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Introduction: Temporal information processing is essential for sequential contraction

of various muscles with the appropriate timing and amplitude for fast and smooth

motor control. These functions depend on dynamics of neural circuits, which consist

of simple neurons that accumulate incoming spikes and emit other spikes. However,

recent studies indicate that individual neurons can perform complex information

processing through the nonlinear dynamics of dendrites with complex shapes and

ion channels. Although we have extensive evidence that cerebellar circuits play a vital

role in motor control, studies investigating the computational ability of single Purkinje

cells are few.

Methods: We found, through computer simulations, that a Purkinje cell can

discriminate a series of pulses in two directions (from dendrite tip to soma, and

from soma to dendrite), as cortical pyramidal cells do. Such direction sensitivity was

observed in whatever compartment types of dendrites (spiny, smooth, and main),

although they have dierent sets of ion channels.

Results: We found that the shortest and longest discriminable sequences lasted for

60 ms (6 pulses with 10 ms interval) and 4,000 ms (20 pulses with 200 ms interval),

respectively. and that the ratio of discriminable sequences within the region of the

interesting parameter space was, on average, 3.3% (spiny), 3.2% (smooth), and 1.0%

(main). For the direction sensitivity, a T-type Ca2+ channel was necessary, in contrast

with cortical pyramidal cells that have N-methyl-D-aspartate receptors (NMDARs).

Furthermore, we tested whether the stimulus direction can be reversed by learning,

specifically by simulated long-term depression, and obtained positive results.

Discussion: Our results show that individual Purkinje cells can performmore complex

information processing than is conventionally assumed for a single neuron, and

suggest that Purkinje cells act as sequence discriminators, a useful role in motor

control and learning.

KEYWORDS

cerebellum, Purkinje cell, dendritic computation, direction sensitivity, spatiotemporal

learning, discrimination

1. Introduction

Temporal information processing is ubiquitous in our daily lives, and ranges from sub-

milliseconds for sound localization to days and weeks for memory consolidation (Mauk and

Buonomano, 2004; Meck, 2005). In particular, the range of hundreds of milliseconds up to a few

seconds is particularly important for motor control, where individual muscle contractions are

orchestrated to achieve smooth and coordinated movement (Ito, 2012). For such motor control

and motor learning, the cerebellum plays essential roles, and the involvement of the cerebellum

in temporal information processing has been studied intensively using Pavlovian delay

eyeblink conditioning (Ivry and Spencer, 2004). On the neural mechanisms of representation

of the passage of time necessary for this task, various hypotheses have been proposed
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(e.g., Yamazaki and Tanaka, 2009 for review, also see Johansson

et al., 2014). Most hypotheses propose that representation of the

passage of time is realized by the network of neurons, for example,

by the dynamics of the recurrent network composed of granule cells

and Golgi cells in the granular layer (Buonomano and Mauk, 1994;

Medina et al., 2000; Hofstötter et al., 2002; Yamazaki and Tanaka,

2005), rather than by individual neurons. Most studies have assumed

that individual neurons are simple elements that cannot perform

complex tasks.

On the contrary, recent experimental and computational studies

have revealed powerful computational capabilities of single neurons

by harnessing non-linearity of dendritic information processing and

dynamics of various ion channels (Koch and Segev, 2003; London and

Häusser, 2005). Such “dendritic computation” participates in even

temporal information processing. In a pioneering computational

study by Rall (1964), brief and sequential activation of small segments

called compartments constituting a dendritic cable evoked different

somatic responses depending on the direction of stimulation [e.g.,

from proximal to distal (IN) or distal to proximal (OUT)], suggesting

that the dendritic cable is capable of direction sensitivity. In that

study, the temporal interval for each pair of stimuli was up to a few

milliseconds, and the duration for the entire stimulation was up to

tens of milliseconds. This was due to the lack of active ion channels

on dendrites (i.e., passive cables).

More recently, Branco et al. (2010) demonstrated both

experimentally and computationally that similar sequential

activation on a single dendrite with the duration of hundreds

of milliseconds evoked different activity patterns in cortial layer

2/3 pyramidal neurons, where active ion channels, specifically

FIGURE 1

Distribution of compartment types in the PC model: soma (orange),

main dendrite (yellow), spiny dendrite (blue), and smooth dendrite

(green). Each type has di�erent ion channels. A typical stimulated site

was shown in a red box (see also Figure 4A).

