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The potential role of DNA
methylation as preventive
treatment target of
epileptogenesis
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Pharmacological therapy of epilepsy has so far been limited to symptomatic

treatment aimed at neuronal targets, with the result of an unchanged high

proportion of patients lacking seizure control. The dissection of the intricate

pathological mechanisms that transform normal brain matter to a focus

for epileptic seizures—the process of epileptogenesis—could yield targets

for novel treatment strategies preventing the development or progression

of epilepsy. While many pathological features of epileptogenesis have been

identified, obvious shortcomings in drug development are now believed to

be based on the lack of knowledge of molecular upstream mechanisms,

such as DNA methylation (DNAm), and as well as a failure to recognize

glial cell involvement in epileptogenesis. This article highlights the potential

role of DNAm and related gene expression (GE) as a treatment target

in epileptogenesis.
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Introduction

Epileptogenesis is the transformation of a physiologically functioning brain into an

epileptic one, and the progression of manifested epilepsy (Pitkanen and Engel, 2014)

(Figure 1). Although often initially not detectable clinically, this process is assumed to

have a temporal and spatial starting point in the brain, involving an initial incident,

such as trauma, hypoxia, infection, or complex febrile seizures. According to the current

practical definition, this is followed by a latent phase devoid of clinical seizures, evolving

to the chronic state that features the occurrence of spontaneous, and often progressive,

epileptic seizures (Boison et al., 2013; Pitkanen and Engel, 2014). A prerequisite for

the development of true anti-epileptogenic drugs preventing the emergence of clinical

seizures, or stopping the worsening of chronic epilepsy, is to improve our understanding

of the underlying pathological processes of epileptogenesis (Aronica and Gorter, 2007;

Pitkanen and Lukasiuk, 2011; Loscher et al., 2013; Pitkänen et al., 2013; Löscher, 2020).

Meanwhile, several pathological hallmarks of epileptogenesis are known. These are,

for example, neuronal death, reactive gliosis, blood-brain barrier (BBB) disruption,

axonal damage and sprouting, network reorganization, alteration of the extracellular
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FIGURE 1

Epileptogenesis. Epileptogenesis describes the development of a brain becoming prone to generate epileptic seizures and further progression.

An initial incident occurs to the brain, initiating the latent phase in which molecular and cellular changes increasingly develop. Epigenetic

mechanisms, such as DNA methylation (DNAm) changes may determine changes in gene expression (GE) and by this cellular responses in both

neurons and glial cells. Both protective and detrimental changes occur. Imbalance in favor to detrimental e�ects leads to increasing

epileptogenicity up to the threshold of clinical seizures. During the chronic phase, epileptogenicity increases leading to the progression of

clinical epilepsy, accompanied by increasing molecular and cellular changes. Both the latent phase and the chronic phase could be relevant to

the development of anti-epileptogenic medication.

matrix (ECM), and astrocyte uncoupling, as well as substantial

changes of the molecular architecture of both neurons and glial

cells (Tauck and Nadler, 1985; de Lanerolle et al., 1989, 2012;

Houser, 1990; Houser et al., 1990; Mathern et al., 1995; Eid

et al., 2005, 2019; Vezzani and Granata, 2005; Dityatev, 2010;

Blumcke et al., 2013; Bedner et al., 2015; Patel et al., 2019; Bruxel

et al., 2021). What is more delicate is the lack of strategies for

how to prevent the formation of these pathological features.

Obvious shortcomings of novel preventive drug development

are based on the lack of knowledge of molecular upstream

mechanisms, such as DNA methylation (DNAm) or gene

expression (GE) (Perucca et al., 2020), and also the neglect of

the importance of glial cell involvement in the inflammatory

processes accompanying epileptogenesis (Kalozoumi et al., 2018;

Patel et al., 2019). The goal of this review is to discuss the

significance of DNAm as a potential target for anti-epileptogenic

treatment in the scope of novel knowledge of glial involvement

in this process.

DNAm: Function and potential
therapeutical target

After the human genome was deciphered in 2003, there

were high expectations that pathological phenotypes would be

linked to genomic variants (Collins et al., 2003; Green et al.,

2015). However, the expectations did not come to fruition,

and in the field of epilepsy, only a few genomic loci could

be linked to epileptic conditions (International League Against

Epilepsy Consortium on Complex Epilepsies, 2014; Abou-Khalil

et al., 2018). The field of “epigenomics” arose with the hope

to decipher the missing link between genotype and phenotype.
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Today, epigenetics can be defined as mechanisms that largely

determine the “transcriptome,” meaning which genes are “used”

to define a certain phenotype (Feinberg, 2007; McClung and

Nestler, 2008; Gräff et al., 2011).

