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Borovcanin MM (2022) Galectin-3

Involvement in Cognitive Processes
for New Therapeutic Considerations.

Front. Cell. Neurosci. 16:923811.
doi: 10.3389/fncel.2022.923811

Galectin-3 Involvement in Cognitive
Processes for New Therapeutic
Considerations
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Cognitive impairment may be a consequence of the normal aging process, but it
may also be the hallmark of various neurodegenerative and psychiatric diseases. Early
identification of individuals at particular risk for cognitive decline is critical, as it is
imperative to maintain a cognitive reserve in these neuropsychiatric entities. In recent
years, galectin-3 (Gal-3), a member of the galectin family, has received considerable
attention with respect to aspects of neuroinflammation and neurodegeneration. The
mechanisms behind the putative relationship between Gal-3 and cognitive impairment
are not yet clear. Intrigued by this versatile molecule and its unique modular architecture,
the latest data on this relationship are presented here. This mini-review summarizes
recent findings on the mechanisms by which Gal-3 affects cognitive functioning in
both animal and human models. Particular emphasis is placed on the role of Gal-3
in modulating the inflammatory response as a fine-tuner of microglia morphology and
phenotype. A review of recent literature on the utility of Gal-3 as a biomarker is provided,
and approaches to strategically exploit Gal-3 activities with therapeutic intentions in
neuropsychiatric diseases are outlined.
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INTRODUCTION

Cognition as a higher brain function includes major cognitive domains such as memory, attention,
language, executive and visuospatial functions. Various diseases, somatic disturbances or toxins
can affect all these domains and lead to cognitive dysfunction. Cognitive impairment could be a
consequence of chronic neurodegenerative processes characterized by poor learning and memory
(Nilsson, 2006), which can lead to severe personality deterioration (Caselli et al., 2018). Cognitive
functioning should be interpreted not only in the context of physiological aging and the onset of
dementia (Popa-Wagner et al., 2015), but also as a hallmark of neurodegenerative (Chen et al.,
2018) and psychiatric diseases (Millan et al., 2012), stroke (Rist et al., 2013), traumatic brain injury
(Christensen et al., 2008), etc.
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In physiological and pathological conditions, early
identification of individuals at risk of cognitive decline is
critical in neuropsychiatric clinical practice, as is maintenance
of cognitive potential. There is an urgent need for biomarker
discovery and validation as a clinical tool for early detection,
prognosis, monitoring of cognitive alterations, and development
of strategies to preserve cognitive abilities.

In exploring the molecular concepts underlying cognitive
changes in neuropsychiatric diseases, galectin-3 (Gal-3),
a member of the lectin family, has received considerable
attention (Dumic et al., 2006). The interactions of Gal-3 with
glycoproteins/glycolipids modulate cellular responses that are
now research targets in the context of neuroinflammatory and
neurodegenerative processes (Rahimian et al., 2021a), with the
goal of developing novel therapeutics. Since Gal-3 is secreted
to the cell surface and into biological fluids such as serum and
urine, but also released from injured and inflammatory cells,
it can be used as a valuable biomarker (Dong et al., 2017).
This lectin may play either a complementary or a contrasting
role in the central nervous system (CNS) and its function, due
to its context-dependent activities (Shin, 2013). Although the
involvement of Gal-3 in cognitive functioning has been partially
investigated, comprehensive links between Gal-3 and cognitive
impairment have yet to be discovered. Neuroinflammation is
known to be in the background of neurological (Mishra et al.,
2021) and psychiatric disorders (Bauer and Teixeira, 2019).
Intrigued by this versatile molecule, we reviewed the recent
neuroinflammatory/neurodegenerative properties of Gal-3
in the context of changes in cognitive functioning, as well
as its immunomodulatory potential in fine-tuning microglia
morphology and phenotype. The overview of Gal-3 activities and
binding preferences presented here will aid in the development
of novel pharmaceutical treatments targeting cognition.

GALECTIN-3 ALLOCATION AND BRAIN
FUNCTION

Galectin-3 Main Features
Galectin-3 is a pleiotropic protein of the 15-member lectin family
that is characterized by galactose-binding domains and is widely
expressed in various cell types (Yang et al., 2008), in macrophages,
natural killer cells, T and B cells, neutrophils and eosinophils, and
is involved in the immune response (Sato et al., 2009).

Galectin-3 contains an N-terminal peptide and a C-terminal
carbohydrate recognition domain and is distinguished by its
unique chimeric association. This self-organization is especially
important as it reflects specific intermolecular forces that govern
its chemical behavior and interactions and enable efficient
inhibitory pathways.

Another important determinant of Gal-3 interactions depends
on its localization. In cells, it is found in both the cytosol and
nucleus, but is also secreted into the extracellular space (Yang
et al., 2008), where it interacts with glycoproteins that serve as an
extracellular matrix for cell adhesion (Ochieng et al., 2002) and
regulates apoptosis (Nangia-Makker et al., 2007). Intracellular
Gal-3 interacts with other proteins and activates intracellular

signaling pathways (Jeon et al., 2010; Melo et al., 2011) that
trigger various physiological responses, including cell activation
(Liu et al., 2011), as well as pathological conditions, such as
acute and chronic inflammation (Liu and Rabinovich, 2010). All
these processes have an important impact on neurodegeneration
(Soares et al., 2021).