N-methyl-D-aspartate receptors (NMDARs), and intracellular

calcium played an essential role in the direction sensitivity. These

results suggest that even individual neurons can exhibit capability

of temporal information processing in the range of hundreds of

milliseconds that are necessary for motor control.

In this study, we focused on dendritic computation by Purkinje

cells (PCs) in the cerebellum, because the cells provide the sole

outputs from the cerebellar cortex to the downstream deep cerebellar

nuclei, and the cells have remarkably large dendrites expressing

various ion channels. We examined if PCs can exhibit similar

discrimination ability of input sequences that span in the temporal

range appropriate for motor control. Specifically, we fed temporal

sequences of short pulses as excitatory inputs from parallel fibers

(PFs) to the PC’s dendrites, and measured whether spikes were

emitted at the soma in response to the excitatory inputs. Eventually,

we conducted computer simulation of a biophysical cerebellar PC

model, and observed similar direction sensitivity on sequential

activation of multiple dendritic locations by brief pulses mimicking

PF stimuli. Moreover, we investigated whether a cell can learn

particular sequence of stimuli by spike-timing-dependent plasticity

(STDP), which pairs a sequential stimulus and the injection of an

instruction signal; this would support the idea that cerebellar PCs

modify synaptic weights of PFs by the presence or absence of a

climbing fiber (CF) input stimulus (Ito et al., 2014).

2. Materials and methods

2.1. Purkinje cell model

We used a multi-compartment model of cerebellar PCs (De

Schutter and Bower, 1994). The model consists of 1,600

compartments, which are classified into one of four types (soma,

main dendrite, spiny dendrite, smooth dendrite) (Figure 1,

Supplementary Video 1). Each compartment has several ion

channels (Table 1).

In this model, a membrane potential is described by a cable

equation. For example, in the case of one dimensional cable, the

equation is as follows:

cm
∂v(t, x)

∂t
= −

a

2R

∂2v(t, x)

∂x2
−

∑

k

Ik,j(v(t, x))+ Iext(t, x), (1)

where v(t, x) is membrane potential at time t and position x, cm
is membrane capacitance, a is radius of a cable, R is intracellular

TABLE 1 Ion channels of the PC model (De Schutter and Bower, 1994).

Compartments Number of
compartments

Ion channels

Soma 1 Leak, NaF, NaP, CaT, Kh1,

Kh2, Kdr, KM, KA

Main dendrite 9 Leak, CaP, CaT, Kdr, KM, KA,

KC, K2

Smooth dendrite 105 Leak, CaP, CaT, KM, KC, K2

Spiny dendrite 1,485 Leak, CaP, CaT, KM, KC, K2

Leak, Leak channel; NaF, Fast sodium channel; NaP, Persistent sodium channel; CaP, P-type

calcium channel; CaT, T-type calcium channel; Kh, Anomalous rectifier channel; Kdr, Delayed

rectifier channel; KM, Persistent potassium channel; KA, A-type potassium channel; KC, BK-

type calcium-activated potassium channel; K2, K2-type calcium-activated potassium channel.
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resistance, Ik is ionic current of channel k, and Iext is external current.

Equation (1) is a type of partial differential equation. Because a

computer cannot solve partial differential equations so Equation (1)

is discretized about the first term of the right-hand side by taking a

secondary central difference with respect to space x as follows:

cm
∂vj(t)

∂t
= −

a

2R

vj+1(t)− 2vj(t)+ vj−1(t)

1x2
−

∑

k

Ik(vj(t))+ Iext,j(t),

(2)

where 1x is the space width and j is the index of dis-

cretized compartments. Equation (2) corresponds to a compartment.

Therefore, the partial differential equation (Equation (1)) turns into a

system of ordinary differential equations, called the methods of lines.

Thus, a computer can solve these equations numerically.

Ionic currents are described by Hodgkin-Huxley type equations:

Ik,j = gkm
qhr(vj(t)− Ek), (3)

where Ik is the ionic current of channel k, gk is a conductance of

the ionic current of channel k, m is an activation variable, h is an

inactivation variable, Ek is a reversal potential, and q, r are constants.

Activation and inactivation variables m and h, which are called gate

variables, develop temporally by the following equation:

τx
∂x

∂t
= x∞(v)− x, (4)

where x is either m or h, τx is the time constant, and x∞ is the

maximal value.

In five channels (fast sodium channel: NaF, persistent sodium

channel: NaP, P-type calcium channel: CaP, T-type calcium channel:

CaT, and A-type potassium channel: KA), x∞ and τx depend on

α(v),β(v) as follows:

x∞ =
α(v)

α(v)+ β(v)

τx =
1

α(v)+ β(v)
,

(5)

where α(v) and β(v) are defined for each channel

(Supplementary Table S1). On the other hand, in the other channels,

x∞ and τx are defined directly (Supplementary Table S2).

