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Physical exercise stimulates neuroprotective pathways, has pro-cognitive

actions, and alleviates memory impairment in Alzheimer’s disease (AD).

Irisin is an exercise-linked hormone produced by cleavage of fibronectin

type III domain containing protein 5 (FNDC5) in skeletal muscle, brain and

other tissues. Irisin was recently shown to mediate the brain benefits of

exercise in AD mouse models. Here, we sought to obtain insight into the

neuroprotective actions of irisin. We demonstrate that adenoviral-mediated

expression of irisin promotes extracellular brain derived neurotrophic

factor (BDNF) accumulation in hippocampal cultures. We further show

that irisin stimulates transient activation of extracellular signal-regulated

kinase 1/2 (ERK 1/2), and prevents amyloid-β oligomer-induced oxidative

stress in primary hippocampal neurons. Finally, analysis of RNA sequencing

(RNAseq) datasets shows a trend of reduction of hippocampal FNDC5

mRNA with aging and tau pathology in humans. Results indicate that

irisin activates protective pathways in hippocampal neurons and further

support the notion that stimulation of irisin signaling in the brain may be

beneficial in AD.
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Introduction

Irisin is an exercise-induced myokine that modulates
adipose, bone and brain functions (Boström et al., 2012; Kim
et al., 2018; De Freitas et al., 2020; Isaac et al., 2021; Jodeiri
Farshbaf and Alvina, 2021). Upon exercise, irisin is cleaved
from a precursor protein, fibronectin type III domain containing
protein 5 (FNDC5), and released into the circulation (Boström
et al., 2012; Jedrychowski et al., 2015). FNDC5 and irisin have
been detected in the brain (Wrann et al., 2013; Lourenco et al.,
2019), and irisin has been shown to mediate the beneficial
actions of physical exercise in mouse models of Alzheimer’s
disease (AD) (Lourenco et al., 2019).

Previous studies have identified potential signaling
mechanisms induced by irisin in the brain. Wrann et al. (2013)
reported that irisin stimulates the expression of brain-derived
neurotrophic factor (BDNF) in cultured neurons (Wrann
et al., 2013), and we have demonstrated that irisin engenders
cAMP/PKA/pCREB signaling in brain explants (Lourenco
et al., 2019). Recently, αVβ5 integrin has been suggested
as a potential receptor for irisin in the brain (Islam et al.,
2021). However, the signaling mechanisms initiated by irisin
in the brain are not completely understood. Here, we used
primary hippocampal cultures to gain insight into potential
irisin-mediated neuroprotective pathways.

Methods

Primary hippocampal cultures

Cultures were prepared in compliance with international
standards. Experiments were approved by the Institutional
Animal Care and Use Committee of the Federal University
of Rio de Janeiro (protocol #IBqM 022). Primary rat
hippocampal neuronal cultures were prepared according to
established procedures (Bomfim et al., 2012; Lourenco et al.,
2013), maintained in Neurobasal medium supplemented
with 2% B27 (Life Technologies, CA), 1 mM glutamine,
penicillin/streptomycin, and amphotericin B (De Felice et al.,
2007), and were used after 18–21 days in vitro. Cultures were
exposed to recombinant irisin (25 nM) (Adipogen, Switzerland)
for the time intervals indicated in each experiment. Choice
of this concentration was based on previous studies showing
neuroactive properties of 25 nM irisin, in the absence of any
detectable toxicity (Moon et al., 2013; Peng et al., 2017; Lourenco
et al., 2019). For ROS experiments, 0.5 µM Aβ oligomers (AβOs)
or an equivalent volume of vehicle (2% DMSO in PBS) were
added 15 min after irisin and remained for 3 h. Adenoviral
vectors expressing FNDC5 or GFP (MOI 1) [as described in
Lourenco et al. (2019)] were allowed to express for 48 h before
conditioned medium was collected from primary neurons.
For some experiments, hippocampal cultures were exposed to

forskolin (10 µM) or an equivalent volume of vehicle (0,1%
ethanol) for 20 min.

ELISA

Conditioned medium was collected, centrifuged at
10,000 × g for 10 min at 4◦C, and the supernatant
supplemented with protease and phosphatase inhibitor
cocktails. Irisin (Phoenix; EK-067-29) and BDNF (Abcam;
ab99978) ELISA assays were performed according to
kit manufacturer instructions, as previously described
(Lourenco et al., 2019, 2020).