Galectin-3 Brain Expression
Galectin-3 is expressed in a variety of glial cells in CNS
tissues, including microglia, astrocytes, and oligodendrocytes
(Pasquini et al., 2011), and contributes to neuroblast migration
during physiological brain development (Comte et al., 2011) and
differentiation (Pasquini et al., 2011). However, glial cells are not
the only Gal-3 allocated scaffolds, as there is also evidence for
Gal-3 expression in neurons as confirmed by the neurochemical
profiles of adult normal rat brains (Yoo et al., 2017). The
additional feature of Gal-3 in neurons in the CNS is that it
can stimulate neuronal cell adhesion and neurite outgrowth
(Pesheva et al., 1998). Neuronal expression of Gal-3 has been
observed in several functional parts of the cerebral cortex and
other subcortical nuclei in the hypothalamus and brainstem
(Yoo et al., 2017).

Galectin-3 and Hippocampal Dysfunction
Hippocampal dysfunction can impair cognitive abilities
because the hippocampus plays a critical role in memory
and learning (Giovanello et al., 2009; Hitti and Siegelbaum,
2014). Neuroinflammation biomarkers are related to brain
and hippocampal volume (Gu et al., 2017), another predictor
of cognitive decline (Morra et al., 2009). The expression
pattern reveals that Gal-3 levels are up to 6-fold higher in the
hippocampus than in the frontal cortex, olfactory bulb, striatum,
and amygdala, suggesting a role for Gal-3 in learning/memory
(Chen et al., 2017). Negative regulation of memory formation is
associated with inhibition of integrin α3-mediated signaling and
phosphorylation of Gal-3 at Serine-6 (Chen et al., 2017). On the
other hand, phosphorylated Gal-3 promotes axonal branching in
cultured hippocampal neurons (Díez-Revuelta et al., 2010).

Galectin-3 in Neuroinflammation and
Neurodegeneration
Microglia, the resident macrophages of the CNS, are described
as never-resting cells and have critical functions under
physiological and pathological conditions (Sierra et al.,
2014). Neuroinflammation is considered the most important
mechanism in neurological dysfunctions (Boitard et al., 2014)
and consequently leads to neurodegeneration (Ransohoff, 2016).
Sustained microglial activation in chronic inflammation leads
to the release of inflammatory cytokines such as tumor necrosis
factor α (TNF-α), interleukin-6 (IL-6), and IL-1β (Muzio et al.,
2021) and affects neuronal plasticity, impairs memory, and leads
to tissue damage causing neurodegenerative disorders (Cai et al.,
2014; Muzio et al., 2021).

Galectin-3 is considered critical for microglial activation
(Rahimian et al., 2021a) and modulates the brain innate
immune response by acting as an endogenous modulator
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of neuroinflammation/neurodegeneration (Boza-Serrano et al.,
2014, 2019). It is significantly involved in the development of
these conditions through cell adhesion, proliferation, migration,
apoptosis, inflammation, and modulation of the adaptive
immune system (Dumic et al., 2006). Rodent studies suggest
that Gal-3 impairs memory through inflammation (Boza-Serrano
et al., 2019; Ramírez et al., 2019).

GALECTIN-3 AND COGNITION

Galectin-3 and Cognition in
Neurodegenerative Disorders
Neurodegenerative diseases are debilitating and characterized by
cognitive deterioration, and at the present time, these conditions
are not completely curable (Feigin et al., 2019). LGALS3 genetic
variation in the Gal-3 encoding gene has been associated with
poorer neurocognitive function in patients with Alzheimer’s
disease (AD) (Trompet et al., 2012). Serum and cerebrospinal
fluid (CSF) Gal-3 levels were significantly elevated in AD patients
and patients with amyotrophic lateral sclerosis (ALS) compared
with healthy individuals (Ashraf and Baeesa, 2018). Elevated Gal-
3 levels correlated with significant loss of memory and cognitive
skills in the AD group, while this effect was not observed
in ALS patients. In AD patients, serum Gal-3 levels correlate
significantly with the severity of memory loss and disease stage
(Wang et al., 2015; Yazar et al., 2021). Overexpressed Gal-3 in
the brain and CSF may alter amyloid plaque aggregation and
increase plaque-associated toxicity in AD patients (Cai et al.,
2014; Ozben and Ozben, 2019; Tan et al., 2021). Gal-3 was
strongly upregulated in the brains of AD patients and 5x familial
AD (FAD) transgenic mouse model of AD and specifically
expressed in Aβ plaque-associated microglia (Boza-Serrano et al.,
2019). In Gal-3 knockout 5xFAD and APP/PS1 mice, microglia-
associated immune responses were attenuated, amyloid plaques
were reduced, and cognitive behavior was improved (Boza-
Serrano et al., 2019; Tao et al., 2020). Furthermore, the expression
of disease-associated microglia markers such as CD45, CD68,
Clec7a, and proinflammatory cytokines such as TNF-α, IL-6,
IL-8, and IL-12 was downregulated in the 5 × FAD/Gal3KO
mice (Boza-Serrano et al., 2019). Gal-3 also acts as a ligand
of toll-like receptor 4 (TLR4), which is one of the canonical
receptors involved in the microglial inflammatory response
(Burguillos et al., 2015). The results of this study demonstrated
that added Gal-3 activated triggering receptor expressed on
myeloid cells 2 (TREM2)–DAP12-dependent signaling in a dose-
dependent manner (Boza-Serrano et al., 2019), indicating the
role of Gal-3 as an endogenous TREM2 ligand, a key receptor
driving microglial activation in AD, which is involved in the
complex regulation of processes of phagocytosis, inflammation,
and cell proliferation (Yuan et al., 2016; Gratuze et al., 2018;
Figure 1B).