The PC model has its direct successor (Zang et al., 2020; Zang

and De Schutter, 2021). The new model has more biological details

and therefore exhibit more realistic behaviors. In particular, the

model emits spikes spontaneously even without excitatory inputs.

This behavior, however, makes examining the discrimination ability

based on somatic spike responses difficult. Thus, we used the original

model (De Schutter and Bower, 1994) in this study.We discussed this

issue in the Limitations of the Discussion.

2.2. Stimulation of dendrites in the PC model

To reveal the capability of discrimination for temporal input

sequences (or just “sequences" for short) in PCs, we stimulated

dendrites in various ways. We injected multiple short current pulses

at various dendritic compartments at various timings. In a typical

setting, we chose 5 compartments aligned in straight, and fed short

pulses to them sequentially either from distal to proximal dendrites

FIGURE 2

Schematic of stimulation and recording in the simulation. We injected

two sequences consisting of multiple pulses with the same strength

but di�erent input orders (IN or OUT). Soma membrane potentials

were recorded to investigate whether the PC model could

discriminate spatiotemporally di�erent pulse sequences. In this study,

we considered spiking or not spiking in the soma for classifications of

results.

(IN direction) or from proximal to distal dendrites (OUT direction).

Then, we examined whether the soma emit spikes (Figure 2).

A current pulse fed to compartment j was originally modeled as

Iext,j(t) =

{

wj (0 ≤ t − tj < 1 ms)

0 otherwise
, (6)

where Iext,j(t) is the current injected to the j-th dendritic

compartment, tj is the time [ms] for the injection, and wj is the

pulse amplitude. The duration of each pulse was set at 1 ms. We

assumed that pulses represent brief synaptic inputs at PFs, and so wj

represents the synaptic weight. However, due to the rapidly changing

currents, numerical calculation became unstable by using Equation

(6). To avoid numerical instability, we slowly ramped up the current

amplitude as in Equation (7) instead.

Iext,j(t) =

{

wj

(

1− exp
(

−
t−tj
τI

))

(0 ≤ t − tj < 1 ms)

0 otherwise
, (7)

where τI is a time constant determining the ramp-up speed and was

set at 50 ms due to numerical instability in the simulation.

We also varied the number of pulses (i.e., the number of

stimulated compartments) from 2 to 20, synaptic weights from 1 to

10 nA while changing every 0.5 nA, and interval from 10 to 200 ms

while changing every 10 ms.

2.3. Role of Ca2+ channels

To examine the role of Ca2+ channels on the discrimination, we

changed the time constants of inactivation variables h of two Ca2+

channels in terms of memory; the P-type Ca2+ ion channel (CaP) and

the T-type Ca2+ ion channel (CaT). Specifically, τ wasmultiplied by a

factor f taking values from 0.1 to 3.0 (Figure 3). The number of pulses

was 6, and synaptic weight was 6.633 nA.
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FIGURE 3

Range of inactivation time constants changed in the simulation. (A)

CaP channel. (B) CaT channel.

2.4. Learning of sequence direction

To test whether the PC could learn to respond to a sequence with

the reverse order, we mimicked long-term depression (LTD) at PF

induced by the CF inputs. A stimulus with a certain direction and set

of parameters was fed, and after 2 ms of the end of stimulation, we

fed a paired simulated CF stimulus. Then, the synaptic weight of the

PF was modified based of the time difference between the onset of the

PF stimulation and that of the CF stimulation (i.e., STDP). We then

examined whether the same stimulus or the stimulus in the reverse

order was able to activate the PC.

For implementation of STDP, we defined trace xj of PF at

compartment j,

xj(t) = exp

(

−
1t

τpre

)

xj(t − 1t)+ Sj(t), (8)

where t is time, τpre is a time constant, and Sj is either 0 or 1

representing a pulse input at compartment j. Similarly, trace y of CF

was defined as:

y(t) = exp

(

−
1t

τpost

)

y(t − 1t)+ S(t), (9)

where τpost is a time constant, and S is either 0 or 1 representing non-

spiking and spiking, respectively. From Equation (8),(9), the STDP

rule is described as follows:

wj(t + 1t) = wj(t)+ 1wj(t)

1wj(t) = −A1y(t)Sj(t)+ A2xj(t)S(t)+ A3,
(10)

where wj is the PF synaptic weight at compartment j, and A1,A2,A3

are constants set at 0.9, 0, and 0.001, respectively. Here, we set A2

= 0 to simulate LTD. If wj became negative by learning, it was set

to zero. On the contrary, if it became more than 12.87 nA, it was

fixed to 12.87 nA. The LTD between PF–PC is caused by α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on

the surface of the membrane that are introduced again to the inner

surface of the membrane over time. Physiologically, the A3 can be

regarded as a representation of the function of AMPA receptors that

have gone under the membrane and appear on the surface once more

(Hansel et al., 2001).