RNA extraction and qPCR

Total RNA was obtained from cultures using the SV Total
RNA Isolation System (Promega, CA, United States), following
manufacturer instructions. Purity and integrity of extracted
RNA were checked by the 260/280 absorbance ratio. Only
preparations with 260/280 nm optical density ratios higher
than 1.8 were used. RNA concentrations were determined
by absorption at 260 nm. For qRT-PCR, 1 µg total RNA was
used for complementary DNA synthesis using High Capacity
cDNA Reverse Transcription kit (Applied Biosystems, CA,
United States). Quantitative expression analysis of target genes
was performed on a 7500 Applied Biosystems (Foster City,
CA, United States) system with the Power SYBR Green kit,
as described (Lourenco et al., 2019; De Bastiani et al., 2022;
Raony et al., 2022). β-actin (actb) was used as an endogenous
reference gene for data normalization. qRT-PCR was performed
in 15 µL reaction volumes. Primer sequences used in this
study were: rat bdnf (Fw: CACTGAAGGCGTGCGAGTATT;
Rv: TGTACTCCTGTTCTTAGCAAA) and rat actb (fw:
TACTGCCCTGGCTCCTAGCA; Rv: TCAGGAGGAGCAA
TGATCTTGAT). Cycle threshold (Ct) values were used to
calculate fold changes in gene expression using the 2−11Ct

method (Livak and Schmittgen, 2001).

Immunoblotting

Hippocampal cultures were homogenized in RIPA buffer
containing protease and phosphatase inhibitor cocktails and
were resolved on 4–20% polyacrylamide pre-cast gels (BioRad)
with Tris/glycine/SDS buffer run at 150 V for 60 min at
room temperature. The gel (30 µg total protein/lane) was
electroblotted onto Hybond ECL nitrocellulose using 25 mM
Tris, 192 mM glycine, 20% (v/v) methanol, pH 8.3, at 300 mA
for 90 min at 4◦C. Membranes were blocked with 3% bovine
serum albumin (BSA) for 1 h at room temperature, as described
(Freitas-Correa et al., 2013). Primary antibodies anti-pERK
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1/2 (Cell Signaling, 4377S; 1:1000), anti-total ERK 1/2 (Cell
Signaling, 9102S; 1:1000), and anti-β-actin (Abcam, ab170325;
1:20,000) were diluted in blocking solution and incubated with
the membranes overnight at 4◦CC. After incubation with anti-
mouse or anti-rabbit fluorescent IRDye-conjugated secondary
antibodies (1:10,000) for 60 min, membranes were washed
and then scanned in an Odyssey detector. Optical density
determination for quantification was performed on ImageJ
(Abràmoff et al., 2004).

Amyloid-β oligomers

Oligomers were prepared from synthetic Aβ1−42 (California
Peptide) and were routinely characterized by size-exclusion
chromatography, as described (De Felice et al., 2007; Sebollela
et al., 2012; Oliveira et al., 2021).

Reactive oxygen species assays

Reactive oxygen species formation was evaluated in
living neurons using CM-H2DCFDA as described previously
(De Felice et al., 2007; Saraiva et al., 2010; Brito-Moreira et al.,
2017). Briefly, 2 µM CM-H2DCFDA was loaded during the
last 40 min of AβO exposure. Neurons were rinsed three times
in warm PBS containing 2% glucose and immediately imaged
on a Nikon Eclipse TE300 inverted microscope. Analysis of
DCF fluorescence was carried out using ImageJ. Ten images
were acquired under each experimental condition, carried out
in triplicate, per experiment. Each experiment was performed
with independent primary cultures.

Human data sets

RNA-seq data was obtained from The Aging, Dementia
and Traumatic Brain Injury Study,1 a detailed transcriptomics
and neuropathological investigation of the aging human brain.
Inclusion criteria encompassed subjects (males and females)
>77 years old and complete information of hippocampal Fndc5
gene expression and neuropathology. Exclusion criteria were
presence of non-Alzheimer’s dementia, mixed pathologies, or
previous traumatic brain injury (TBI) diagnosis. Differential
gene expression was based on comparison of normalized
z-scores obtained from the study. For Braak analyses (Braak and
Braak, 1991), subjects were classified as either low tau pathology
(Braak I–II) or high tau pathology (Braak III–VI). Detailed
information of tissue processing, neuropathological analyses,
RNA extraction and deep sequencing can be found online (see

1 https://aging.brain-map.org/

text footnote 1). Complete datasets can be downloaded from this
link: https://aging.brain-map.org/download/index.