In addition, several studies showed that Gal-3 levels in brain
and plasma were higher in experimental models and patients
with Huntington’s disease (HD) (Siew et al., 2019) and ALS
(Zhou et al., 2010; Yan J. et al., 2016) than in healthy controls
and correlated with disease severity. Increased expression of

Gal-3 in HD mice induced inflammation through nuclear
factor kappa-B (NF-κB) and nucleotide-binding oligomerization
domain-like receptor (NOD), leucine-rich repeat- (LRR), and
pyrin domain-containing protein 3 (NLRP3) inflammasome-
dependent pathways, while the silencing of Gal-3 suppressed
inflammation, improved motor dysfunction, and increased
survival in HD mice (Siew et al., 2019). Thus, suppression of Gal-
3 ameliorates microglia-mediated pathogenesis, which suggests
that Gal-3 is a novel druggable target for HD.

In patients with idiopathic Parkinson’s disease (PD), elevated
serum Gal-3 levels significantly correlated with disease severity
(Cengiz et al., 2019; Yazar et al., 2019). Gal-3 is involved
in microglial activation through accumulation of α-synuclein
and upregulation of proinflammatory cytokines, triggering
loss of dopamine neurons. Inhibition of Gal-3 activity with
inhibitory molecule (bis-(3-deoxy-3-(3-fluorophenyl-1H-1,2,3-
triazole-1-yl)β-D-galactopyranosyl)-sulfane) and using knockout
mice led to a significant reduction in the α-synuclein-induced
inflammatory response (Boza-Serrano et al., 2014). These
results suggest that genetic downregulation or pharmacological
inhibition of Gal-3 might also be a novel therapeutic target in PD.

Experiments with Gal-3-deficient mice suggest that Gal-3
plays an important pathogenic role in experimental autoimmune
encephalomyelitis (EAE), the animal model of multiple
sclerosis (MS). Gal-3 prevents cell apoptosis by increasing
proinflammatory and decreasing anti-inflammatory cytokines
(Jiang et al., 2009). Similar results were observed in virus-
induced MS models, where inhibition of Gal-3 decreased
immune cell numbers and chemokine expression and restored
cell proliferation in the subventricular zone (James et al., 2016).

These studies demonstrate that Gal-3 plays an important
role in promoting the proinflammatory response in
neurodegenerative disorders and contributes to cognitive
decline. Furthermore, these findings indicate that inhibition of
Gal-3 attenuates the proinflammatory phenotype in microglia,
suggesting that Gal-3 inhibitors may have a potential therapeutic
effect in these disorders.

In contrast, Gal-3’s positive influence on oligodendrocyte
differentiation has been reported in brain tissue with MS
(Thomas and Pasquini, 2018, 2019). Gal-3 has been shown to be
an important mediator of microglia-oligodendrocyte crosstalk by
binding glycoconjugates present on oligodendrocyte progenitor
cells. Extracellular Gal-3 drives early process outgrowth through
enhanced actin assembly and a decrease in extracellular signal-
regulated protein kinase (ERK) 1/2 activation. Later, Gal-3
induces Akt activation and increases myelin basic protein
(MBP) expression, promoting the release of gelsolin and actin
disassembly, and thus regulating the final differentiation of
oligodendrocytes (Thomas and Pasquini, 2018). These findings
may govern novel therapeutic procedures comprising Gal-3
delivery to the CNS for the treatment of demyelinating diseases.

Deletion of Gal-3 in a mouse model of ALS resulted in
rapid disease progression, and increasing in microglia, TNF-
α, and oxidative injury (Lerman et al., 2012), suggesting that
endogenous production of Gal-3 by microglia may, at least in
part, limit neuroinflammation and disease progression during
ALS. Thus, not only inhibition but also production of Gal-3 may
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FIGURE 1 | (A) The effects of Gal-3 in hippocampal tissue related to cognitive functioning. (A) Represents the summary of the main neurodetrimental and
neuroprotective effects of Gal-3 in hippocampal tissue which potentially impact cognitive functioning. (B) The impact of Gal-3 on microglia functions in a
neuroinflammatory context. (1) Secreted Gal-3 directly binds to TLR4 on the microglia surface and exacerbates inflammatory response by enhancing the production
and secretion of proinflammatory cytokines and reactive nitrogen species. (2) Acting as a ligand for TREM2, Gal-3 activates TREM2/DAP12 signaling pathway and
may further regulate processes of phagocytosis, inflammation, and proliferation. (3) IL-4 can interact with its tyrosine kinase receptor IL4-R on the microglia surface
and increase intracellular production of Gal-3 that further activates transcriptional factor PPAR-γ. (4) The lattice formation of Gal-3 induces microglia activation
through interaction with the interleukin-4 receptor (IL4R) and activates anti-inflammatory signaling. (5) By crosslinking insulin-like growth factor 1 receptor (IGFR-1),
secreted Gal-3 prevents early endocytosis and over-activates the JAK/STAT signaling pathway and the transcription of genes needed for cell proliferation. TLR4,
Toll-like receptor4; TREM2, triggering receptor expressed on myeloid cells-2; DAP12, DNAX-activating protein of 12 kDa; PPAR-γ, peroxisome proliferator-activated
receptor gamma; IL-4, Interleukin 4; IL-4R, Interleukin-4 receptor; JAK/STAT, Janus kinase/Signal transducer and activator of transcription; iNOS, inducible nitric
oxide synthase; NOS2, nitric oxide synthase-2; ROS, reactive oxygen species; IGF, insulin-like growth factor; IGF-R, insulin-like growth factor receptor; NF- κB,
nuclear factor kappa-B; SOCS3, suppressors of cytokines signaling 3; TNF-α, tumor necrosis factor alpha; IL, interleukin.