The exact procedure was as follows. First, we identified sequences

that evoked responses in either IN or OUT direction while turning

learning off. Next, we turned on the learning, and applied each

sequence again, which was followed by CF stimulus immediately

with a 2-ms delay. The entire simulation period was set at 5,000 ms.

Then, we applied each sequence once again while turning the learning

off, and examined whether the stimulation evoked somatic spikes.

Finally, we searched sequences that changed the direction to evoke

responses before and after learning.

2.5. Numerical simulation

We used an implementation of a previous PC model (Kobayashi

et al., 2021). It applied an explicit method and enabled us to calculate

faster than conventional implicit methods; the implicit methods took

about 3,500 s for a 5,000-ms trial, and the explicit method on a GPU

could finish in about 250 s.

Our study used an NVIDIA DGX station (NVIDIA, 2017)

composed of Intel Xeon E5-2698 v4 2.2 GHz and 4 GPU Tesla

V100 32 GB. The OS was Ubuntu 18.04, and the CUDA version

was 10.0. The computational environment was the same for all of

the simulations.

3. Results

3.1. Discrimination of sequences

To examine whether a PC could discriminate a temporal input

sequence that stimulates dendritic compartments aligned in one

dimension one by one sequentially with another sequence that

stimulates the same compartments but in the opposite direction, first,

we chose a short segment of spiny dendrites (Figure 4A) and fed a

pulse to each dendritic compartment in the segment sequentially in

either IN direction or OUT direction with a certain temporal interval.

We found that a sequence in IN direction was able to evoke somatic

spikes while that in OUT direction was not (Figure 4B). We also

found that for a different segment, a sequence in OUT direction

evoked somatic spikes but that in IN direction failed (Figure 4C).

These results suggest that depending on the location of dendritic
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FIGURE 4

(A) Schema of stimulation. A segment of spiny dendrites was stimulated sequentially in either IN direction (blue) or OUT direction (orange), where the

number of compartments was 5, time interval for each stimulation was 120 ms and synaptic weight (or pulse amplitude) was 7.920 nA. The stimulated site

was shown in Figure 1. (B) Membrane potential in the soma recorded during the stimulation in IN direction (blue) and that in OUT direction (orange) as in

(A), where the number of pulses was 6. (C) Another example when a di�erent segment was stimulated, where the number of compartments was 8,

interval was 80 ms and synaptic weight was 6.930 nA.

FIGURE 5

Scatter plots of stimuli that evoked di�erent responses. The top panels four types of stimuli that evoked somatic response when stimulated in IN direction

(blue), OUT direction (orange), both directions (green), and that did not evoke responses (black). The bottom figures omitted the plots of

non-discriminated sequences. (A) Sequences starting from spiny dendrite. A 2,328 sequences induced spikes in both stimulus directions, 199 sequences

were IN-only, 322 sequences were OUT-only, and 4,751 did not induce spikes in both directions. (B) Sequences starting from smooth dendrite. A 1,779

sequences caused spikes in both directions, 304 sequences were IN-only, 381 sequences were OUT-only, and 5,136 did not induce spikes in both

directions. (C) Sequences starting from main dendrite. A 286 sequences induced spikes in both directions, 59 sequences were IN-only, and no sequences

were OUT-only, A 2,455 sequences did not cause spikes in both directions.

segments, the PC model showed selectivity on the direction of

sequential stimulation.

Next, we tried to inject at three locations for different types

of dendrites. In the pulse sequences starting from a compartment

of spiny dendrites, the PC model discriminated stimulus direction.