At the molecular level, epigenetics includes several

mechanisms: DNAm, histone modifications, and non-coding

RNAs are the most integral parts of this machinery (Gräff et al.,

2011; Cavalli and Heard, 2019). These mechanisms are heavily

interacted (Li et al., 2008; Cedar and Bergman, 2009; Wang

et al., 2015). They determine chromatin accessibility, quality,

and quantity of GE, and by this, tissue development in normal as

well as pathological states. They can be altered by environmental

factors (Danchin et al., 2011) and are mitotically inheritable

(Cavalli and Heard, 2019). As such, they are potential upstream

mechanisms for various molecular pathways, including those

prompting pathological features of epileptogenesis. In the

following, we will focus on DNAmethylation in epileptogenesis.

DNA methylation is so far the most comprehensively

studied epigenetic mechanism (Dor and Cedar, 2018) and

is defined as the methylation (adding of a -CH3 group) of

the DNA-base cytosine in a CpG (Cytosine – phosphate –

Guanine) dinucleotide (CpG) (Luo et al., 2018). Oxidated

variants of 5-methylcytosine (5-mC—in this review simply

referred to as DNAm) include 5-hydroxymethylcytosine [5-

hmC, relevant in post-mitotic neurons (Mellén et al., 2017)],

5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC), all of

which potentially exert distinct effects on the GE and chromatin

accessibility (Song and He, 2013). Other types of methylation

include: non-CpG DNAm in, e.g., neurons (Kozlenkov et al.,

2014), RNA methylation (Widagdo and Anggono, 2018), and

mitochondrial DNAm (Cavalcante et al., 2020). In the central

nervous system (CNS), DNAm has a major role in brain

development, cell differentiation, and disease (Lister et al., 2013;

Smith and Meissner, 2013; Sanosaka et al., 2017; Greenberg

and Bourc’his, 2019). DNAm has been shown to influence the

GE in a tissue-, context-, and cell-dependent manner (Smith

and Meissner, 2013; Greenberg and Bourc’his, 2019), usually

in a close interaction with transcription factors (Kribelbauer

et al., 2019). How far DNAm states correlate with GE is still a

matter of debate (Luo et al., 2018). GE is, on the other hand,

regarded as an indicator of protein abundance and biological

function, and provides a relevant estimate of downstream

effects (Wang et al., 2009; Liu Y. et al., 2016; Silva and Vogel,

2016). Thus, DNAmmight influence downstreammolecular and

cellular processes via GE regulation. DNAm is modifiable by

environmental factors (Martin and Fry, 2018; Cavalli and Heard,

2019), hormones (Kovács et al., 2020), and even by neuronal

activity (Guo et al., 2011). Recently, the site-specificmodification

of DNAm was shown to specifically alter GE (Liu X. S. et al.,

2016; Liu and Jaenisch, 2019), which is especially interesting

when it comes to novel therapeutic concepts. Further, disease-

specific blood-DNAm pattern alterations have been reported

in several pathological conditions (Fransquet et al., 2018; Agha

et al., 2019; Henderson-Smith et al., 2019; Somineni et al., 2019)

and proposed as possible biomarkers, with adjunct therapeutical

implications (Kim et al., 2018; Berdasco and Esteller, 2019).

DNAm in epilepsy

Epilepsy-related alterations in DNAm have been shown in

previous studies in both animal models (Miller-Delaney et al.,

2012; Kobow et al., 2013; Machnes et al., 2013; Ryley Parrish

et al., 2013;Williams-Karnesky et al., 2013; Li et al., 2015; Lusardi

et al., 2015; Debski et al., 2016; Liu X. et al., 2016; Zybura-Broda

et al., 2016) and in humans (Zhu et al., 2012; Miller-Delaney

et al., 2015; Liu X. et al., 2016; Zhang et al., 2021) (Table 1).

The most consistent finding is a state of DNA hypermethylation

occurring in chronic-epilepsy states in both animal models

(Kobow et al., 2013) and human hippocampal tissues (Miller-

Delaney et al., 2015). Although some studies associate alterations

in DNAm with GE changes (Kobow et al., 2009; Li et al., 2015;

Debski et al., 2016), a recent study was more hesitant to reach

this conclusion (Lipponen et al., 2018).

At the early stages of epileptogenesis, no changes (Ryley

Parrish et al., 2013), or a slight tendency toward general

DNA hypomethylation (Miller-Delaney et al., 2012), have been

found. At single genes, DNAm changes have been recorded

as soon as 1 h after status epilepticus (SE) initiation by intra-

peritoneal (i.p.) kainate treatment in rats (Ryley Parrish et al.,

2013). At chronic time points, a general tendency toward

hypermethylation was found, and potential associations between

DNAm and GE at specific genomic loci identified (Kobow et al.,

2013). A follow-up study reanalyzed these results and compared

them to two other murine models of focal epilepsy, traumatic

brain injury (TBI) and amygdala stimulation, at chronic time

points. This study found both a general tendency toward CpG

hypomethylation (amygdala stimulation) and hypermethylation

(pilocarpine, TBI) methylation and little overlap regarding

DNAm between these models (Debski et al., 2016).

