
stimulation (LFS) can produce LTD in Ib.

the OB bidirectionally modulated discrimination of spontaneous
odors and short-term odor habituation (Veyrac et al., 2007;
Guerin et al., 2008; Mandairon et al., 2008; Shea et al., 2008).
The utility of NE signaling extends to odor associative learning
mediated within the PC. NE receptor activation within the
PC is required for odor discrimination learning (Shakhawat
et al., 2015), and via LC stimulation, enhanced PC neuronal
responses to odor stimuli, sharpening odor representations
(Bouret and Sara, 2002). More recently, optogenetics permitted
the selective activation of LC noradrenergic neurons with specific
activation patterns. Bilateral 10 Hz phasic stimulation of the LC
enhanced similar odor discrimination learning in rats and this
enhancement was occluded by a mixture of adrenergic receptor
antagonists infused into the PC (Ghosh et al., 2021). Interestingly,
learning facilitation was not produced by tonic LC stimulation at
the same frequency, suggesting differential modes of LC release
and subsequent uptake may influence the circuitries involved in
learning as well as local adrenoceptor engagement. Furthermore,
tonic and phasic LC activation generated opposite valence coding
through the activation of the basolateral amygdala. High tonic
stimulation (25 Hz) that was associated with a stress phenotype
produced odor aversion, whereas the learning-promoting phasic
stimulation (10 Hz) yielded odor preference (Ghosh et al., 2021;
Omoluabi et al., 2022).

Another role for NE signaling within the PC is demonstrated
in early odor preference learning, characterized by a heightened
ability to form odor preference in neonatal rodents. In this
early developmental learning model, NE signals via both α2
and β-adrenergic receptors at mitral cells within the OB to
promote synaptic plasticity (Yuan et al., 2014). β-adrenergic
receptor activation of PC pyramidal neurons is also essential,
triggering an increase in cAMP response element binding protein
(CREB) phosphorylation and enhancing theta-burst, NMDAR-
mediated LTP induction at the LOT-aPC synapse (Morrison
et al., 2013). This NE-mediated signaling seems locked to a

specific developmental stage in rodents, enhancing miniature
EPSC frequency at low doses in P8-11 mice, while increasing
inhibition in mice after P14 (Ghosh et al., 2015). Downstream of
β-adrenergic receptor activation, L-type calcium channel (LTCC)
activity is enhanced via the cAMP/PKA pathway, facilitating
CREB phosphorylation necessary for early odor preference
learning (Mukherjee and Yuan, 2016; Ghosh et al., 2017b).
Indeed, inhibition of PC LTCCs during early odor preference
training in mice specifically impaired long-term odor memory
(Mukherjee and Yuan, 2016).

This emerging evidence supports a critical role for LC-
derived NE in multiple olfactory behaviors including odor
detection, discrimination, and long-term associative learning. As
a result, dysfunction of this neuromodulatory pathway produces
measurable olfactory behavioral outcomes and is relevant to
understanding disease pathogenesis.

NOREPINEPHRINE AND OLFACTORY
DYSFUNCTION IN HUMANS AND
ANIMAL MODELS

The LC, the main source of NE to the PC, is one of the
key regions affected in early AD. Reduced LC volume and
integrity, cell number and fiber density are closely correlated
with cognitive decline and progressive AD stages (Chen et al.,
2022). The LC is the initial site of expression of pretangle tau, a
soluble, persistently phosphorylated precursor of neurofibrillary
tangle formation, which spreads throughout the brain over the
course of the human lifespan (Braak et al., 2011). LC pretangle
tau first appears at young ages (childhood or puberty) (Braak
and Del Tredici, 2011, 2012). By middle-age, pretangle tau is
expressed within the entorhinal cortex, and later spreads into
the hippocampus and cortical areas (Braak and Del Trecidi,
2015). On the other hand, the earliest tangles reported are
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FIGURE 2 | A locus coeruleus pretangle (LC) tau model in rats. (A1–A4) htauE14-GFP uptake in the LC co-localizes with DBH + LC neurons. (B1–B3) GFP
co-localizes with HT7 indexing human tau. (C) Schematics of the timeline of AAV infusion, odor discrimination training, and histology. (D1–D4) No odor

(Continued)
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FIGURE 2 | discrimination deficiency (D1,D2), or LC cell loss (D3), or LC fiber degeneration (D4) in young 6 month-old rats infused with htauE14 at 2–3 month-old.
(E1–E4) Impairment in similar (SOD), but not dissimilar odor discrimination (DOD) learning in 10 month-old rats infused with htauE14 at 2–3 month-old (E1,E2), no
LC cell loss (E3) but LC fiber degeneration in the piriform cortex (PC) was observed (E4). (F1–F3) Deficiency in SOD (F1), LC cell number loss (F2) and fiber
degeneration (F3) in 17–20 month-old rats infused with, htauE14 at 12–14 month-old. (G1,G2) LC fiber density in the PC is correlated with olfactory discrimination
learning performance. NET, norepinephrine transport; DBH, dopamine beta-hydroxylase; HT7, Human Tau 7. Scale bars, 50 µm. Adapted and modified from Ghosh
et al. (2019) and Omoluabi et al. (2021).