We injected 7,600 sequences having different strengths or synaptic

weights, intervals and times (19 times × 20 interval × 20 strength)

by two directions and presented these distribution in the form of

a cube (Figure 5A, Supplementary Video 2A). The soma responses

were classified by 4 types: emitting spikes both directions, only IN

direction, only OUT direction, and no spikes both directions. These

results show that the PC model discriminated the directions of
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FIGURE 6

Ratio of discriminated sequences. The discriminated sequences

consisted of the pulse sequences spiking in IN and OUT. Red triangles

are averaged values. Note that we had only one cube for main

dendrites, where stimulation started from compartment number

1,573, whereas for spiny and smooth dendrites, the cube numbers

were 13 and 7, respectively.

the stimuli and represented the responses in the form of spiking.

Similarly, in the pulse sequences starting from a compartment of

smooth dendrites, the PC model also could discriminate stimulus

directions (Figure 5B, Supplementary Video 2B). Finally, in main

dendrites, we injected 2,800 (7 times × 20 interval × 20 strength)

sequences having different strengths, intervals and times. As a

result, we observed spike firing in only the IN direction (Figure 5C,

Supplementary Video 2C). We summarized these results in Figure 5,

which shows that all dendrite types had direction sensitivity. With

respect to types of dendrites, there was no significant difference

between spiny dendrites and smooth dendrites, but the main

dendrites had only sequences inducing spikes in the IN direction: no

sequences caused spikes in the OUT direction. This result suggests

that main dendrites have relatively low direction sensitivity. The

main dendrites are thick and so the surface is wide, suggesting that

the intracellular currents on the main dendrites can be leaked more

than the spiny and smooth dendrites. To overcome the passive leak

and let the soma emit spikes, one should feed external currents

from the distal part to the soma (IN direction), rather than the

opposite direction (OUT direction). On the other hand, the spiny

dendrites—elaborately spreading like trees and receiving inputs from

PF—has high direction sensitivity so dendritic nonlinear forms seem

to support better direction sensitivity.

To examine the discrimination ability of each type of dendrite,

we conducted additional simulations while changing the start point

of stimulation, and obtained 21 cubes as in Figure 5A, where

13 cubes started from various spiny dendrites, seven cubes from

smooth dendrites, and one cube from the main dendrites. First,

we defined two types of pulse sequences from soma responses;

discriminated sequences contained the sequences causing spikes in

IN and OUT directions, and non-discriminated sequences consisted

of the sequences causing spikes (or none) in both directions. Next, the

numbers of response types were counted (Figure 6). Because all types

had discriminated sequences, these results suggest that the PCmodels

were capable of discriminating spatiotemporal sequences regardless

of the types of compartments. In terms of dendritic types, spiny

and smooth dendrites spreading like complex trees showed better

direction sensitivity than main dendrites, which provides additional

evidence for revealing the effects of dendritic nonlinearity on better

computational ability. Besides, the PC delayed rectifier (Kdr) was

included in only main dendrites and soma, so this channel may play

the role of reducing the effect of dendritic nonlinearity and finally

filtering the outputs of the PC.

A more careful examination show that direction selectivity was

observed when input stimuli are composed of 4–20 pulses with

intervals of 10–200 ms (spiny), 5–20 pulses with intervals of 20–200

ms (smooth), and 6–8 pulses with intervals of 10–200 ms (main).

From these observations, the shortest stimulus spans 60 ms, whereas

the longest one 4,000 ms. Furthermore, for each dendritic location,

the mean direction selective stimulus is 14.06 pulses that have the

synaptic weight of 6.542 nA with interval of 129.1 ms (spiny), 14.96

pulses that have the synaptic weight of 6.472 nA with interval of 126.0

ms (smooth), and 7.431 pulses that have the synaptic weight of 7.374

nA with interval of 98.79 ms (main), respectively.

3.2. Role of Ca2+ channels

To investigate the role of Ca2+ channels, we changed inactivation

time constants of CaP and CaT (Figure 3).Whenwe changed the time

constant of CaP, the range of intervals that are effective to cause spikes

remained constant unless f < 0.5 (Figure 7A).Moreover, only stimuli

in IN direction evoked spikes. These results suggest that varying the

time constant of CaP would not affect the discrimination ability. On

the other hand, in the case of CaT, in general, larger (or smaller)

f (i.e., slower or faster dynamics) evoked spikes in both directions

or no spikes, respectively. At the border of the spiking/non-spiking,

however, there is a small region that evoked spikes in either IN

or OUT direction. Furthermore, the region was curved, suggesting

that the relationship between the value of f and the interval that

evoked spikes was nonlinear. We would imply that the range of time

constants that caused spiking (40–60 ms) is in the same order of

that of stimulus interval that caused spiking (50–150 ms). In fact,

the upper half of the domain in which PC emit spikes in IN or OUT

direction elongates linearly. These observation suggest that the time

constant of CaT plays an essential role for sequence discrimination.