Statistical analysis

Data are expressed as means ± S.E.M. and were analyzed
using GraphPad Prism 6 software (La Jolla, CA, United States).
Data were assessed for normality using the Shapiro–Wilk
test prior to statistical comparisons. For normally distributed
data, comparisons between multiple experimental groups were
analyzed using two-tailed ANOVA, followed by appropriate
post-hoc tests. Comparisons between two groups were analyzed
by two-tailed Student’s t-test. For comparisons between two
groups deviating from normality, Wilcoxon matched-pairs
rank test was used. Correlations between hippocampal FNDC5
expression and markers of AD-related neuropathology (Aβ

and tau) from human datasets were evaluated by Pearson
(parametric) or Spearman (non-parametric) correlation
analyses. Sample sizes and p-values for each experiment are
indicated in the Figure.

Results and discussion

Building upon previous evidence linking irisin to BDNF
in rodents and humans (Wrann et al., 2013; Lourenco et al.,
2020), we initially treated primary rat hippocampal cultures
with recombinant irisin (25 nM) for 24 h and determined
BDNF mRNA levels. We found that irisin-treated cultures had
increased BDNF mRNA content as compared to vehicle-treated
cultures (Veh: 1.0 ± 0.15; Irisin: 10.6 ± 5.2) (Supplementary
Figure 1).

Primary rat hippocampal cultures were next transduced
with adenoviral vectors to overexpress FNDC5 (AdFNDC5)
or GFP (AdGFP, as a control) for 48 h. Whereas control
media had undetectable levels of irisin, conditioned media
from AdFNDC5-transduced cultures contained high amounts
of soluble irisin (0.32 ± 0.1 ng/ml) (Figure 1A). Notably,
expression of FNDC5/irisin by AdFNDC5 resulted in an
increase in extracellular BDNF when compared to cultures
transduced with AdGFP (GFP: 0.43 ± 0.08 ng/ml; FNDC5:
0.85 ± 0.14 ng/ml; W = 24; p = 0.03) (Figure 1B). These results
indicate that extracellular BDNF content is potentially increased
by irisin, likely contributing to synapse function and neuronal
homeostasis.

Irisin has been reported to engage extracellular signal-
regulated kinase 1/2 (ERK 1/2) signaling to promote adipose
tissue browning (Zhang et al., 2014). In neurons, ERK
1/2 has been associated with neuroprotective mechanisms
induced by BDNF against toxic insults (Almeida et al., 2005).
Treatment with recombinant irisin (25 nM) transiently
(from 10 to 30 min) promoted ERK 1/2 phosphorylation
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FIGURE 1

Irisin increases extracellular BDNF levels, stimulates transient ERK activation, prevents AβO-induced oxidative stress in primary neurons. (A,B)
Primary hippocampal cultures were transduced with AdFNDC5 or AdGFP (control) adenoviral particles for 48 h. Conditioned media were
collected and levels of irisin (A) or BDNF (B) were assessed by ELISA. N = 4 experiments using independent hippocampal cultures for irisin and 7
for BDNF measurements. Wilcoxon matched-pairs rank test. Primary hippocampal cultures were treated with recombinant irisin (25 nM) for the
indicated timespoints (C,D) or with forskolin (10 µM; 20 min) (E,F), and ERK 1/2 phosphorylation at Thr202/Tyr204 (pERK 1/2) was measured by
immunoblotting. N = 3 experiments using independent hippocampal cultures. Repeated measures one-way ANOVA with Holm-Sidak
correction. (G,H) Hippocampal neurons were exposed to 0.5 µM AβOs for 3 h in the presence or absence of recombinant irisin (25 nM). When
present, irisin was added 15 min before AβOs. ROS was measured by DCF fluorescence. N = 3 experiments with independent cultures and AβO
preparations. Two-tailed two-way ANOVA with Holm-Sidak correction. Each dot represents an independent hippocampal culture; data are
shown as means ± S.E.M. p-values are indicated in the figure. Scale bar = 100 µm.

at threonine202/tyrosine204 residues (Thr202/Tyr204)
in hippocampal neurons, indicative of ERK activation
(Figures 1C,D). Interestingly, treatment with forskolin, a
direct activator of adenylyl cyclase, for 20 min similarly
triggered ERK 1/2 phosphorylation in primary neurons
(Veh: 1 ± 0.07; Forskolin: 1.34 ± 0.06; t = 12.39; p = 0.01)
(Figures 1E,F). Results indicate that the stimulation of cAMP
signaling by irisin (Lourenco et al., 2019) is linked to ERK
activation to amplify protective responses and prevent neuronal
dysfunction. Whereas chronic ERK activation has been reported
in mouse models of AD (Kirouac et al., 2017), it is conceivable
that moderate/transient ERK phosphorylation may result in
neuroprotection in AD.