play a role in neurodegeneration and the cognitive decline that
may accompany it.

Galectin-3 and Cognition in Ischemic
and Neuronal Injury
Cognitive decline following ischemic stroke (Kuźma et al., 2018)
and brain injury (Gorgoraptis et al., 2019) is well documented,
but the role of Gal-3 in these conditions remains to be
elucidated. The incidence of post-stroke cognitive impairment
(PSCI) increases with Gal-3 serum level elevation, suggesting

that Gal-3 may be an independent predictor of the PSCI (Wang
et al., 2021). A negative role of Gal-3 is documented in the
regulation of neuronal plasticity. The absence of Gal-3 allows
recovery of motor functions after spinal cord injury (Mostacada
et al., 2015). Gal-3 also contributes to the hypoxic-ischemia injury
in the hippocampus and striatum, particularly in male mice
(Doverhag et al., 2010) and ischemia-induced neuronal death
in the hippocampus (Satoh et al., 2011; Hisamatsu et al., 2016).
Plasma Gal-3 levels are elevated after intracerebral hemorrhage
(Yan X.J. et al., 2016), subarachnoid hemorrhage (Liu et al., 2016),
and birth asphyxia in new-borns (Sävman et al., 2013), and
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are associated with injury severity, predicting poorer clinical
outcomes. Gal-3 acts as an alarmin under conditions of brain
trauma and elicits a potent proinflammatory response via
activation of TLR4. Overexpression of Gal-3 in microglia and CSF
was observed 24 h after head injury, whereas administration of a
neutralizing antibody against Gal-3 decreased the expression of
IL-1β, IL-6, TNF-α, and nitrous oxide system (NOS) 2 in cortical
and hippocampal cell populations (Yip et al., 2017; Table 1).

In contrast, the neuroprotective potential of Gal-3 was
confirmed both in vitro and in vivo in a model of acute
ischemic stroke (Rahimian et al., 2019b). The application of
recombinant Gal-3 after stroke increased expression of Ym1,
diminished iNOS expression, and lead to a significant increase
of an anti-inflammatory cytokine (IL-4) and a reduction in
proinflammatory cytokines (TNF-α, IL-1β, IFN-γ, and IL-17)
in ipsilateral brain regions. Furthermore, the observed shift in
microglia toward an anti-inflammatory profile was associated
with a significant decrease in infarct size. Gal-3 administration
induced microglial ramification, as quantified by filopodia
length and number (Rahimian et al., 2019b), and consequently
increased microglial motility. All of these effects of Gal-3 were
mediated by IL-4. IL-4 tyrosine kinase receptors are expressed
by microglia, and Gal-3 was shown to interact with these
receptors and enhance their activities (Partridge et al., 2004).
It has been shown that endogenous IL-4 can thus lead to
an increase in intracellular Gal-3 and subsequently induce the
canonical transcription factor peroxisome proliferator-activated
receptor (PPAR-γ) (Rahimian et al., 2019a), which decreases the
production of reactive oxygen species and proinflammatory

cytokines, and suppresses the activity of NF-κB (Baek et al., 2015;
Figure 1B).

The important factor in the Gal-3-induced microglia
proliferation and alternative activation is insulin-like growth
factor 1 (IGF-1). IGF-1 has been associated with post-stroke
recovery and neuroprotection by reducing brain damage in
diverse experimental settings, inducing neurogenesis, and
accelerating neural survival (Sohrabji and Williams, 2013).
The interaction of Gal-3 with N-linked glycans attached to
insulin-like GF1 receptor (IGFR1), enhances GF-induced signal
transduction and cellular growth (Partridge et al., 2004). Results
obtained in primary microglia cultures showed that extracellular
Gal-3 is responsible for increased microglia ramifications
and interaction of Gal-3 with glycosylated GF such as IGF-1
(Rahimian et al., 2018). After binding to glycans attached to
GFRs, oligomerized Gal-3 molecules crosslink GFRs at the
surface and delay their removal by endocytosis, resulting in
prolongation of GF signaling (Partridge et al., 2004; Lalancette-
Hebert et al., 2012). Gal-3 deficiency leads to the insufficient
microglia activation and defective IGF-R1 signaling/mitogenic
response, overexpression of IL-6 and suppressors of cytokines
signaling 3 (SOCS3), suggesting the involvement of the
JAK/STAT3 signaling pathway (Lalancette-Hebert et al., 2012).
In addition, the presence of Gal-3 is required for early injury-
induced microglia activation and induction of TLR2 response
(Lalancette-Hebert et al., 2012; Figure 1B).