3.3. Learning of sequence direction

To invesitgate whether the direction of sequences can be

reversed, we incorporated a simulated LTD mechanism, which was

modeled as an STDP rule depending on the timing of each pulse

stimulus (i.e., PF stimulus) and that of a simulated CF stimulus,

to update PF–PC synaptic weights [Equation (10)]. Specifically, for

each presentation of a sequence, CF stimulus was fed immediately

after the presentation. First, we studied how the distribution of

sequences that evoked responses was changed by learning (Figure 8A,

Supplementary Video 3A). We found that sequences in IN direction

became sensitive to the choice of number of pulses at around 10

(Figure 8B, Supplementary Video 3B) compared with those without

learning (Figure 5B), and had distributed synaptic weights. On

the other hand, the distribution of sequences in OUT direction

became fewer. These results suggest that learning enhances sequence

discrimination only in IN direction. Finally, by applying reversed
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FIGURE 7

E�ect of time constants of Ca2+ channels [(A): CaP channel; (B): CaT

channel] and interval on sequence discrimination. Time constants

were multiplied by a factor f (Figure 3). Colors are the same as in

Figure 5. The number of pulses was 6, and synaptic weight was

6.633 nA.

version of sequences that evoked responses, we examined whether a

PC model can learn to reverse the sequence direction. As a result, a

limited number of sequences were able to reverse the direction from

IN to OUT and OUT to IN (Figure 8C, Supplementary Video 3C).

By examining the stimulus parameters, we found that such reversible

stimuli were distributed locally, suggesting that stimuli must be set

appropriately to control the direction.

4. Discussion

4.1. Sequence discrimination in cerebellar
PCs

We examined whether a detailed morphological model of

cerebellar PCs could respond differently to two sequences of dendritic

stimulation by injecting short pulses on dendrites at various locations

and timings. We recruited the same dendritic compartments as the

target of the stimulation, and injected short pulses in one of two

directions: from distal to proximal dendrites or the opposite. Owing

to the complex morphological structure of dendrites and various

ion channels distributed across the dendrites, our model responded

differently to the direction of stimulation, suggesting that the model

exhibited direction sensitivity on the temporal order of the stimulus

(Figures 4, 5). In other words, our PC model was capable of sequence

discrimination for input stimuli. Furthermore, the parameter range

for discriminable sequences fall within the range of hundreds of

milliseconds up to a few seconds, which seems to be appropriate for

cerebellum-dependent motor learning (Ivry and Spencer, 2004).

The ability of direction sensitivity or sequence discrimination

is found even in linear passive cables (Rall, 1964), if the temporal

interval of each pulse injection is as short as a fewmilliseconds so that

the cables can bridge the successive pulse injections temporally and

integrate them. In contrast, we set the temporal interval much longer

up to 100 ms, which cannot be bridged by passive cables. For such

stimuli with long time intervals, nonlinear integration over active

cables is necessary. Branco et al. (2010) demonstrated that cortical

layer 2/3 pyramidal neurons showed direction sensitivity for stimuli

with longer intervals, where the entire duration was set at about

100 ms. They concluded that NMDARs and intracellular Ca2+ play

an important role in direction sensitivity. This is natural, because

the time constants of NMDAR-mediated excitatory postsynaptic

potentials (EPSPs) and Ca2+ dynamics are on the order of one

hundred milliseconds. However, it has been shown that PCs in

adult animals do not show NMDAR-mediated currents for PF inputs

(Perkel et al., 1990; Llano et al., 1991), but have Ca2+-mediated

currents (CaP and CaT) with long time constants as long as a few

hundred milliseconds. We confirmed that the direction sensitivity

was spoiled and so the sequence discrimination was disrupted when

the Ca2+-mediated currents were blocked (Figure 7). These results

suggest that intracellular Ca2+ dynamics is an important factor

for individual neurons to perform complex computation, including

synaptic plasticity (e.g., Zucker, 1999).

On the other hand, the present study does not deny potential

roles of NMDARs on PCs in information processing. For example,

Piochon et al. (2010) reported that NMDARs are expressed on

CF synapses on PCs and involved in controlling synaptic gain.

Galliano et al. (2018) over expressed NMDARs on PF–PC synapses

by genetic manipulation, and observed that larger NMDAR-mediated

EPSPs that blocked long-term potentiation (LTP) at PF–PC synapses,

suggesting that lack of NMDARs allows LTP to contribute to

motor learning. Schonewille et al. (2021) reported involvement of

presynaptic NMDARs activation at PF terminals to the synaptic

plasticity. These results support the involvement of NMDAR-related

contribution in the computation of PCs.