We next tested whether irisin would protect cultured
hippocampal neurons against oxidative stress induced by AD-
linked amyloid-β oligomers (AβOs) (De Felice et al., 2007; Brito-
Moreira et al., 2017). When added to cultures 15 min before
AβOs, recombinant irisin (25 nM) prevented AβO-induced
accumulation of reactive oxygen species (ROS), as measured
by dichlorofluorescein (DCF) fluorescence (Veh: 100; AβOs:

221 ± 17; Irisin: 97 ± 29; Irisin + AβOs: 88 ± 31; two-way
ANOVA interaction p = 0.02) (Figures 1G,H). These results
are consistent with the kinetics of irisin-induced protective
mechanisms and demonstrate that irisin mitigates neuronal
oxidative stress, a hallmark of metabolic dysfunction in AD
pathogenesis (Smith et al., 1998; De Felice et al., 2007; Clarke
et al., 2018). Notably, recent studies demonstrated that irisin
prevents oxidative stress in cardiomyocytes and endothelial
cells (Zhang et al., 2020; Lin et al., 2021; Pan et al., 2021),
raising the notion that mitigation of oxidative stress may be
a shared mechanism of protection induced by irisin in the
brain and in other tissues. Altogether, our results support the
notion that boosting brain irisin levels (achieved by regular
physical exercise, for example) could entail a neuroprotective
mechanism that alleviates the impact of neuronal injury in
AD.

As age is the major risk factor for AD-linked dementia, it is
important to determine whether such endogenous mechanisms
are disrupted in aging. To address this issue in humans,
we analyzed the expression of hippocampal FNDC5 in data
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FIGURE 2

Fibronectin type III domain containing protein 5 (FNDC5) mRNA expression inversely correlates with age and AD neuropathology. Z-scores for
FNDC5 expression obtained from the RNA seq database of the Adult Changes in Thought (ACT) study (https://aging.brain-map.org/). (A) FNDC5
expression in postmortem hippocampal tissue from 77 to 89 years old and 90 + year-old subjects, N = 21 cases of 77–89 years old and 20
cases of 90 + years old. (B) Hippocampal FNDC5 z-scores across the CERAD scale for amyloid pathology. (N = 12 for CERAD 0, 11 for CERAD 1,
7 for CERAD 2, and 12 for CERAD 3). Correlations between hippocampal FNDC5 z-scores and brain Aβ42 (C) or Aβ42/Aβ40 ratio (N = 34) (D).
(E) Hippocampal FNDC5 z-scores across the Braak scale for tau pathology. (N = 14 for Braak I-II and 25 for Braak III–VI). Correlations between
hippocampal FNDC5 z-scores and brain AT8 (pSer202/Thr205 tau) (N = 38) (F) or pThr181 tau immunoreactivity (N = 34) (G). Statistics:
two-tailed unpaired Student’s t-test (A,E) or unpaired one-way ANOVA with Sidak post-hoc test (B). Correlations (C,D,F,G) were determined
using the Pearson method for parametric data or the Spearman method for non-parametric data.

sets obtained from postmortem tissue from elderly subjects
enrolled in the Adult Changes in Thought (ACT) study (see
text footnote 1). We found that subjects older than 90 years
old, who are at considerably high risk for AD and associated
pathology (Corrada et al., 2010; Bullain and Corrada, 2013),
present a trend for lower hippocampal expression of FNDC5
than individuals ranging from 77 to 89 years old (z-score
mean difference: −0.32; t = 1.87; p = 0.06) (Figure 2A).
We next investigated whether hippocampal FNDC5 mRNA
levels were associated with AD-linked neuropathology in
the studied cohort. While the expression of FNDC5 was
not significantly altered across CERAD staging of amyloid
pathology (CERAD 0: 0.02 ± 0.13; CERAD 1: −0.24 ± 0.20;
CERAD 2: −0.20 ± 0.20; CERAD 2: −0.45 ± 0.18; F = 0.74;
one-way ANOVA p = 0.06) (Figure 2B), we found trends of
negative correlations between FNDC5 z-scores and brain Aβ42