Biological sex and aging represent an important factor
influencing the immune response by triggering various
inflammatory events in stroke, as well as in post-stroke

TABLE 1 | Brief summary of clinical studies on the level and impact of Galectin-3 on main clinical findings in various neurological disorders.

Authors, year Disease Sample Galectin-3 levels Main clinical findings

Ashraf and Baeesa, 2018 Alzheimer’s disease Serum
CSF

↑ ↓CF

Ashraf and Baeesa, 2018 Amyotrophic Lateral Sclerosis Serum
CSF

↑ No impact on CF

Yazar et al., 2021 Alzheimer’s disease Serum ↑ ↓CF (↓MMSE)
↑Duration of disease

Wang et al., 2015 Alzheimer’s disease Serum ↑ ↓CF (↓MMSE)

Cengiz et al., 2019 Parkinson’s disease Serum ↑ A good predictor for
advanced-stage disease

Yazar et al., 2019 Idiopathic Parkinson’s disease Serum ↑ ↑UPDRS scores ↑duration of
disease

Siew et al., 2019 Huntington’s disease Serum ↑ ↓CF (↓MMSE)
↑Disease burden Correlation with

UHDRS scores

Yan J. et al., 2016 Amyotrophic Lateral Sclerosis Serum ↑ ↑Duration of disease

Zhou et al., 2010 Amyotrophic Lateral Sclerosis CSF
spinal cord tissue

↑ Disease biomarker

Wang et al., 2021 Acute ischemic stroke Serum ↑ ↓CF (↓MoCA)

Yan X.J. et al., 2016 Intracerebral hemorrhage Serum ↑ ↑Inflammation
↑Injury severity
↑Mortality

Liu et al., 2016 Subarachnoid hemorrhage Serum ↑ ↑Disease severity
Poorer prognosis

Sävman et al., 2013 Birth asphyxia CSF ↑ Severe clinical course
poorer prognosis

CSF, cerebro-spinal fluid; CF, cognitive functions; MMSE, Mini Mental State Examination; UPDRS, Unified Parkinson’s Disease Rating Scale; UHDRS, Unified Huntington’s
disease Rating Scale; MoCA, Montreal Cognitive Scale.
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recovery (Banerjee and McCullough, 2022). A trend in greater
cognitive decline and central neuroinflammation was observed
in aged male mice of the stroke model (Ahnstedt et al., 2020).
Rahimian et al. (2019a, 2020) demonstrated that Gal-3 mediates
neuroinflammation on microglia in a sex-dependent manner.
Administration of glucosamine, a pharmacological Gal-3
modulator, 72 h after ischemic injury increased levels of Gal-3
and anti-inflammatory cytokines such as IL-4, IL-13, and
colony-stimulating factors in male mice. These changes were
followed by a marked decrease in the size of the ischemic lesion.
In contrast, Gal-3 levels were decreased in female mice treated
with glucosamine, which in turn was associated with increased
levels of proinflammatory cytokines and larger infarction size
(Rahimian et al., 2020).

Galectin-3 also exerts remodeling functions by promoting
angiogenesis and neurogenesis in endothelial and neural
progenitor cells and enhancing micro vessel density in ischemic
rat brains (Yan et al., 2009). Gal-3 acts by promoting
cellular survival and angiogenic and migratory potential under
ischemic conditions in vitro by modulating integrin-linked
kinase (ILK) signaling, whereas silencing of ILK diminishes
angiogenesis and microglia migration (Wesley et al., 2013).
Intracerebral local delivery of the Gal-3 into the rat brain exerted
neuroprotective effects by decreasing ischemic lesion volume and
neuronal cell death (Wesley et al., 2021). Gal-3 also modulates
vascular endothelial growth factor- and basic fibroblast growth
factor-angiogenic response, through αvβ3 integrin signaling
(Markowska et al., 2010). Since it was demonstrated that
microglia promptly shift towards the injured site and limit
brain damage after stroke (Davalos et al., 2005; Eyo and Dailey,
2012), Gal-3 likely promotes migration of microglia, as its
chemotactic effects were confirmed (Nangia-Makker et al., 2000).
These results indicate a key role of Gal-3 in neurovascular
protection and functional recovery following ischemic stroke
through modulation of angiogenic pathways (Figure 1A).

In summary, Gal-3 can act as a protective or detrimental
molecule and these effects may be time-, context-, model-,
and even sex-dependent under ischemic conditions. All
this complexity makes Gal-3 an interesting yet challenging
druggable target in the modulation of post-stroke angiogenesis,
neurogenesis, and accompanying neuroinflammation.