Some studies investigated both DNAm and GE changes to

identify potential correlations. Although no general correlations

between DNAm and GE were found, coincidental occurrences

of these two phenomena were detected at some genomic

loci (Kobow et al., 2013; Debski et al., 2016). Other studies

have used more of a “black box” approach, investigating

general methylation levels and testing interventions by

means of DNA-methyl-transferase inhibitors—targeting the

“hypermethylated” state in chronic epilepsy and potentially

attenuating epileptogenesis. In one study (ratmodel, i.p. kainate)

the application of a DNMT inhibitor did not significantly alter

the disease course (some/despite of later onset of SE), but it

did reduce the general hypermethylation state and also DNAm

at one of the investigated genes (Ryley Parrish et al., 2013).

Another group reported reversed hypermethylation, attenuated

seizure severity, and later onset of epileptogenesis (kindling

model in mice and rats using pentylenetetrazol) associated

with both the application of a DNMT inhibitor and adenosine
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TABLE 1 Relevant studies assessing DNA methylation (DNAm) in epileptogenesis.

Species Tissue/

model

Methods Results Interpretation/conclusion Reference

chronol.

Mouse Contralateral HC/

intracortical KA

Glial and neuronal nuclei sorted by flow

cytometry. Alterations in GE and DNAm were

assessed with RRBS and RNAseq. R package

edgeR was used for statistical analysis

The CLH features substantial, mostly cell-specific changes in both GE and DNAm

in glia and neurons. Changes in GE overlapped to a great degree between CLH and

ILH; changes in DNAm did not. A significantly lower number of glial genes up-

and downregulated compared to previous results from the ILH (Berger et al.,

2019). Several genes and pathways potentially involved in anti-epileptogenic effects

were upregulated in the CLH.

The CLH displays substantial changes in GE

and DNAm. GE changes related to potential

anti-epileptogenic effects seem to dominate

compared to the pro-epileptogenic effects in

the CLH.

Berger et al.,

2020

Human Hippocampal

tissue resected

from patients

with TLE-HS

Genome-wide CpG-DNAm profiling and

RNAseq to Dprofile global changes in promoter

methylation and GE in HS patients. Real time

PCR was performed to validate the findings of

DNAm and RNAseq.

A total of 16040 sites showed altered DNAm in all the CpG islands. Of these, 3185

sites were in the promoter regions, of which 66 genes showed an inverse correlation

between DNAm and expression. These genes are largely related to pathways

predicted to participate in axon guidance by semaphorins, MAPK, ionotropic

glutamate receptor pathway, notch signaling, regulatory activities related to

TFAP2A and immune response, with the most distinct ones included TFAP2A,

NRP1, SEMA3B, CACNG2, MAP3K11, and ADAM17.

Collectively, findings implicate DNAm as a

critical regulator of the pathogenic

mechanisms of epileptogenesis associated

with HS.

Dixi et al.,

2020

Mouse Ipsilateral HC/

intracortical KA

Separation into neurons and glial nuclei was

performed by flow cytometry. Changes in

DNAm and GE were measured with RRBS and

mRNAseq. R package edgeR for analysis.

Fulminant DNAm- and GE changes in both neurons and glia at 24 hours after

initiation of status epilepticus were observed. The vast majority of these changes

were specific for either neurons or glia. At several epilepsy-related genes, like

Hdac11, Spp1, Gal, Drd1 and Sv2c, significant differential DNAm and differential

GE coincided.

Neuron- and glia-specific changes in DNAm

and GE in early epileptogenesis. Single

genetic loci in several epilepsy-related genes,

where DNAm and GE changes coincide,

were detected.

Berger et al.,

2019

Human Focal cortical

dysplasia (FCD)

DNA methylomes and transcriptomes were

generated from massive parallel sequencing in

15 surgical FCD specimens, matched with 5

epilepsy and 6 non-epilepsy controls.

Differential hierarchical cluster analysis of DNAm distinguished major FCD

subtypes (ie, Ia, IIa, and IIb) from patients with temporal lobe epilepsy patients and

nonepileptic controls. Targeted panel sequencing identified a novel likely

pathogenic variant in DEPDC5 in a patient with FCD type IIa. However, no

enrichment of differential DNAm or GE was observed in mechanistic target of

rapamycin (mTOR) pathway-related genes.

Evidence for disease-specific DNAm

signatures toward focal epilepsies in favor of

an integrated clinicopathologic and

molecular classification system of FCD

subtypes incorporating genomic DNAm.

Kobow et al.,

2019

Human Focal cortical

dysplasia (FCD)

Genome-wide CpG-DNAm profiling by

methylated DNA immunoprecipitation

(MeDIP) microarray and RNAseq on cortical

tissues resected from FCD type II patients.

A total of 19088 sites showed altered DNAm in all the CpG islands. Of these, 5725

sites were present in the promoter regions, of which 176 genes showed an inverse

correlation between DNAm and GE. Many of these 176 genes were found to belong

to a cohesive network of physically interacting proteins linked to several cellular

functions. Pathway analysis revealed significant enrichment of receptor tyrosine

kinases (RTK), EGFR, PDGFRA, NTRK3, and mTOR signaling

pathways

The first study investigating the epigenetic

signature associated with FCD type II

pathology. Identified candidate genes may

play a crucial role in the regulation of the

pathogenic mechanisms of epileptogenesis

associated with FCD type II pathologies.

