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Synergies between synaptic and
HCN channel plasticity dictates
firing rate homeostasis and
mutual information transfer in
hippocampal model neuron

Rahul Kumar Rathour and Hanoch Kaphzan*

Sagol Department of Neurobiology, University of Haifa, Haifa, Israel

Homeostasis is a precondition for any physiological system of any living organism.

Nonetheless, models of learning and memory that are based on processes of

synaptic plasticity are unstable by nature according to Hebbian rules, and it is

not fully clear how homeostasis is maintained during these processes. This is

where theoretical and computational frameworks can help in gaining a deeper

understanding of the various cellular processes that enable homeostasis in the

face of plasticity. A previous simplistic single compartmental model with a single

synapse showed that maintaining input/output response homeostasis and stable

synaptic learning could be enabled by introducing a linear relationship between

synaptic plasticity and HCN conductance plasticity. In this study, we aimed to

examine whether this approach could be extended to a more morphologically

realistic model that entails multiple synapses and gradients of various VGICs. In

doing so, we found that a linear relationship between synaptic plasticity and HCN

conductance plasticity was able to maintain input/output response homeostasis

in our morphologically realistic model, where the slope of the linear relationship

was dependent on baseline HCN conductance and synaptic permeability values.

An increase in either baseline HCN conductance or synaptic permeability value led

to a decrease in the slope of the linear relationship. We further show that in striking

contrast to the single compartmentmodel, here linear relationship was insu�cient

in maintaining stable synaptic learning despite maintaining input/output response

homeostasis. Additionally, we showed that homeostasis of input/output response

profiles was at the expense of decreasing the mutual information transfer due to

the increase in noise entropy, which could not be fully rescued by optimizing the

linear relationship between synaptic and HCN conductance plasticity. Finally, we

generated a place cell model based on theta oscillations and show that synaptic

plasticity disrupts place cell activity. Whereas synaptic plasticity accompanied by

HCN conductance plasticity through linear relationship maintains the stability of

place cell activity. Our study establishes potential di�erences between a single

compartmental model and a morphologically realistic model.
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Introduction

The instability of synaptic strength during Hebbian plasticity

is a major drawback within the frameworks of physiological

functioning, computational roles, and synaptic learning. The

positive feedback loops incurred during Hebbian plasticity by

increase/decrease in AMPA and/or NMDA receptor conductance

during repetitive synaptic stimulation could result in complete loss

of action potential firing either through a reduction in the synaptic

drive during LTD or enhanced synaptic drive during LTP, which

eventually could lead to a depolarization-induced block of sodium

channels (Guan et al., 2013; Honnuraiah and Narayanan, 2013;

Liu and Bean, 2014). Therefore, it is essential to regulate synaptic

strengths and responses thereof to provide stability during Hebbian

plasticity for maintaining homeostasis of input/output relationship

and robust information transfer.

Activity-dependent modifications of rules for synaptic

plasticity, defined as metaplasticity, have been postulated to play

a key role in the stability during Hebbian plasticity (Bear, 1995;

Abraham and Bear, 1996; Abraham and Tate, 1997; Abraham,

2008). Various metaplastic mechanisms have been implicated

in providing negative feedback loops for maintaining synaptic

stability. Amongst these negative feedback mechanisms are

the changes in the subunit composition of NMDA receptors

(Philpot et al., 2001), modification in downstream NMDA receptor

signaling (Philpot et al., 2003), alteration in calcium buffering

(Gold and Bear, 1994), revision of CaMKII levels (Mayford et al.,

1995; Bear, 2003), structural plasticity (Matsuzaki et al., 2004;

Kalantzis and Shouval, 2009) and presence/plasticity of various

voltage-gated ion channels (VGICs) (Narayanan and Johnston,

2010, 2012; Anirudhan and Narayanan, 2015).