Galectin-3 and Cognition in Mental
Disorders
Cognitive impairment is not exclusively observed in aging,
dementia, or representative neurodegenerative disorders, but
also in specific aspects of cognitive functioning in mental
disorders. Cognitive changes have been observed in patients
with depression (Culpepper et al., 2017) along with the volume
reduction in specific brain regions observed in patients with
mild cognitive impairment and depression (Zacková et al.,
2021). Cognitive dysfunctionalities are observed in the widespan
of mental disorders: bipolar disorder (Solé et al., 2017),
schizophrenia (Daban et al., 2006), autism, and hyperkinetic
syndrome (Thapar et al., 2017).

Galectin-3 has been investigated in animal and human studies
of different mental disorders, but mainly as an alarmin, a
biomarker of a particular disease stage. There is no complete
investigation of its involvement in other underlying molecular
interactions leading to unique cognitive changes, which might
be specific to a single mental disorder. No correlation of
serum or CSF levels with clinical parameters of cognitive
functioning has been established so far in primary psychiatric
disorders. In patients with schizophrenia, lower serum levels of
Gal-3 were measured in patients with first-episode psychosis
and schizophrenia in relapse, whereas they were higher in
patients with schizophrenia in remission, compared with levels
determined in healthy controls (Borovcanin et al., 2018). Gal-3
has been considered in neurodevelopment, neuroinflammation,
and neurodegeneration, also regarding its interplay with
neurotransmitters (Borovcanin et al., 2021a), as well as its
possible modulation by antipsychotic treatment and consequent
obesity and cognitive changes in schizophrenia (Borovcanin
et al., 2021b). Depression was independently associated with
higher levels of Gal-3 in patients with type 1 diabetes mellitus
(DM) (Melin et al., 2020). Gal-3 could be included in the
link between obesity and depressive symptoms in overweight
and obese women (Setayesh et al., 2021). According to the
current state of knowledge, Gal-3 activity in cognitive functioning
must be viewed from the standpoint of its role in systemic
changes regulating inflammatory and metabolic processes of
the whole organism.

The recent explosive growth in data regarding the homeostasis
of microglia has revealed their roles in the shaping of the neural
circuitry, synaptic plasticity, and phagocytosis, pointing to the
importance of their functions in the contexts of cognitive control
and psychiatric disorders (Rahimian et al., 2021b). Since the
inflammatory CNS milieu and microglia are implicated in these
disorders, the role of Gal-3 as a regulator of microglia activity is
a puzzle that needs to be reconciled in future studies. Abnormal
expression of TLRs, including TLR3 and TLR4, was observed in
microglia, which may have important implications for multiple
brain functions (Hanke and Kielian, 2011). Phagocytosis is
the crucial process for the removal of apoptotic neurons and
oligodendrocytes, which depends on receptors such as Gal-3,
TREM2, CD11b, and T-cell membrane protein 4 (Rahimian et al.,
2018). Pandey et al. (2014) reported that protein expressions
of TLR2, TLR3, TLR4, TLR6, and TLR10 were significantly
increased in the prefrontal cortex of depressed patients who
committed suicide. Since Gal-3 acts as a ligand for TLR, this could
be a possible explanation for its involvement in these diseases.
In the modern treatment of autism spectrum disorders, not only
BBB permeability is a hot topic, but also gastrointestinal immune
barrier (Yousefi et al., 2022), which could be controlled by TLR2
and TLR4 or Gal-3 (Beukema et al., 2020).

GALECTIN-3 TARGETED STRATEGIES
FOR PRESERVING COGNITION

The structure of Gal-3 enables versatile interactions with cell
surface carbohydrates, ranging from hydrogen bonding to
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hydrophobic interactions (Chan et al., 2018). Many glycoproteins
comprise a specific glycan epitope, but with a limited number
of physiological receptors for a living cell. The processes
involving Gal-3 in vivo are complex, therefore fine-tuning
in which interactions are possible to observe come down to
versatile in vitro methods. Sophisticated analytical methods
need to be applied, both from an instrumental perspective
considering sensitivity and selectivity, and from a theoretical
modeling/molecular simulations perspective (Heine et al., 2022).
The refinement of perspective galectin antagonists needs
to incorporate detailed insight into molecular interactions
supported by various instrumental methods.

The investigation for new anti-inflammatory agents has
become a target of profound research, as currently available
therapies fail to stop or delay progressive neuronal loss. The
development of several distinct Gal-3 inhibitors may have a
positive effect on disease processes (Stegmayr et al., 2019). One
of the reasons is that galectins are expressed at low levels under
normal physiological conditions but are markedly increased in
diseases (Klyosov and Traber, 2012). Hence, a strategy to inhibit
galectin expression or function may be effective without affecting
normal basal function. The efficacy of galectin blockers is difficult
to extrapolate from animals to humans, and these data are lacking
in the literature. In addition, administration and bioavailability
affect the behavior of the drug in the human body. The
galectins have highly conserved residues, and the development
of selective inhibitors is a major challenge. Inhibitors should
have high affinity, specificity, and chemical stability in the
biological environment (Stegmayr et al., 2019). Also, there are
other problems such as expensive synthesis and unfavorable
pharmacokinetics (Sethi et al., 2021).