Dixi et al.,

2018

(Continued)
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TABLE 1 Continued

Species Tissue/

model

Methods Results Interpretation/conclusion Reference

chronol.

Human Blood Comparison of blood whole genomic DNAm

pattern in MTLE patients (n= 30) relative to

controls (n= 30) with the Human DNAm 450K

BeadChip assay, exploring genes and pathways

that are differentially methylated using

bioinformatics profiling.

MTLE and control groups showed significantly different DNAm at 216 sites, with

164 sites involved hyper- and 52 sites hypo- DNAm. Two hyper- and 32

hypo-methylated sites were associated with promoters, while 87 hyper- and 43

hypo-methylated sites corresponded to coding regions. Differentially methylated

genes were largely related to pathways predicted to participate in anion binding,

oxidoreductant activity, growth regulation, skeletal development and drug

metabolism, with the most distinct ones included SLC34A2, CLCN6, CLCA4,

CYP3A43, CYP3A4 and CYP2C9. Panels of genes also appeared to be differentially

methylated relative to disease duration, resistance to anti-epileptics and MRI

alterations of HS.

The peripheral epigenetic changes observed

in MTLE could be involved in certain

disease-related modulations and warrant

further translational investigations.

Long et al.,

2017

Human Brain tissue from

refractory

epilepsy patients

Genome-wide DNAm and GE in brain tissues of

10 patients with refractory epilepsy using

methylated DNA immunoprecipitation linked

with sequencing and mRNAseq.

Diverse distribution of differentially methylated genes was found in X

chromosome, while differentially methylated genes appeared rarely in Y

chromosome. 62 differentially expressed genes, such asMMP19, AZGP1, DES, and

LGR6 were correlated with refractory epilepsy.

Findings provide a genome-wide profiling of

DNAm and GE in brain tissues of patients

with refractory epilepsy, which may provide

a basis for further study on the etiology and

mechanisms of refractory epilepsy.

Liu X. et al.,

2016

Rat 3 models:

- focal amygdala

stimulation/

- systemic

pilocarpine/

- lateral fluid-

percussion (TBI)

DNAm and GE in the hippocampal CA3/dentate

gyrus fields at 3 months following epileptogenic

injury in three experimental models.

DNAm and GE profiles distinguished ctr. from injured animals.

Consistent increased DNAm in gene bodies and hypoDNAm at non-genic regions.

A common DNAm signature for all three different models was not found, and few

regions common to any two models.

Evidence that genome-wide alteration of

DNAm signatures is a general

pathomechanism associated with

epileptogenesis and epilepsy in animal

models, but the broad pathophysiological

differences between models are reflected in

distinct etiology-dependent DNAm

patterns.

Debski et al.,

2016

Human Brain tissue from

epilepsy patients

and ctr.

DNAm via methylated-cytosine DNA

immunoprecipitation microarray chip.

Differentially methylated loci validated by

bisulfite sequencing PCR, and mRNA levels of

candidate genes evaluated by RT-PCR.

224 genes showed differential DNAm between epileptic patients and ctr. Among

the seven candidate genes, three genes (TUBB2B, ATPGD1, and HTR6) showed

relative transcriptional regulation by DNAm. TUBB2B and ATPGD1 exhibited

hyper DNAm and decreased mRNA levels, whereas HTR6 displayed hypo DNAm

and increased mRNA levels in the epileptic samples.

Findings suggest that certain genes become

differentially regulated by DNAm in human

epilepsy.

Wang et al.,

2016

Human Resected HC

tissue from TLE

with- or without

HS

DNAm analysis of all annotated CpG islands

and promoter regions in the human genome.

Comparative analysis of expression and

promoter DNAm

146 protein-coding genes exhibited altered DNAm in TLE hippocampus (n= 9)

when compared to ctr. (n= 5), with 81.5% of the promoters displaying hyper

DNAm. Unique DNAm profiles were evident in TLE with or without HS, in

addition to a common DNAm profile regardless of pathology grade.

The present study therefore reports select,

genome-wide DNAm changes in human

temporal lobe epilepsy that may contribute

to the molecular architecture of the epileptic

brain.

Miller-

Delaney

et al., 2015

(Continued)
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TABLE 1 Continued

Species Tissue/

model

Methods Results Interpretation/conclusion Reference

chronol.

GO terms associated with development, neuron remodeling and neuron

maturation were over-represented in the DNAm profile of mild HS. In addition to

genes associated with neuronal/synaptic transmission and cell death functions,

differential hyperDNAm of genes associated with transcriptional regulation in

TLE. A panel of 13, DNAm-sensitive microRNA are identified in TLE including

MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential

DNAm of long non-coding RNA.

Mouse/

Rat

Transient kainic

acid exposure

using in vitro and

in vivo rodent

models.