FIGURE 3 | A hypothetical model of LTCCs in NE dysregulation in Alzheimer’s disease. (A) LTCC contribute to both LTP and LTD in olfactory learning. In aged rats,
LTD in the piriform cortex (PC) is LTCC-dependent (Rajani et al., 2021). Thus, inhibition of LTCCs in the aging piriform cortex blocks LTD and could enhance learning
(Maziar et al., 2022). (B) Following the degeneration of noradrenergic inputs from the LC, a decrease in NE signaling could result in LTCC hypofunction, resulting in
the reduction of LTCC-dependent LTP (red arrows). (C) Alternatively, a compensatory increase in extracellular NE and adrenergic receptor expression may lead to
enhancement of LTCC-mediated LTD (blue arrows). LTP, long term potentiation; LTD, long term depression; PC, piriform cortex; NE, norepinephrine; LC, locus
coeruleus; LTCC, L-type calcium channel; NMDAR, N-methyl-D-aspartate receptor.

associated with the anterior olfactory nucleus (a component of
the prepiriform/piriform cortex), and entorhinal cortex, leading
to synaptic plasticity impairment and cognitive decline (Price
et al., 1991; Kovacs et al., 2001). This path of tau pretangle
and tangle in the PC network and NE dysfunction in the
PC due to LC pretangle tau could both critically influence
early AD pathology, underlying impaired odor detection,
discrimination and associative memory as observed in pre-
clinical AD (Mesholam et al., 1998; Ghosh et al., 2019).

A decrease in LC-sourced NE has long been implicated in
AD pathology, with reported neuronal loss within the LC and
reduced NE inputs to other brain regions (Gulyas et al., 2010;
Gannon et al., 2015; Theofilas et al., 2017). However, extracellular
NE levels are not always decreased in AD patients, and adrenergic
receptors have been reported to have a varied expression and
density (Gannon and Wang, 2019). As a result, it is suggested
that NE dysfunction within AD pathology may not be solely due
to deficiency in NE inputs, but a part of a more complex system
of changes at the receptor level involving neurodegenerative
processes and compensatory mechanisms (Gannon and Wang,
2019). Given the fundamental importance of NE signaling to
the enhancement of PC synaptic plasticity (Morrison et al.,
2013; Ghosh et al., 2017a), odor valence and discrimination
(Shakhawat et al., 2015; Ghosh et al., 2021), it is plausible that
the early stages of soluble pretangle tau initially expressed within
the LC could directly influence olfactory dysfunction observed
in preclinical AD.

In a recent pretangle tau model in rats (Figure 2), a human
tau gene pseudophosphorylated on 14 sites (htauE14) was seeded
in the LC to mimic the persistent phosphorylation of pretangles
(Ghosh et al., 2019; Figures 2A,B). As in human tissue, pretangle

tau in this model appeared in the somatodendritic compartment
of the LC and spread from LC to other neuromodulatory groups
such as serotonergic dorsal raphe neurons. LC neurons bearing
this pretangle tau underwent degeneration with prolonged time.
When htauE14 is infused at 2–3 months old (mimicking early
onset of human pretangle tau (Braak et al., 2011), LC cell counts
and NE fiber density in the PC, 3 months after htauE14 seeding,
did not differ from control brains. Functionally, the acquisition
of a difficult olfactory discrimination, which requires LC input to
PC (Shakhawat et al., 2015), was not impaired (Figures 2C,D).
However, at 7–8 months post-htauE14 infusion, NE fiber
density in the PC decreased and difficult odor discrimination
was impaired (Figure 2E). However, expression of the NE
transporter, NET, was also reduced and was concomitant with
β1-adrenoceptor up-regulation in the PC. The NE levels in the
PC are yet to be determined. When htauE14 is seeded at middle-
age (12–14 months old), the pretangle tau pathology progressed
faster. At 5–6 months post-infusion, LC cells started to reduce,
correlating with a deficiency in a simpler version of the odor
learning (Figure 2F). Odor discrimination and identification in
humans is sensitive to brain aging (Doty et al., 1984) and may
relate to declining NE fiber densities. This animal model provides
the first evidence that LC pretangle tau pathology associated with
PC adrenergic dysregulation may drive olfactory dysfunction
in preclinical AD stages. The causal effects of PC adrenergic
support in olfactory dysfunction observed in this model is
further demonstrated by a more recent study (Omoluabi et al.,
2021). Combining the pre-tangle tau model with optogenetic
stimulation, we demonstrated that a 6 week chronic, learning-
and positive valence-promoting LC phasic patterned activation
(Ghosh et al., 2021), prevented LC fiber degeneration in the
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PC, and restored olfactory discrimination learning. Additionally,
the adrenergic fiber density in the PC is positively correlated
with odor discrimination performance (Figure 2G). Thus, the
pretangle tau rat model suggests pre-clinical olfactory deficiency
is strongly correlated with adrenergic deficiency in the PC. Non-
invasive techniques, such as PET imaging with a radioligand
for the NE-transporter (Arakawa et al., 2008), may be useful in
testing this relationship in a human clinical setting.