Targeted therapeutics are still in the early stages of
development, and there are limited data on the use of
pharmacological galectin inhibitors in human diseases.
Inhibitors are generally classified into carbohydrate and peptidic
non-carbohydrate types (Sethi et al., 2021). Carbohydrate
types include small organic molecules and galactose derivatives
(Klyosov and Traber, 2012). Among small organic molecules,
Gal-3 inhibitors are the most potent with nanomolar Kd—
29 nM (3,3′-ditriazolyl thiodigalactoside), 50 nM (3,3′-diamido
thiodigalactoside), 320 nM (3′-amido lacNAC derivative),
and 660 nM (3′-triazolyl lacNac derivative) (Klyosov and
Traber, 2012; Blanchard et al., 2014). Non-carbohydrate
inhibitors include peptidomimetics, peptide-based inhibitors,
and heterocyclic compounds that show promising activity
against Gal-3 (Mayo, 2012).

Considering the fact that hepatic encephalopathy and
depression share the same properties in terms of cognitive
dysfunctionality (Kronsten and Shawcross, 2022), the
translational approach could be very useful in implementing
knowledge about the same underlying mechanisms. The
therapeutic potential of Gal-3 inhibitors has been confirmed
in liver fibrosis, non-alcoholic steatohepatitis, cirrhosis, and
idiopathic pulmonary fibrosis (Sethi et al., 2021). Fruit-derived
pectins such as GCS-100, Davanat, Belapectin, and Modified
citrus pectin (MCP) are some of the inhibitors that have been
tested in clinical trials (Girard and Magnani, 2018). MCP is a

polysaccharide extracted from citrus that binds to Gal-3 and
acts like its antagonist (Eliaz and Raz, 2019). MCP prevents
disruption of the blood-brain barrier (BBB) and brain injury
in a mouse model of subarachnoid hemorrhage, indicating
that Gal-3 regulates the inflammatory response in this brain
injury (Nishikawa et al., 2018). People with DM type 2 are at
increased risk for cognitive decline since cerebrovascular and
neurodegenerative chronic complications of the disease affect
brain function (Karvani et al., 2019). Serum Gal-3 levels have
been shown to be significantly higher in DM type 2 patients
with mild cognitive impairment compared to controls (Ma
et al., 2020). Similarly, Gal-3 levels were increased in the serum
and brain of high-fat diet/streptozotocin-induced diabetic rats
(Yin et al., 2020), whereas the MCP attenuated inflammation,
oxidative stress, and cognitive impairment in diabetic rats and
also in high glucose-stimulated BV-2 microglial cells (Yin et al.,
2020). These findings indicated that Gal-3 might be a potential
therapeutic target for cognitive impairment in diabetes.

TD139, a novel high-affinity and cell-permeable specific
inhibitor of Gal-3, was found to ameliorate the clinical and
histological manifestations in the model of experimental
autoimmune uveitis in mice (Liu et al., 2022). TD139
attenuated the microglial activation and inflammatory
response through TLR4/MyD88/NF-κB pathway. This inhibitor
significantly reduced the expression of Gal-3, iNOS, COX2, and
proinflammatory cytokines including IL-6, TNF-α, and IL-1β.
In patients with secondary progressive MS, Gal-3 is already
marked as a target antigen for antibodies responsible for the BBB
disruption, and anti-Gal-3 antibodies are proposed as a novel
diagnostic marker (Nishihara et al., 2017).

In addition to inhibition of Gal-3, other therapeutic potentials
of this multifunctional lectin should also be considered. It has
been demonstrated that Gal-3 can be secreted and exported
from cells by an alternative secretory pathway including
specific vesicles/exosomes (Nickel, 2003). Modulation of Gal-3
secretion by exosomes represents an interesting new concept
and a potential therapeutic approach in neurodegenerative
disorders, as numerous studies on exosomes have confirmed
their role in pathophysiological mechanisms and disease
development, as well as their application for therapy and
targeted drug delivery in these brain pathologies (Gao
et al., 2021). It has been shown that naturally occurring
or engineered exosomes derived from stem cells may exert
therapeutic effects in AD (Perets et al., 2019). Gal-3 derived
from mesenchymal stem cells removed the aberrant forms
of tau and reduced hyperphosphorylation of tau in vitro
and in vivo and also ameliorated deficits in spatial learning
and memory, confirming its potential therapeutic role
in AD pathology and accompanying memory impairment
(Lim et al., 2020).

Activated microglia prepare substrates for endocytosis by
releasing sialidase (neuraminidase), which desialylates glycans on
cell surfaces and debris in both microglia and neurons, facilitating
Gal-3 binding as an opsonin (Nomura et al., 2017). Gal-3 and
desialylation may increase in a variety of brain pathologies. Thus,
inflammatory loss of neurons or synapses may potentially be
blocked by inhibiting neuraminidases and Gal-3, which could be
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a potential treatment strategy to prevent neuroinflammation and
neurodegeneration (Puigdellívol et al., 2020).

The accumulation of irreversible long-lived proteins,
advanced glycation end products (AGEs), and the interaction of
AGEs with cellular receptors are considered key events in the
development of long-term complications of chronic diseases,
such as DM, AD, and aging (Schmidt et al., 2000). Gal-3 is
an important receptor for advanced glycation end products
(RAGEs) on the cell surface, and it has been suggested that
pharmacological inhibition of AGE receptor-mediated cell
activation with specific antagonists may provide the basis for
therapeutic interventions in these diseases (Pugliese et al.,
2015), along with the impact of ligand glycoconjugates which
influence Gal-3 binding and may modulate inflammatory
responses and remyelination in neurodegenerative diseases
(Nio-Kobayashi and Itabashi, 2021).