Analysis of DNAm changes in the gria2 gene,

which encodes for the GluA2 subunit of the

ionotropic glutamate,

alpha-amino-3-hydroxy-5-methyl-4-isoxazole

proprionic acid receptor

KA exposure for 2 h to mouse hippocampal slices triggers DNAm of a 5’ regulatory

region of the gria2 gene. Increase in DNAm persists one week after removal of the

drug, with concurrent suppression of gria2 mRNA expression levels. In a rat in vivo

model of post kainic acid-induced epilepsy, we show similar hyperDNAm of the 5’

region of gria2. Luciferase reporter assays support a regulatory role for DNAm of

gria2 5’ region. Inhibition of DNAm by RG108 blocked KA-induced hyperDNAm

of gria2 5’ region in HC slice cultures.

Our results suggest that DNAm of such

genes as gria2 mediates persistent

epileptiform activity and inter-individual

differences in the epileptic response to

neuronal insult and that pharmacological

agents that block DNAm inhibit

epileptiform activity raising the prospect of

DNAm inhibitors in epilepsy

therapeutics.

Machnes

et al., 2013

Rat Rat brain

specimens

Methyl-CpG capture associated with massive

parallel sequencing (Methyl-Seq) to assess the

genomic DNAm. mRNAseq for GE analysis

Predominant increase of DNAm in chronic rat epilepsy. Aberrant DNAm patterns

were inversely correlated with GE changes using mRNAseq from same animals and

tissue specimens. Administration of a ketogenic, high-fat, low-carbohydrate diet

attenuated seizure progression and ameliorated DNAmmediated changes in GE.

First report of unsupervised clustering of an

epigenetic marker being used in epilepsy

research to separate epileptic from

non-epileptic animals as well as from

animals receiving anti-convulsive dietary

treatment.

Kobow et al.,

2013

Rat Experimental

TLE provoked by

kainic

acid-induced SE

Bisulfite sequencing analysis; chromatin

immunoprecipitation analysis

Increased glutamate receptor subunit epsilon-2 (Grin2b/Nr2b) and decreased

Bdnf DNAm levels that corresponded to decreased Grin2b/Nr2b and

increased Bdnf mRNA and protein expression in the epileptic

hippocampus.

Blockade of DNA methyltransferase (DNMT) activity decrease

global DNAm levels and reduced Grin2b/Nr2b, but not Bdnf DNAm

levels; and decreased Grin2b/Nr2bmRNA expression whereas

GRIN2B protein expression increased in the epileptic

hippocampus, suggesting that a posttranscriptional mechanism may be

involved.

DNAmmay be an early event triggered by

SE that persists late into the epileptic

hippocampus to contribute to GE changes

in TLE.

Ryley Parrish

et al., 2013

(Continued)
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(intracranial implants) (Williams-Karnesky et al., 2013). In our

previous studies employing the intracortical kainate mouse

model of mesial temporal lobe epilepsy, we observed vast and

mainly cell-specific changes in DNAm in both the ipsilateral

(Berger et al., 2019) and contralateral (Berger et al., 2020)

hippocampi, with hypermethylation generally outweighing

hypomethylation in both hippocampi. DNAm alterations near

epilepsy-relevant genes and genes within epilepsy relevant

Gene Ontology/Kyoto Encyclopedia of Genes and Genomes

(GO/KEGG) pathways (Berger et al., 2019, 2020). However,

we did not detect general correlations between DNAm and GE

on genomic features (Berger et al., 2019, 2020). Nevertheless,

at several potentially epileptogenesis-related genes, statistically

significant alterations in DNAm and GE coincided (Berger

et al., 2019). In summary, in this specific model, we were not

able to conclude that DNAm facilitates a direct regulation

of GE in early epileptogenesis. This conclusion concurs with

results from work on the potential role of DNAm for GE in

epileptogenesis (Lipponen et al., 2018) and the theory that

DNAm mostly represents a secondary molecular marker of

long-term gene silencing (Dor and Cedar, 2018; Luo et al.,

2018; Greenberg and Bourc’his, 2019). In addition, prior studies

investigating general methylation trends or associations have

not demonstrated mechanistic correlations between DNAm and

GE/protein alterations/epileptogenesis, but rather have shown

co-incidences. Nevertheless, many previous studies and our

data suggest wide-spread changes in DNAm in epileptogenesis.

As the different epigenetic mechanisms (histone modifications

and microRNA [miRNA]) are inter-linked (Li et al., 2008; Cedar

and Bergman, 2009; Wang et al., 2015), DNAm may still affect

downstream effects, not necessarily directly, but indirectly.

Increasing detection sensitivity by
cell-specific approaches including
focus on glial cells

Several recent studies have revealed a possible involvement

of DNAm in both epileptogenesis and GE (Table 1). However,

reports are not consistent and possible shortcomings may be

associated with the widely used simultaneous bulk analysis of

several different CNS cell types. The analysis of DNAm and

GE in neurons and glia cells individually may rectify a crucial

shortcoming of previous studies and be one prudent step toward

deciphering the “DNA methylome.” Neurons and glia facilitate

mostly complementary tasks in physiological and pathological

CNS states, such as epileptogenesis (Cahoy et al., 2008; Doyle

et al., 2008; Zamanian et al., 2012; Patel et al., 2019), and exhibit

different DNAm methylation profiles (Kozlenkov et al., 2014;

Sanosaka et al., 2017). DNAm both in ways of 5hmC and non-

CpG methylation are of a much higher significance in neurons

than in glial cells (Kozlenkov et al., 2014; Mellén et al., 2017).