Prominent among these is the presence/plasticity of various

VGICs in regulating synaptic stability which has received

attention in the recent past, since VGICs were shown to

express plasticity following synaptic plasticity-inducing protocols

(Yasuda et al., 2003; Frick and Johnston, 2005; Magee and

Johnston, 2005; Sjostrom et al., 2008; Narayanan and Johnston,

2012). Hyperpolarization-activated cyclic-nucleotide gated (HCN)

h channel, in particular, has been postulated to play a role

in keeping synaptic stability and homeostasis of input/output

relationship (Narayanan and Johnston, 2010; Honnuraiah and

Narayanan, 2013) owing to the bi-directional plasticity of HCN

conductance during synaptic plasticity (Fan et al., 2005; Brager and

Johnston, 2007; Narayanan and Johnston, 2007; Campanac et al.,

2008). A quantitative modeling framework has established a linear

relationship between synaptic and HCN conductance plasticity

for maintaining homeostasis of the input/output relationship

and robust information transfer (Honnuraiah and Narayanan,

2013). We employed this linear relationship, originally deduced

from a single compartmental model having a single synapse, on

to a morphologically realistic neuronal model having multiple

synapses and expressing gradients of various VGICs for enabling

homeostasis of input/output relationship and maintaining robust

information transfer. In doing so, we found that the previously

derived linear relationship between synaptic plasticity and HCN

conductance plasticity in a single compartmental model, having a

single synapse for maintaining input/output response homeostasis,

could be extended to multi-compartmental model having multiple

synapses and gradients of various ion-channels, where the

optimal slope of the linear relationship between synaptic and

HCN conductance plasticity is heavily dependent upon synaptic

permeability values and baseline HCN conductance levels. We also

found that homeostasis of the input/output response profile does

not necessarily translate to robust information transfer. Finally,

using a Gaussian-modulated input pattern, we show that HCN

conductance plasticity along with synaptic plasticity could provide

stability to place cell firing within the place field. Our study provides

useful insights in terms of homeostasis, and interdependence

between input/output relationship and information transfer, and

thereby underscores the importance of crosstalk between synaptic

and intrinsic plasticity in regulating learning and homeostasis in

single neurons and their networks.

Materials and methods

A morphologically realistic, 3D reconstructed, hippocampal

CA1 pyramidal neuron (n123), obtained from Neuromorpho.org

(Ascoli et al., 2007) was used as the substrate for all simulations.

Morphology and modeling parameters of passive membrane

properties and voltage-gated ion channels (VGICs) were the same

as those used in previous studies (Rathour and Narayanan, 2014;

Rathour and Kaphzan, 2022) and are detailed below.

Passive membrane properties

Passive membrane parameters were set such that the model

neuron was able to capture experimental statistics of various

measurements (Hoffman et al., 1997; Magee, 1998; Migliore et al.,

1999; Narayanan and Johnston, 2007, 2008). Explicitly, specific

membrane capacitance (Cm) was set at 1 µF/cm2 across the entire

morphology. Specific membrane resistivity (Rm) and intracellular

resistivity (Ra) were distributed non-uniformly and varied along

the somato-apical trunk as functions of the radial distance of the

compartment from the soma (x) using the following formulation:

Rm(x) = Rm −max+
(Rm −min− Rm −max)

1+ exp
(

(Rm − d − x)/Rm − k
) (1)

Ra(x) = Ra −max+
(Ra −min− Ra −max)

1+ exp
(

(Ra − d − x)/Ra − k
) (2)

where Rm – max = 125 k�/cm2 and Ra – max = 120 �/cm were

default values at the soma, and Rm – min = 85 k�/cm2 and Ra
– min = 70 �/cm were values assigned to the terminal end of

the apical trunk (which was ∼425µm distance from the soma for

the reconstruction under consideration). The other default values

were: Rm – d = Ra – d = 300µm, Rm – k = Ra – k = 50µm;

Ra – k= 14µm. The basal dendrites and the axonal compartments

had somatic Rm and Ra. Model neuron with these distributions of

passive membrane properties was compartmentalized using dλ rule

(Carnevale and Hines, 2006) to ensure that each compartment was

smaller than 0.1λ100, where λ100 was the space constant computed
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at 100Hz. This produced a total of 809 compartments in the

model neuron.

Voltage-gated ion channels kinetics and
distribution

The model neuron used expressed five conductance-based

voltage-gated ion channels (VGICs): Na+,A-type K+ (KA), delayed

rectifier K+ (KDR), T-type Ca++ (CaT), and hyperpolarization-

activated cyclic-nucleotide gated (HCN) h channels. Na+, KDR,

and KA channels were modeled based on previous kinetic schemes

(Migliore et al., 1999), and h channels were modeled as in Poolos

et al. (2002). T-type Ca++ channels kinetics was taken from

Shah et al. (2008). Na+, K+, and h channels models were based

upon Hodgkin-Huxley formalism and had reversal potentials 55,

−90, and −30mV respectively. The CaT current was modeled

using the Goldman-Hodgkin-Katz (GHK) formulation with the

default values of external and internal Ca++ concentrations set

at 2mM and 100 nM, respectively. The Densities of Na and

KDR conductances were kept uniform across the neuronal arbor,

whereas the densities of h, CaT, and KA channel conductances

increased on the apical side with an increase in distance from

the soma (Magee and Johnston, 1995; Hoffman et al., 1997;

Magee, 1998). The basal dendritic compartments had somatic

conductance values.