level (Spearman r = 0.29; p = 0.09) (Figure 2C), and brain
Aβ42/Aβ40 ratio (Spearman r = 0.31; p = 0.07) (Figure 2D). We
further found that subjects with high tau pathology, as assessed

by the Braak neuropathological scale (Braak and Braak, 1991),
had a trend for reduced FNDC5 expression in the hippocampus
(Braak I-II: 0.005 ± 0.14; Braak III-VI: −0.35 ± 0.11;
t = 1.93; p = 0.06) (Figure 2E). Accordingly, reduced FNDC5
expression was associated with higher AT8-positive labeling
(Spearman r = −0.40; p = 0.01) (Figure 2F), which reflects
pSer202/Thr205 tau-positive neurofibrillary inclusions. FNDC5
z-scores also showed a trend of inverse association with
pThr181-tau immunoreactivity in the hippocampus (Pearson
r = −0.30; p = 0.07) (Figure 2G). Results thus raise the
possibility that FNDC5 expression associates inversely with age
and AD-related neuropathology (Aβ and tau) in the human
hippocampus.

Recent studies suggest that irisin controls memory function
(Lourenco et al., 2019, 2020; Jodeiri Farshbaf et al., 2020; Islam
et al., 2021). The current study demonstrates that irisin signaling
engages transient ERK phosphorylation (activation), increases
extracellular BDNF, and prevents AβO-induced oxidative stress.
Collectively, these observations expand our knowledge of how
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irisin signals in the brain and mediates the beneficial properties
of physical exercise.

Of note, the temporal dynamics of ERK phosphorylation
found here coincides with our previous demonstration of irisin-
induced cAMP accumulation (Lourenco et al., 2019). Here we
further demonstrate that cAMP accumulation by the adenylyl
cyclase activator, forskolin, promotes ERK phosphorylation,
raising the possibility that ERK activation is downstream of
cAMP. Although aVβ5 integrin has been identified as a putative
irisin receptor in the brain (Islam et al., 2021), the receptor(s)
required for these effects induced by irisin in hippocampal
neurons and the potential contribution of glial cells remain
elusive. It is conceivable that irisin may exert pleiotropic actions
in the brain by activating multiple signaling pathways in distinct
brain cells (e.g., neurons and glial cells). Studies in other
cell types indicate that irisin activates pathways mediated by
p38MAPK, AMPK, and Akt (Zhang et al., 2014, 2020; Lin et al.,
2021), but whether irisin stimulates the same pathways in the
brain remains to be investigated.

Our results further suggest that hippocampal FNDC5
expression may correlate inversely with AD-linked
neuropathology, in line with our previous reports that
brain irisin is reduced in AD (Lourenco et al., 2019) and that
CSF irisin correlates with memory and Aβ profiles typical of
AD (Lourenco et al., 2020). Investigating FNDC5 mRNA levels
in the human cohort allowed us to focus on local hippocampal
FNDC5/irisin production and thus avoid potential confounders
related to blood-brain barrier permeability to peripheral
irisin or local irisin clearance. Nonetheless, future studies are
warranted to determine whether aging or AD pathology can
modify the dynamics of irisin production/clearance in the brain.

A limitation of the current study is the reduced sample
size for the RNAseq datasets after application of the exclusion
criteria we defined (TBI or non-Alzheimer’s dementia).
Confirmation of these associations in larger cohorts will
be important to extend the significance of the current
findings. On the other hand, the parallel measurement of
multiple Aβ and tau neuropathological markers, allowing
examination of their associations with FNDC5 expression,
represents an advantage of our study. Furthermore, our report
of increased extracellular BDNF was based on commercial
ELISA kits, which rely on antibody specificity and may be
seen as another limitation. Replication of these findings using
additional techniques (e.g., proteomics of cultured media)
may confirm these results in future studies. Nonetheless, the
current data are in line with previous evidence showing that
transduction of primary neurons with AdFNDC5 promoted
Fndc5 expression, as assessed by qPCR (Wrann et al.,
2013). Further investigation of brain irisin signaling, including
mechanistic studies, will be key to establish the potential of
pharmacological therapeutics inspired by the protective actions
of exercise in neurodegenerative diseases.
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