Analyzing molecular mechanisms in these individual cell types
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separately enhances resolution, and information can be obtained

about the cellular origin of detected effects (e.g., changes in

DNAm and GE, as well as their possible correlation). Further,

the methylation of several genomic regions, such as regulatory

elements exerts cell-specific effects (Li et al., 2021).

We recently introduced a more cell-specific methodology

in 2 separate publications using cell sorting of brain tissue

into neuronal and non-neuronal (glial) cells prior to DNAm

and GE analysis (Berger et al., 2019, 2020). We found

considerable changes in both DNAm and GE at 24 h post-

initiation of SE in a mouse model of mesial temporal lobe

epilepsy with hippocampal sclerosis (Berger et al., 2019, 2020).

Most of these molecular alterations were specific to either

neurons or glia. Further, GE changes uncovered a substantial

involvement of glia cells in processes crucial to epileptogenesis,

such as inflammation, neuronal death, neurogenesis, and Ca2+

signaling. Furthermore, we found a substantial overlap of

genomic dysregulation with other epilepsy models, and even

with other neurodegenerative diseases, such as Parkinson’s

disease or multiple sclerosis (Berger et al., 2019, 2020). These

studies underscored our postulation that a cell-specific analysis

of DNAm and GE in epileptogenesis provides deeper knowledge

about the cellular origin of molecular mechanisms and by this,

it provides a clearer view on putative upstream targets for

drug development. This makes expressly sense in the scope of

novel knowledge on glial cells as important orchestrators of

brain inflammation and epileptogenesis. In the following, we

focus on differentially regulated glial genes and their probable

contribution to epileptogenesis.

Glial contribution to epileptogenesis

With our novel understanding of glial cells as central

organizers of homeostatic functions and as major contributors

to inflammation and brain excitability, we observe a paradigm

shift where glial cells are included in the equation of epilepsy

pathogenesis. Through this, we expect to approach novel

curative treatment strategies for epilepsy (Heuser et al., 2021).

In the following, the most prominent hallmarks of

epileptogenesis and specifically their glial contribution are

discussed in detail, as alteration of glia-mediated downstream

effects may represent novel treatment targets for anti-

epileptogenic intervention.

Di�erentially regulated glial genes and
their involvement in neuronal death

Death of pyramidal neurons in CA3/1 is a major hallmark

of human mTLE-HS (Blumcke et al., 2013) and is reproduced

in many animal models, including the intracortical kainic acid

mouse model of mTLE-HS (Bedner et al., 2015). In this now

widely used and well-characterized model, apoptosis is first

detectable after 6 h post-injection (hpi)—but not at 4 h—in

CA1 neurons (Bedner et al., 2015). At 24 hpi, both CA1

and CA3 exhibit apoptotic pyramidal neurons, and, from then

on, a progressive neurodegeneration leads eventually to 90%

neuronal death in CA1 and CA3 at 28 days post-injection

(dpi), and a complete absence of hippocampal neurons at 9

months post-injection (mpi) (Bedner et al., 2015). Further,

the majority of GABAergic interneurons in CA1 and the

dentate gyrus responsible for tonic inhibition are diminished

substantially already at 5 dpi (Müller et al., 2020). At 24 hpi,

we detected that 8 genes related to the regulation of neuronal

death were upregulated in glia, while 2 genes in this category

were downregulated in neurons (Berger et al., 2019). Many

of these glial genes are associated with tumor necrosis factor

alpha (TNF-α), nuclear factor kappa-light-chain-enhancer of

activated B cells (NF-kB), and interleukin 1 beta (IL-1β) related

pathways (Berger et al., 2019) and have previously been shown

to be upregulated to some extent in microglia, but mostly

astrocytes, in reactive states (Schlomann et al., 2000; Almeida

et al., 2005; Koyama and Ikegaya, 2005; Saha et al., 2006; Groves

et al., 2018; Iughetti et al., 2018). Although these results do

not necessarily imply a causal role, they at least indicate an

important involvement of glia in general, and astrocytes in

particular, for neuronal death and already in the early latent

phase of epileptogenesis.

Di�erentially regulated glial genes and
their involvement in reactive astrogliosis

Reactive astrogliosis is a common feature of various

neurodegenerative states (Zamanian et al., 2012) and

pathognomonic for several epileptic conditions, such as

mesial temporal lobe epilepsy with hippocampal sclerosis

(mTLE-HS) in humans, successfully mimicked in the i.c. mouse

model of mTLE-HS (Blumcke et al., 2013; Bedner et al., 2015).