For simulations involving Poisson-modulated synaptic inputs

(Figures 1–5), uniformly distributed Na and KDR conductances

were set at 16 and 10 mS/cm2, respectively. Na conductance was

five-fold higher in the axon initial segment compared to the somatic

counterpart (Fleidervish et al., 2010), and the rest of the axon

was treated as passive. To account for the slow inactivation of

dendritic Na+ channels, an additional inactivation gating variable

was included for dendritic Na+ channels (Migliore et al., 1999). KA

conductance was set as a linearly increasing gradient as a function

of radial distance from the soma, x (Hoffman et al., 1997), using the

following formulation:

gKA(x) = A− gB (1+ A− Fx/100) (3)

where somatic gKA was 3.1 mS/cm2, and A – F (=8) quantified the

slope of this linear gradient. In order to incorporate incremental

observations related to differences in half-maximal activation

voltage (V1/2) between the proximal and the distal KA channels

in CA1 pyramidal cells (Hoffman et al., 1997), two distinct models

of KA channels were adopted. A proximal model was used for

compartments with radial distances <100µm from the soma, and

beyond that point, a distalA-type K+ conductance model was used.

The increase in maximal h conductance along the somato-

apical axis as a function of radial distance from the soma, x, was

modeled using the following formulation:

gh(x) = h− gB

(

1+
h− F

1+ exp
(

(h− d − x)/h− k
)

)

(4)

where h – gB denotes maximal h conductance at the soma, set to

be 25 µS/cm2, and h – F (=12) formed fold increase along the

somato-apical axis. Half-maximal distance of gh increase, h – d was

320µm, and the parameter quantifying the slope, h – k was 50µm.

To accommodate the experimental observations regarding changes

inV1/2 of the activation of h conductance at various locations along

the somato-apical trunk (Magee, 1998), the half-maximal activation

voltage for h channels was−82mV for x ≤ 100µm, linearly varied

from −82 to −90mV for 100µm ≤ x ≤ 300µm, and −90mV for

x > 300 µm.

The CaT conductance gradient was modeled as a sigmoidal

increase with increasing radial distance from the soma, x:

gCaT(x) = T − gB

(

1+
T − F

1+ exp
(

(T − d − x)/T − k
)

)

(5)

where T – gB denotes maximal CaT conductance at the soma,

set to be 80 µS/cm2, and T – F (=30) formed fold increase

along the somato-apical axis. Half-maximal distance of gCaT
increase, T – d was 350µm, and the parameter quantifying the

slope, T – k was 50µm. These parametric constrains accounted

for the experimental constraints on the coexistence of the six

functional maps along the same somato-apical trunk (Rathour and

Narayanan, 2014).

For simulations involving Gaussian-modulated synaptic inputs

(Figures 6, 7), the parameters used for kinetics, distributions, and

maximal conductances of KA, CaT, and HCN channels were

the same as aforementioned, whereas maximal Na and KDR

conductances were set at 15.4 and 2 mS/cm2, respectively. After

changing these conductances, the model neuron was able to satisfy

experimental constraints on the coexistence of the six functional

maps along the same somato-apical trunk.

Synapse model and distribution

A synapse was modeled as a co-localization of AMPA and

NMDA receptor currents as described previously (Narayanan

and Johnston, 2010; Honnuraiah and Narayanan, 2013). A

spike generator was used to feed inputs to the synapses at

predetermined required frequencies. The default value of the

ratio of NMDA:AMPA permeability was set at 1.5. Both receptor

currents were modeled based on GHK formulation. The current

through NMDA receptors was a combination of Na+, K+, and

Ca++, and their voltage and time dependence were described by

the following equations:

INMDA(v, t) = INaNMDA(v, t)+ IKNMDA(v, t)+ ICaNMDA(v, t) (6)

where

INaNMDA(v, t) = PNMDAPNas(t)MgB(v)
vF2

RT

{

[Na]i − [Na]o exp
(

− vF
RT

)

1− exp
(

− vF
RT

)

}

(7)

IKNMDA(v, t) = PNMDAPKs(t)MgB(v)
vF2

RT

{

[K]i − [K]o exp
(

− vF
RT

)

1− exp
(

− vF
RT

)

}

(8)

ICaNMDA(v, t) = PNMDAPCas(t)MgB(v)
4vF2

RT

{

[Ca]i − [Ca]o exp
(

− 2vF
RT

)

1− exp
(

− 2vF
RT

)

}

(9)
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FIGURE 1

Synaptic plasticity disrupts input/output response homeostasis. (A) 3D reconstructed morphology of CA1 pyramidal neuron used in this study. (B)

Distribution of various voltage-gated ion channels along the apical side of dendritic arbor. (C) Somatic EPSP amplitudes (cyan) of 303 synapses

located across the apical dendritic arbor [green region in (A)] and their corresponding maximum permeability values (orange). (D) Input/output

relationship of the model neuron under the baseline condition. All synapses were stimulated at a given frequency with stimulation timings drawn

from the independent Poisson distribution. Stimulation of a synapse at a given frequency was repeated 10 times. Data is presented as mean ± SD. (E)

�-function used in this study to update synaptic weight as a function of intracellular Ca++ concentration. (F) Example traces for evolution of synaptic

weights recorded at various locations. Each of the 303 synapses was activated at a given frequency, assigned from a uniform distribution of 4–12Hz

range. The stimulation timings of each synapse were Poisson distributed. Number within parenthesis against distance denotes the stimulus

frequency. (G) Distribution of final synaptic weights across all 303 synapses. Bin size 0.05. (H) Distribution of somatic EPSP amplitudes of 303

synapses under the baseline condition (black) and after synaptic plasticity (red). Bin size 5 µV. (I) Input/output response profiles of the model neuron

under baseline condition (black) and after synaptic plasticity (red). Data is presented as mean ± SD.

where F is Faraday’s constant, R is the gas constant and T is

the temperature in Kelvin. PNMDA is the maximum permeability

of NMDA receptor and the default ratio of values of PCa, PNa,

and PK was set to be 10.6:1:1, respectively, owing to experimental

observations (Mayer and Westbrook, 1987; Canavier, 1999). The

external and internal concentrations of the various ions were set

as follows (in mM): [Na]o = 140, [Na]i = 18, [K]o = 5, [K]i =

140, [Ca]o = 2, [Ca]i = 100 × 10−6. This resulted in equilibrium

potentials for sodium and potassium ions +55 and −90mV,

respectively. MgB(v) and s(t) denote magnesium dependence and

temporal evolution of NMDA current, respectively, and were

defined as follows (Jahr and Stevens, 1990a,b):

MgB(v) =

{

1+
[Mg]oexp(−0.062v)

3.57

}−1

(10)

where [Mg]o denotes extracellular magnesium concentration and

was set to 2 mM.

s(t) = a

[

exp

(

−
t

τd

)

− exp

(

−
t

τr

)]

(11)

where a is the normalization constant to insure that 0 ≤ s(t) ≤

1. τ r and τd denote the rise and decay time constants of NMDA

receptor-mediated current, respectively, and were set to be 5 and

50ms, respectively.

The evolution of intracellular calcium, consequent

to entry from NMDA receptors and T-type Ca++

channels, was modeled as described previously
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FIGURE 2

Synaptic plasticity accompanied with HCN conductance plasticity enables homeostasis of input/output response profiles. (A) Example graph of linear

relationship between percentage change in total synaptic weight and percentage change in HCN conductance for various slopes. (B) Input/output

response profiles of the model neuron under baseline condition (black), after only synaptic plasticity (red) and after synaptic and HCN conductance

plasticity for various slopes of the linear relationship (A). Data is presented as mean ± SD. (C) Root mean squared error (RMSE) between baseline

input/output response profile and response profile obtained after synaptic and HCN conductance plasticity (green trace) as a function of slope of the

linear relationship (A). Red dot denotes RMSE between baseline input/output response profile and response profile obtained after only synaptic

plasticity (Figure 1I). (D) Example traces for evolution of synaptic weights recorded at various locations (same as in Figure 1F). Number within

parenthesis against distance denotes stimulus frequency in Hz. (E) Example trace of evolution of somatic HCN conductance during synaptic and