Noradrenergic alteration and parallel olfactory dysfunction
have been demonstrated in other transgenic rodent models
of AD. Tg2676 mice exhibit neurodegeneration in LC along
with olfactory deficits (Guerin et al., 2009), while TgCRND8
mice show depressive behavior and impaired object recognition
memory that are correlated with low NE at the tissue level
(Francis et al., 2012). Triple transgenic (3xTg-AD) mice also
display reduced olfactory memory performance and AD
pathology in these mice is exacerbated by β2 adrenergic receptor
antagonists, suggesting altered noradrenergic signaling (Cassano
et al., 2011; Branca et al., 2014). Double transgenic APP/PS1
mice with dopamine beta-hydroxylase (DBH) knockout
inhibits NE synthesis and exacerbates hippocampal LTP
and spatial memory deficiency observed in either APP/PS1
or DBH knockout alone (Hammerschmidt et al., 2013).
These transgenic mice also display specific vulnerability to
neurodegeneration within olfactory networks (Saiz-Sanchez
et al., 2012). LC lesion with N-(2-Chloroethy)-N-ethyl-bromo-
benzylamine (DSP4) also weakened olfactory discrimination
ability and short-term memory in the APP/PS1 model (Rey
et al., 2012). Impressively, behavioral deficiencies can be
ameliorated by enhancing NE in several of these models.
α2-adrenoreceptor antagonists administered in drinking
water or osmotic minipumps prevented age-related spatial
memory deficits in APP/PS1 mice (Scullion et al., 2011) and
improved object recognition in TgCRND8 mice (Francis
et al., 2012). Spatial memory deficits in APP/PS1 mice
with DBH deficiency were also improved by subcutaneous
injections of the NE precursor L-threo-dihydroxyphenylserine
(Hammerschmidt et al., 2013).

NOREPINEPHRINE MODULATION OF
CALCIUM CHANNELS IN ALZHEIMER’S
DISEASE: A HYPOTHESIS

Key components of NE-mediated enhancement of synaptic
plasticity within the PC are the L-type calcium channels
(LTCCs). LTCCs are downstream of β-adrenergic receptors, via
a Gs-mediated cAMP-PKA pathway to produce an increase
in Ca2+ influx and CREB-mediated protein synthesis and the
initiation of long-term memory formation (Ghosh et al., 2017a;
Man et al., 2020). Recently, we demonstrated that similar
to the hippocampus, there is an age-dependent increase in
the contribution of LTCCs to LTD in the PC, concurrent
with a decreased role for NMDARs (Rajani et al., 2021).
Moreover, inhibition of LTCCs in the aging piriform cortex
blocks LTD (Rajani et al., 2021) and could enhance learning
(Maziar et al., 2022). The increased significance of LTCCs

during aging may provide some insight into the susceptibility
of the aged PC to AD-related changes of the LC-NE pathway
(Figure 3). LTCCs contribute to both LTP and LTD in
olfactory learning (Figure 3A). A decrease in NE input to the
PC following LC degeneration may cause reduced activation
of LTCCs, diminishing LTCC-mediated LTP and impairing
protein synthesis-dependent long-term odor memory formation
(Figure 3B). On the other hand, a compensatory increase
in extracellular NE levels or adrenoceptors, which have been
correlated with age-related cognitive decline and AD (Wang
et al., 2013; Gannon and Wang, 2019), may cause LTCC
hyperfunction, leading to enhanced LTD (Figure 3C). Such
dysregulation has been suggested in models for age-related
cognitive decline (Thibault et al., 2007) and may be exacerbated
under the influence of higher NE signaling. The resulting impact
of AD pathology on extracellular NE levels within the PC remains
to be determined.

CONCLUSION AND OUTLOOK

Neurodegeneration of the LC and dysregulated noradrenergic
function correlate with AD progression and olfactory dysfunction
during preclinical stages. Further exploration of cellular and
molecular interactions within these regions may help to
characterize preclinical symptoms during this critical window.
Future perspectives will require an understanding of AD
pathology on multi-regional (OB and PC) extracellular NE,
noradrenergic receptor expression, and should involve the
interaction of both Aβ and tau pathologies on aging individuals.

Preserving LC neuronal health and function could be key
to prevent or reverse AD. Promoting phasic LC firing patterns
and reducing stress-inducing high tonic activity appear to
be beneficial in animal models (Omoluabi et al., 2021). Life
exposures such as education, novel environment, cognitive tasks
that are associated with LC phasic activity could enhance
the neural reserve to delay or reduce AD-related pathology
(Xu et al., 2020), whereas chronic stress that is associated
with high tonic LC activity increases AD risk (Wilson et al.,
2011). We propose that LC degeneration at pre-clinical stages
drives early olfactory deficits. The availability of LC imaging
methods (Betts et al., 2019) enables the examination of
the relationship of LC integrity and olfactory function in
living humans and could provide insight into progression of
neurodegenerative diseases.
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