4.2. Sequence learning in cerebellar PCs

The present study also demonstrated that when the sequential

dendritic stimulation was paired with a simulated CF stimulus, our

PC model changed the preferred direction of the temporal order

of the dendritic stimulation (Figures 4, 5), although the parameter

space in which direction selectivity can be reversed is rather small.

One reason might be that we tried only one learning trial for

each stimulus. If we repeat many learning trials, we would be

able to obtain a wider parameter space. Meanwhile, this dynamical

change was realized by changing the effective amplitude of each

dendritic pulse injection, which would correspond to changing the

synaptic weight of a PF input, induced by the timing of each

pulse injection and that of the large depolarization, representing CF
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FIGURE 8

Distribution of sequences under the presence of learning. (A) Scatter plot. A 1,310 sequences emit spikes in both directions, 235 were IN-only, 106 were

OUT-only, and 5,949 sequences did not cause in either direction. Conventions as in the top panel of Figure 5A. (B) The same plot leaving only

direction-sensitive sequences (blue: OUT direction; orange: IN direction) as in the bottom panel of Figure 5A. (C) Sequences that were able to be

changed the direction before and after learning. Blue and orange dots represent sequences that changed the direction from IN to OUT and from OUT to

IN to emit spikes, respectively.

stimulation. In other words, this paired stimulation attempted to

simulate LTD and LTP at PF–PC synapses induced by the occurrence

or nonoccurrence of CF stimulation in a temporal manner (i.e., spike

timing-dependent plasticity).

Temporal dependency of paired stimulation of PFs and CF for

LTD induction has been studied intensively. After establishing LTD

induction techniques in slice experiments (Ito, 1989), researchers

investigated the dependency of LTD induction on the temporal

interval between the PF and CF stimulation. Early studies

demonstrated that LTD induction was maximal when PF stimulation

was advanced for 250–300 ms to CF stimulation, and the induction

level was dependent on the PF–CF interval (Karachot et al., 1994;

Chen and Thompson, 1995). More recently, Suvrathan et al. (2016)

assessed the temporal dependence across various cerebellar cortical

areas comprehensively, and reported that the best temporal interval

was different across cortical areas. These results suggest that PF–PC

LTD is induced in an STDP manner, which is consistent with the

assumption made in the present study.

On the other hand, theoretical and computational studies have

been repeatedly demonstrating the importance of STDP rules

for temporal information processing including sequence learning

(e.g., Wörgötter and Porr, 2005), where intracellular Ca2+ plays

essential roles in realizing STDP. The present computational study

also supports the importance of STDP rules in the context of the

cerebellar computation.

4.3. Potential roles of dendritic computation
in PCs on cerebellar functions

Our findings on sequence learning suggest that PCs do not just

exhibit direction sensitivity on the temporal order of PF stimulation,

but also are able to learn the preferred direction of the temporal order.

Traditionally, cellular and circuit mechanisms of temporal

information processing in the cerebellum have been studied

experimentally in Pavlovian delay eyeblink conditioning, where

temporal codes are assumed to be represented by granule cells

and the temporal information is read out by PCs (McCormick

and Thompson, 1984; Mauk and Donegan, 1997). Moreover, a

number of theoretical studies have proposed different mechanisms

to generate such temporal codes (Yamazaki and Tanaka, 2009).

Those studies, however, have assumed that individual neurons are

simple elements that cannot perform complex functions by dendritic

computation. In contrast, a few studies have proposed other types of

timing mechanisms on single PCs rather than network mechanisms

(Fiala et al., 1996; Majoral et al., 2020). The present study seems

consistent with a view that single PCsmight be sufficient for temporal

information processing in the cerebellum (Johansson et al., 2014).

Another direction of dendritic computation by a single PC is

pattern recognition based on simple spike pause controlled by PF–PC

LTD. While capacity of information storage and pattern recognition

by PCs’ dendrites have been studied theoretically (Brunel et al., 2004;

Steuber et al., 2007; De Schutter and Steuber, 2009; Clopath et al.,

2012; Sezener et al., 2022) demonstrated that the duration of simple

spike pause represents information through nonlinear temporal

integration of PF stimuli, suggesting a form of temporal information

processing using PC dendrites. Our study is related to these studies

in the sense that we incorporated temporal sequence in PF stimuli

and examined the difference of responses of an individual PC. By

considering the temporal domain, capacity of information storage of

PCs might be enhanced compared with the classical perceptron as a

model of the cerebellum (Marr, 1969; Albus, 1971; Ito, 1984).