HCN conductance plasticity for optimal slope (3.5) to yield RMSE minimization (C). (F) Distribution of final synaptic weights across all 303 synapses

after only synaptic plasticity (red) and after synaptic and HCN conductance plasticity (green). Bin size 0.05. (G) Histogram of somatic EPSP amplitudes

of 303 synapses under baseline condition (black), after synaptic plasticity (red) and after synaptic and HCN conductance plasticity (green). (H) Input

resistance along the neuronal trunk computed under baseline condition (black) and after synaptic and HCN conductance plasticity (green). (I)

Intrinsic firing rate profile at soma under baseline condition (black) and after synaptic and HCN conductance plasticity (green).

(Poirazi et al., 2003; Narayanan and Johnston, 2010):

d[Ca]i

dt
= −

10, 000ICaNMDA

3.6.dpt.F
+

[Ca]∞ − [Ca]i

τCa
(12)

where τCa = 30ms is the calcium decay time constant, dpt =

0.1µm is the depth of the shell and [Ca]∞ = 10−4 mM is the

steady-state value of [Ca]i.

The current through AMPA receptors was mediated by the

combination of Na+ and K+ currents and was defined as follows:

IAMPA(v, t) = INaAMPA(v, t)+ IKAMPA(v, t) (13)

where

INaAMPA(v, t) = PAMPA wPNas(t)
vF2

RT

{

[Na]i − [Na]o exp
(

− vF
RT

)

1− exp
(

− vF
RT

)

}

(14)

IKAMPA(v, t) = PAMPA wPKs(t)
vF2

RT

{

[K]i − [K]o exp
(

− vF
RT

)

1− exp
(

− vF
RT

)

}

(15)

where PAMPA is the maximum permeability of AMPA receptors.

The default ratio of values of PNa and PK was set to be 1:1 owing

to experimental observations (Dingledine et al., 1999). s(t) denotes

the temporal evolution of AMPA current and was modeled as in

equation (11) with τ r and τd set to be 2 and 10ms, respectively. w

is the weight parameter that undergoes activity-dependent update

(see section Synaptic weight update mechanism).
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FIGURE 3

HCN conductance plasticity along with synaptic plasticity maintains homeostasis of input/output response profile during repeated synaptic

stimulation. (A) Input/output response profiles of the model neuron under baseline condition (black) and after various iteration of synaptic

stimulation. Note the complete cessation of response firing rate after 5th, 6th, and 7th iteration. Stimulation patterns for inducing synaptic plasticity

of all synapses were same across all iterations. (B) RMSE between baseline input/output response profile and response profile obtained after repeated

synaptic plasticity. (C) Optimal slope of the liner relationship between synaptic and HCN conductance plasticity as a function of the number of

iterations of synaptic stimulation for minimizing RMSE. (D) RMSE between baseline input/output response profile and response profile obtained after

synaptic and HCN conductance plasticity (green trace) as a function of the number of iterations of synaptic stimulation. Red trace same as in (B). (E)

Input/output response profile of the model neuron under baseline condition (black) and after various iterations of synaptic stimulation under the

condition of synaptic and HCN conductance plasticity. (F–I) Distributions of response frequencies computed across all stimulus frequencies and

trials under baseline condition (F), 1st iteration of only synaptic plasticity (G), 1st iteration of synaptic and HCN conductance plasticity (H) and 7th

iteration of synaptic and HCN conductance plasticity (I). Bin size 1Hz.

Synapses were distributed across the apical dendritic arbor in

the range of 12.5 to 286.7µm away from the soma. Within this

distance range, each compartment was assigned a single synapse.

Synaptic weight update mechanism

The synaptic weight parameter, w, associated with the specific

synapse of the given compartment was updated based on the

intracellular calcium concentration of the given compartment.