In general, this phenomenon comprises morphological and

molecular reshaping of astrocytes in response to an external

stimulus, and it is associated with astrocyte proliferation,

immune-cell recruitment, and scar formation (Escartin et al.,

2021). These responses are not necessarily dichotomous as

previously proposed (good vs. bad astrocytes) (Zamanian

et al., 2012), but represent a continuum of various molecular

responses, the cumulative consequences of which are at best

unknown (Escartin et al., 2021).

In mTLE-HS, astrocytes undergo functional and

morphological changes already in the early stages of

epileptogenesis. As shown in the i.c. mouse model, already

at 4 hpi, cell death (primarily via necroptosis and autophagy) is

detectable in astrocytes and the number of astrocytes in the CA1

region is reduced (Wu et al., 2021). These structural alterations

are accompanied by decreased coupling and impaired capability

of K+ buffering (Bedner et al., 2015; Wu et al., 2021), which in
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turn are associated with increased extracellular glutamate levels

and epileptic seizures (Pannasch et al., 2011). Over the course

of epileptogenesis, astrocytes proliferate, express more GFAP,

and at 9 mpi, a time point relevant to findings in humans with

mTLE-HS, clear structural integration into the surrounding

tissue is absent (Bedner et al., 2015). Our data at 24 hpi in

the ipsilateral hippocampus (Berger et al., 2019), reveal that

Serpina3n is the most significantly differentially expressed gene

in glia. This astrocytic gene is associated with inflammation

(Takamiya et al., 2002) and neuronal damage (Gesase and

Kiyama, 2007) and has previously been identified as one of the

major molecular hallmarks of reactive astrogliosis (Zamanian

et al., 2012). Other interesting genes upregulated at 24 hpi in the

ipsilateral hippocampus are Cox2 (Ptgs2) and Cxcl10 (Berger

et al., 2020), both of which are pro-epileptic and potentially

pro-epileptogenic inflammatory agents (Nelson and Gruol,

2004; Sui et al., 2006; Rojas et al., 2014) that are dysregulated

in reactive astrogliosis (Zamanian et al., 2012). Other potential

pathways involved in functional astrocytic alterations, such as

astrocyte uncoupling, are the upregulation of mitogen-activated

protein kinase (MAPK) pathways observed at 24 hpi mainly

in glia (Berger et al., 2019). Early astrocytic uncoupling has

been linked to altered phosphorylation of Cx43 via MAPK

(Deshpande et al., 2017). This potentially involves TNF-α and

IL-1β (Retamal et al., 2007) [mostly increased in glia (Berger

et al., 2019)], which have been previously shown to have a

negative effect on astrocyte coupling in the i.c. mouse model of

mTLE-HS (Bedner et al., 2015).

Di�erentially regulated glial genes and
their involvement in brain inflammation

Inflammation is closely associated with epileptogenesis

(Vezzani et al., 2011). Both astrocytes and microglia can initiate

and modulate inflammatory responses (Aronica et al., 2012;

Devinsky et al., 2013; Eyo et al., 2017; Liddelow et al., 2017) and

orchestrate downstream alterations, such as neuronal death or

reactive gliosis (Jha et al., 2019; Patel et al., 2019). Apart from

the activation of astrocytes at early time points of epileptogenesis

in the i.c. mouse model of mTLE-HS, microglia are both prone

to necroptosis already at 4 hpi and activated (elevated Iba1) at

14 dpi (Deshpande et al., 2020; Wu et al., 2021). Elevations in

the levels of both TNF-α and IL-1β have also been measured

at the early stages of epileptogenesis in this model. At 24 hpi,

we observed increased TNF-α and IL-1β pathways, mainly in

glia (Berger et al., 2019). Both these cytokines effect glutamate

uptake and release from astrocytes (Hu et al., 2000; Bezzi

et al., 2001; Santello et al., 2011). They also affect astrocyte

coupling and neuronal death. Inflammation is also connected

to the disruption of the BBB, angiogenesis, alterations of the

ECM, and aberrant neurogenesis, all important elements of

epileptogenesis (Pitkanen and Lukasiuk, 2011; Patel et al., 2019).

In the i.c. kainic acid model of mTLE-HS, albumin extravasation

is detected at 5 dpi and throughout epileptogenesis (3 and 9

mpi) (Deshpande et al., 2017). At 28 dpi, CD31 as a marker

of endothelial cells, and as such of angiogenesis, is increased

in the ipsilateral hippocampus 3-fold in both CA1 and DG

(Deshpande et al., 2017). This is in line with our findings in

the same model, where we at 24 hpi, detected a total of 19

glial genes and 11 neuronal genes involved in angiogenesis

(Berger et al., 2019). Albumin extravasation is known to

induce the activation of transforming growth factor beta (TGF-

β) in astrocytes (Heinemann et al., 2012), which, in turn

induces MAPKs potentially leading to Cx43 phosphorylation

and uncoupling of astrocytes, a mechanism believed to be

important in epileptogenesis (Deshpande et al., 2017). TGF-β

further induces increased neuronal excitability via astrocyte-

mediated reduction of Kir4.1, AQP channels, and glutamate

transporters (Ivens et al., 2007; Kim et al., 2012).We found TGF-

β pathways to be increased in both neurons and glia at 24 hpi

(Berger et al., 2019).