DISCUSSION

A convergence of preclinical and clinical data has provided
bases for the potential role of Gal-3 in cognition modulation
in complex pathological states and diseases. Understanding the
structure-function relationships of Gal-3 is complicated by its
versatile glycan-binding properties and oligomeric structure.
Gal-3 can crosslink membrane glycans to initiate, amplify,
attenuate, or inhibit signaling pathways that lead to cell
differentiation, proliferation, or death. Current challenges of
cellular environment characterization leave us without a detailed
understanding of galectin-binding specificities in a cellular
context. Structural motifs and targets can be separated by in vitro
studies, but the question remains of how to translate this
extensive knowledge to in vivo metrics.

Gal-3, denoted as a two-faced molecule, triggers the
activation of microglia and affects various signaling pathways in
response to pro-inflammatory stimuli, and is a key determinant
in neuroinflammation/neuroprotection mechanisms by
recognizing glycans and their modifications. The positive
or negative effects of Gal-3 are highly dependent on different
brain areas, injury conditions, and disease progression (Shin,
2013). This delicate balance dictates that inhibitory pathways
must be highly specific/selective.

The complex structure of Gal-3, its time- and context-
dependent activities, along with genetic and gender differences
make the investigation of its therapeutic potentials and modalities
a very complex and difficult task, with many questions to be
addressed before further clinical trials are initiated. The role of
Gal-3 as a mediator of immune responses in the damaged brain
and the mechanisms Gal-3 employs to affect microglial function
may serve to develop novel immunomodulatory strategies for the
treatment of neuropsychiatric disorders.

Gal-3 released from activated microglia appears to function
as a master regulator acting as an endogenous TLR4, TLR2, and
TREM ligand. In contrast, under ischemic conditions, it may
also exert proangiogenic, neurogenic, and migratory potential
as well as anti-inflammatory effects. Based on the presented
findings, Gal-3 plays an important and complex role as an

endogenous modulator of immune response and inflammation
in various pathological conditions. Targeted drug delivery to
injured brain regions remains an unmet challenge, which is even
more prominent in neuropsychiatric disorders because the exact
pathological location is often uncertain. Although still in its
infancy, proteomic studies represent a promising new approach
for future investigations. Unfortunately, the data regarding the
use of Gal-3 inhibitors in the treatment of neuropsychiatric
disorders in clinical settings are lacking at present.

Cognitive decline could also be a consequence of Gal-3 effects
in systemic circulation and occurs in parallel with various somatic
comorbidities. Further research needs to consider the different
roles of Gal-3 in immunometabolic disorders leading to cognitive
changes. As with any biomarker, the question is whether levels in
peripheral blood accurately reflect levels in brain tissue. It would
be important to develop selective Gal-3 inhibitors that can cross
the BBB and conduct further testing to demonstrate therapeutic
efficacy in brain disease models.

In this mini-review, we wanted to briefly summarize an up-to-
date rationale for selectively targeting Gal-3 in the extracellular
space or in its involvement in intracellular cascades for potential
cognitive improvement. Gal-3 can be modulated by multiple
modifications such as phosphorylation and oligomerization
that lead to multiple and/or seemingly opposing effects under
various pathological conditions in CNS. We have also pointed
out the high expression of Gal-3 in the hippocampus and
the deleterious effects of increased Gal-3 on cognition in
neurodegenerative states. A particular challenge is to potentially
interfere with adult brain plasticity processes to improve
cognitive performance by using Gal-3 as an endogenous
modulator of neuroinflammation/neurodegeneration and ligand
for TLR and TREM2 as key receptors in microglial activation
and brain trauma. These points also showed promise for
future strategies to treat mental disorders. A clear association
between Gal-3 elevation and poorer cognitive performance
was found in vascular incidents and after recovery processes.
However, elevated Gal-3 levels in serum and CSF were not
necessarily associated with memory loss. In addition, its anti-
inflammatory properties through IL-4 secretion and neuro-
vascular protection through modulation of angiogenic pathways
should be considered. Gal-3 involvement in immunometabolism,
including IGF, has neuroprotective properties and could also
have an influence on cognition. So, not only the inhibition
but also additionally induced production of this interesting
molecule could be considered to prevent neurodegeneration and
the cognitive decline that may accompany it.

The development of therapies to prevent and/or slow
the progression of cognitive decline in the early stages of
neuropsychiatric disorders is of utmost importance and includes
symptomatic treatments, lifestyle modifications, and risk factor
management, among others. Although Gal-3 itself is not a
disease-specific marker, it has been recognized as a potential
biomarker for targeting the early stages of inflammatory
responses in these diseases. Further animal studies are needed
for a more complete view of the complex interplay between
Gal-3, microglia, and neurons. In clinical settings, the time-
course analysis of Gal-3 levels in serum and CSF at different
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stages of these diseases should be performed along with
neuropsychological assessment to reveal the link between Gal-3
expression patterns and cognitive changes.
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