This dependence of synaptic weight parameter, w, on intracellular

calcium concentration was defined by the following equation, based

upon the calcium control hypothesis (Shouval et al., 2002):

dw

dt
= η([Ca]i)[�([Ca]i)− w] (16)

where η([Ca]i) is the calcium-dependent learning rate, and was

dependent upon learning time constant τ ([Ca]i) as follows:

η([Ca]i) =
1

τ ([Ca]i)
(17)

where τ ([Ca]i) was defined as:

τ ([Ca]i) = P1 +
P2

P3 + [Ca]P4i
(18)

with P1 = 1 s, P2 = 0.1 s, P3 = P2 × 10−4 and P4 = 3. The values of

these parameters warrant that when [Ca]≈ 0, τ ([Ca]i)≈ 3 h.
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FIGURE 4

HCN conductance plasticity along with synaptic plasticity maintains homeostasis of input/output response profiles at the expense of mutual

information transfer. (A) Distribution of probability of response firing rates for various stimulus frequencies (p[r|s]) under baseline condition. (B, C)

Distribution of probability of response firing rates for various stimulus frequencies (p[r|s]) after 1st iteration (B) and 7th iteration (C) of only synaptic

plasticity. (D, E) Distribution of probability of response firing rates for various stimulus frequencies (p[r|s]) after 1st iteration (D) and 7th iteration (E) of

synaptic plasticity along with HCN conductance plasticity. (F) Probability distribution of various response firing rates under baseline condition (black)

and after 1st iteration (brown) and 7th iteration (cyan) of only synaptic plasticity. (G) Probability distribution of various response firing rates under

baseline condition (black) and after 1st iteration (brown) and 7th iteration (cyan) of synaptic plasticity along with HCN conductance plasticity. (H)

Mutual information as a function of repeated iterations with introducing only synaptic plasticity (red) and repeated iterations with introducing

synaptic and HCN conductance plasticity. Zero iteration denotes baseline condition.
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FIGURE 5

Optimization of slope for information maximization also leads to a decrease in information transfer during repeated synaptic stimulation. (A) Mutual

information as a function of slope of the linear relationship between synaptic and HCN conductance plasticity. Arrow indicates the optimal slope. (B)

Optimal slope of the liner relationship between synaptic and HCN conductance plasticity as a function of the number of iterations of synaptic

stimulation for maximizing mutual information transfer. (C) Mutual information transfer as a function of the number of iterations of synaptic

stimulation under the condition of optimal slope between synaptic and HCN conductance plasticity for maximizing information transfer (B) (green

trace) and only synaptic plasticity (red). Dashed line represents theoretically maximum information transfer computed under the assumption of zero

noise entropy and uniform distribution of response probability within the range of 1–100Hz of response frequencies. (D) Input/output response

profiles of model neuron under baseline condition (black) and after various iterations of synaptic stimulation under the condition of optimal slope

between synaptic and HCN conductance plasticity for maximizing information transfer (B). (E) RMSE between baseline input/output response profile

and response profile obtained after synaptic and HCN conductance plasticity, as a function of the number of iterations of synaptic stimulation under

the condition of optimal slope between synaptic and HCN conductance plasticity for maximizing information transfer (B). (F) Distributions of

response frequencies computed across all stimulus frequencies and trials for 1st and 7th iteration of synaptic and HCN conductance plasticity. Bin

size 1Hz. (G, H) Percentage change in response and noise entropy as a function of the number of iterations of synaptic stimulation under the

condition of RMSE minimization (G) and maximization of mutual information transfer (H).
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FIGURE 6

Synaptic plasticity disrupts place field activity in the model neuron. (A) 3D reconstructed morphology of CA1 pyramidal neuron used for simulating

place field activity. (B) Top; Voltage trace recorded during Gaussian- modulated stimulation of base and place theta synapses along with asymmetric

depolarizing ramp current injection at the soma under baseline condition. Middle; Spike timings. Bottom; kymograph of firing rate. Number at the

right denotes the maximum firing rate in Hz. (C) Example traces for evolution of synaptic weights recorded at various locations. (D) Distribution of

final synaptic weights across all place theta synapses. Bin size 0.05. (E) Cumulative probability distribution of somatic EPSP amplitudes of place theta

synapses under the baseline condition (black) and after synaptic plasticity (red). Bin size 5 µV. (F) Top; Voltage trace recorded during

Gaussian-modulated stimulation of base and place theta synapses along with asymmetric depolarizing ramp current injection at the soma under

synaptic plasticity condition. Middle; Spike timings. Bottom; kymograph of firing rate. Number at the right denotes the maximum firing rate in Hz. (G)

Place field activity under baseline condition (black trace) and after synaptic plasticity (red trace).