Potential strategies and challenges
of anti-epileptogenic intervention

Hypermethylation in chronic epilepsy states in both human

and murine CNS tissue, represents the most consistent finding

of DNAm alterations. Alas, the potential attenuation of

epileptogenesis via DNAm inhibition could serve as an anti-

epileptic or even anti-epileptogenic target (Ryley Parrish et al.,

2013; Williams-Karnesky et al., 2013). Mechanistically, this may

be linked to direct anti-epileptic/anti-epileptogenic effects of

adenosine, as this molecule is metabolically connected to DNAm

(Weltha et al., 2019).

Anti-epileptogenic therapy could either enforce endogenic

homeostatic pathways or attenuate detrimental responses. Genes

dysregulated in the latent phase but also in the early chronic

state of epileptogenesis are potential upstream targets of anti-

epileptogenic intervention. In general, all the above-mentioned

genes with CpG islands in their promoters (possibly other

genomic features also) could be targeted to alter GE via DNAm

alteration [as shown feasible in ref. (Liu X. S. et al., 2016)].

Even if DNAm changes do not overlap with GE changes in

different epilepsy models and at different specific time points, it

may still be possible to alter the expression of crucial genes and

pathways by means of epigenetic editing as described elsewhere

(Liu X. S. et al., 2016; Holtzman and Gersbach, 2018; Liu

and Jaenisch, 2019). To achieve this goal, an epigenetic tool,

such as a modified CRISPR system with either a DNMT (to

facilitate hypermethylation and potentially gene silencing) or

a TET oxidase (to gain hypomethylation and gene activation),

applicable both to the anatomical region and cell type of choice,

would be necessary.

Further, specific post-transcriptional (Desi and Tay, 2019)

or post-translational modifications (Wang et al., 2014) could
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be employed to intervene between gene transcription and

protein synthesis/downstream effects of the given target. As

proposed by previous studies and supported by our findings

(Berger et al., 2019, 2020), glia plays an important role in

inflammatory pathways (Devinsky et al., 2013; Patel et al.,

2019). Thus, the development of glia-specific drugs may lead

the way to the next generation of anti-epileptogenic treatment.

Nevertheless, a long way is ahead to reach these goals. One way

to decipher the “epileptogenic code” would be to analyze all

known molecular factors (e.g., DNAm, histone modifications,

transcription factor binding, GE, proteomics, EEG, and clinical

parameters) simultaneously and using comparable methods,

crystalize patterns with the help of artificial intelligence, as

has been performed with a fraction of parameters in ref.

(Myszczynska et al., 2020). The next pragmatic steps toward

this long-term goal include the assessment of cell-specific

DNAm and throughout the whole process of epileptogenesis

in animal models, with confirmation of results in human

studies. Potential outcomes of such efforts include cell-specific

molecular treatment targets and biomarkers for epileptogenesis.

However, one of the most prominent challenges is the versatility

of the epilepsies. Seizures are symptomatic manifestations of

cerebral dysfunction and can be caused by a multitude of

conditions, ranging from unknown idiopathic to the acquired

causes, such as TBI, ischemic cerebral insults, infections,

or hypoxia. Moreover, we must rely on simplified models

restricted to only mimicking a certain group of the human

epilepsies. Further, we must face concerns on comparability,

interpretability, and translation of various research results based

on diverse analytical tools (e.g., for GE—RNA-Seq or various

kits) and bioinformatics processing.

Another important issue worth mentioning is the role

of DNAm for diagnostic and prognostic approaches in

epilepsy. As an example, the blood of patients with mTLE-

HS has shown specific DNAm patterns (Long et al., 2017)

and a concordant-twin study detected patterns that enabled

distinction between focal and generalized epilepsy (Mohandas

et al., 2019). These results suggest that blood-based DNAm

could be a potential biomarker for epilepsy and epileptogenesis,

paving the way to a more personalized management of people

with epilepsy (PWE). Blood-based DNAm as a biomarker

could also help to predict the patients risk for developing

comorbidities, such as anxiety, depression, or cognitive decline

and predict treatment response with existing anti-seizure

medication (ASM).

Conclusions

Neurons and glia orchestrate epileptogenesis, with glia

playing a crucial part in neuronal death, reactive gliosis,

and inflammation in early epileptogenesis. Several, mostly

inflammation-related and glia-derived genes may serve as

targets for anti-epileptogenic intervention, potentially by

means of epigenetic modification. Several recent studies have

revealed widespread and cell-specific alterations in DNAm

in epileptogenesis. To what extent and how exactly DNAm

influences GE (and downstream effects) in epileptogenesis, is

challenging to determine, and methodological shortcomings

as well as inadequate processing of complex data seem to

muddy the waters. We have yet to fathom the full complexity

of interplay at various levels of molecular interactions in

epileptogenesis. It is possible, or even likely, that not a single

gene or pathway determines epileptogenesis, but rather the

interaction of genes at a given time, the resulting levels

of proteins, and cellular interactions that determine the

epileptogenic phenotype.
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