4.4. Dendritic computation by other detailed
morphological models

Besides the cerebellar PCmodel that we investigated for sequence

discrimination, detailed morphological models have demonstrated

various functions while harnessing dendritic computation. Branco

et al. (2010) and Bicknell and Häusser (2021) originally demonstrated

the capability of the sequence discrimination by cortical Pyramidal

cells experimentally and computationally. Gidon et al. (2020)

reported that cortical Pyramidal cells in humans could perform a

boolean logic function called XOR, which is a versatile boolean

operations, experimentally and computationally. Moldwin and Segev

(2020) have proposed that cortical Pyramidal cells could act as a

multi-layer perception, a versatile supervised learning machine. In
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the context of deep learning, Lillicrap et al. (2020) have proposed how

to implement back propagation, which is the learning mechanism

essential for deep neural networks, based on dendritic computation,

and Payeur et al. (2021) successfully implemented back propagation.

These results strongly support the view that dendritic computation is

a powerful means for machine learning.

4.5. Numerical simulation of detailed
morphological models

To examine sequence discrimination capacity, we had to repeat

the same simulation many times while varying the stimulus

parameters such as the temporal order, stimulation interval, and

the number of pulses (Figure 5). To conduct such a large number

of simulations, we used our own implementation of the PC model

rather than conventional and publicly available ones implemented

on simulation software (De Schutter and Bower, 1994; Roth and

Häusser, 2001). Although implementing detailed morphological

models is tedious yet time consuming, we had two reasons to do this.

The first reason is on the efficiency of numerical methods on

modern computers. Dendritic computation must be assessed by

using detailed morphological computational models of neurons.

Because numerical simulation for such models is complicated and

time consuming, one uses dedicated simulation software such as

GENESIS (Wilson et al., 1989), NEURON (Hines and Carnevale,

1997), and Arbor (Akar et al., 2019). These software programs use

implicit methods such as a backward Euler method and Crank-

Nicolson method for solving partial differential equations (PDEs)

that describe the current flow across dendrites. Implicit methods

are unconditionally stable methods so that the calculation is always

consistent. However, to achieve the stability, those methods have

to solve large simultaneous equations whose size is in proportional

to the number of the dendritic compartments for each cell for

each simulation step. Here, a problem for modern computers is

that solving simultaneous equations results in a large amount of

memory access, which could be the bottleneck of efficient numerical

simulation (Kobayashi et al., 2021). Instead, our implementation

uses an explicit method developed specifically for diffusion equations

including cable equations, which reduces the amount of memory

access substantially (Kobayashi et al., 2021). Eventually, we were able

to speed up the computation by about 15 times compared with an

implicit method.

The second reason is about the performance trend of

supercomputers. At present, the state-of-the-art large-scale

simulations build networks comprising tens of thousands of detailed

morphological neuron models (Markram et al., 2015; Billeh et al.,

2020). Such large-scale simulation, however, takes a long time even

with supercomputers, because on modern supercomputers, the

memory access becomes the bottleneck more than the computational

power (Machanick, 2002). To address this problem, we propose the

use of explicit methods for simulation of detailed morphological

neurons and networks as in the present study.

4.6. Limitations

Several limitations exist in the present study. First,

we implemented and used a rather old PC model

(De Schutter and Bower, 1994). The model has been revised

significantly to date, and the current version contains more ion

channels and realistic diffusion dynamics (Zang et al., 2020;

Zang and De Schutter, 2021). Our study suggests that slow Ca2+

dynamics plays an essential role in sequence discrimination, and

this conclusion would not change even in the more realistic models.

Nevertheless, it would be of interest to examine these more realistic

models. In particular, our model does not emit simple spikes

spontaneously, which is suitable to see the responses related to the

discrimination, whereas the current version does. To discriminate

sequences under the presence of spontaneous activity, we must

consider the response of PCs based on the pause rather than the

firing (De Schutter and Steuber, 2009; Zang et al., 2020; Zang and

De Schutter, 2021). Thus, the second limitation is that pause-based

stimulus discrimination should be assessed.

5. Conclusion

Owing to their remarkable dendrites, individual cerebellar PCs

could be capable of complex spatiotemporal information processing.

Considering such dendritic computation will shed new light on

cerebellar information processing and cerebellar learning.
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