�([Ca]i) has the following form:

�([Ca]i) = 0.25+
1

1+ exp
{

−β2([Ca]i − α2)
}

− 0.25
1

1+ exp
{

−β1([Ca]i − α1)
} (19)

with α1 = 0.35, α2 = 0.55, β1 = 80 and β2 = 80. The default initial

value of w, winit, was set at 0.25.

HCN conductance update rule

Owing to the previously derived linear relationship between

synaptic plasticity and HCN conductance plasticity in order to

maintain firing rate homeostasis, and given the experimental

observation that localized induction of LTP results in a widespread

increase in HCN conductance (Narayanan and Johnston, 2007,

2008), we formulated the dependence of HCN conductance on

synaptic weights as follows:

gt+1t
h

= gth +
(

gth · 1W · Slope
)

(20)

where gt
h
and gt+1t

h
is the maximal somatic HCN conductance (h-

gB, Equation 4) at time t and t+1t. Slope is the slope of the linear

relationship and 1W is the percentage change in total synaptic

weight across all synapses and was computed as follows:

1W =

i
∑

0
wt+1t
i −

i
∑

0
wt
i

i
∑

0
wt
i

(21)

where wt
i and w

t+1t
i are weights of ith synapse at time t and t + 1t.

Measurements

The input/output relationship of the model neuron was

determined by stimulating synapses at various frequencies. For any

given input frequency, all synapses were stimulated simultaneously

using independent Poisson distributed input timings and this was

repeated 10 times for a given stimulus frequency. Each trial ran

for 1 s and the number of action potentials fired was taken as the

response frequency. The firing rate in response to direct current

pulse injection at soma was determined by injecting currents at

various amplitudes for 1 s, and the number of action potentials fired

was taken as the firing rate.

EPSP amplitude was computed by activating a given synapse at

a given location, and the corresponding potential was recorded at

the soma. The difference between baseline potential and peak EPSP

response was taken as EPSP amplitude. For computing synaptically

driven input/output response profile and EPSP amplitude, only

AMPA receptor type conductance was used (Magee and Cook,

2000).
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FIGURE 7

HCN conductance plasticity along with synaptic plasticity restores place field activity. (A) Example graph of linear relationship between percentage

change in total synaptic weight and percentage change in HCN conductance for various slopes. (B) Place field profiles of model neurons under

baseline condition (black), after only synaptic plasticity (red) and after synaptic and HCN conductance plasticity for various slopes of the linear

relationship. (C) RMSE between baseline place field profile and place field profile obtained after synaptic and HCN conductance plasticity (green

trace) as a function of slope of the liner relationship. Note, optimal slope is at 1.1. Red dot denotes RMSE between baseline place field profile and

place field profile obtained after only synaptic plasticity (Figure 6G). (D) Top; Voltage trace recorded during Gaussian-modulated stimulation of base

and place theta synapses along with asymmetric depolarizing ramp current injection at the soma under the conditions of synaptic and HCN

conductance plasticity for slope 1.1 (optimal slope) of linear relationship. Middle; Spike timings. Bottom; kymograph of firing rate. Number at the

right denotes maximum firing rate in Hz. (E) Evolution of somatic HCN conductance during synaptic and HCN conductance plasticity for slope 1.1

(optimal slope) of linear relationship. (F) Example traces for evolution of synaptic weights recorded at various locations (same as in Figure 6C). (G)

Distribution of synaptic weights across all place theta synapses after synaptic plasticity (red) and after synaptic and HCN conductance plasticity

(green). Bin size 0.05. (H) Cumulative probability distribution of somatic EPSP amplitudes of place theta synapses under baseline condition (black),

after synaptic plasticity (red) and after synaptic and HCN conductance plasticity (green). Bin size 5 µV. (I) Input resistance along the neuronal trunk

computed under baseline condition (black) and after synaptic and HCN conductance plasticity (green).

The input resistance of the model neuron at various locations

along the neuronal trunk was computed by injecting a current

pulse of various amplitudes (−50 to+50 in steps of 10 pA) and the

corresponding local steady-state voltage response was recorded to

compute V–I relationship. The slope of the linear fit to V–I curve

formed the input resistance.

The root mean squared error (RMSE) between different

response frequency profiles was computed as follows:

RMSE =

√

√

√

√

1

NK

(

N
∑

SF=1

K
∑

Tr=1

(

NewRFTrSF − BaseRFTrSF
)2

)

(22)

where N is the total number of stimulus frequencies (1–50Hz in

steps of 1Hz), K (=10) is the number of trials for each stimulus

frequency, New-RF is the new response frequency and Base-RF is

the baseline response frequency.

Mutual information computation

Under the rate coding schema, mutual information, Im,

between stimulus (different input frequencies) and output

(response frequency) was computed as the difference between total

response entropy,H, and noise entropy,Hnoise, (Dayan and Abbott,

2001):

Im = H −Hnoise (23)

Total response entropy, H, was computed as:

H = −
∑

r

p[r]log2
(

p[r]
)

(24)

where p[r] is the response probability distribution of response

frequency, r, computed over the range of various stimulus
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frequencies, s:

p[r] =
∑

s

p[r|s] p[s] (25)

A given input stimulus frequency, s, fed to various synapses was

varied between 1–50Hz in steps of 1Hz. Each stimulus frequency

was represented 10 times and input timings across all synapses

for a given stimulus frequency were taken from independent

Poisson distribution, thus, providing variability in output response

frequencies across 10 trials. From this variability in output

response frequencies across 10 trials, mean and standard deviation

in response frequencies were computed and used to generate

normalized Gaussian distribution, thus, providing us with p[r|s].

This procedure was repeated for each stimulus frequency. For

computing p[s], the distribution of the applied stimulus frequencies

is uniform; Each distinct stimulus frequency was presented the

same number of times, so the probability of presenting any given

stimulus frequency is equally likely. To compute the noise entropy,

the first entropy of response for a given stimulus frequency was

computed as:

Hs = −
∑

r

p[r|s] log2
(

p[r|s]
)

(26)

then noise entropy was computed as:

Hnoise =
∑

s

p[s]Hs (27)

Generation of place field

One hundred fifty-one synapses (base theta synapses) were

placed on the apical side of the dendritic arbor, distributed over

the range of 12.5–286.7µm away from the soma, to generate

baseline theta oscillations. Additional 61 synapses (place theta

synapse), distributed over a similar distance range as that of

base theta synapses, were placed to induce place field activity.

Base theta synapses were modeled using only AMPA receptor-like

conductance whereas place theta synapses were modeled as co-

localization of AMPA and NMDA receptor currents. Only place

theta synapses undergo calcium-dependent synaptic plasticity. This

pattern of using two distinct sources of theta activity was motivated

by the fact that intracellular theta oscillation amplitude, and hence

theta power, is significantly higher during place field compared to

a non-place field activity, whereas theta oscillation frequency did

not change significantly (Harvey et al., 2009). Moreover, to account

for the asymmetric ramping depolarization (Harvey et al., 2009),

we injected asymmetric ramping current at the soma during place

field activity. Peak depolarization obtained during ramping current

injection was around 4mV (Harvey et al., 2009).

Stimulation timings of base theta and place theta synapses were

Gaussian-modulated with a standard deviation set at one-eight

of the 8Hz oscillatory cycle (Sinha and Narayanan, 2015). The

number of stimulating inputs to a synapse was governed by the

distribution (Schomburg et al., 2012; Sinha and Narayanan, 2015):

N(t) = Aexp

(

−

(

mod (t,Tθ ) − Tθ/2
)2

2σ 2

)

(28)

where Tθ represents the time period of the theta oscillations

(125ms for 8Hz), σ = Tθ/8, mod represents the modulo function,

and A is the scaling factor and was set to unity.

With this kind of distribution and stimulation pattern of

base theta and place theta synapses, the simulation was run for

10 s. Base theta synapses were stimulated throughout this time

window, whereas place theta synapses were stimulated from 3–

8 s, and correspondingly asymmetric depolarization ramp current

was delivered at soma within this time window of 3–8 s. Spike

timings of action potentials fired during 10 s were convolved with

a normalized Gaussian window of 300ms standard deviation to

obtain a smooth place field profile.

Computational details

All simulations were performed using NEURON simulation

environment (Carnevale and Hines, 2006). For all simulations,

the temperature was set at 34◦C and ion-channels kinetics was

appropriately adjusted based upon experimentally determined

q10 factors. The integration time constant, for solving various

differential equations, was set to be 25 µs. Simulations involving

Poisson-modulated synaptic stimulation (Figures 1–5) were

run at −65mV, whereas simulations involving Gaussian-

modulated synaptic stimulation (Figures 6, 7) were run at−66mV.

Data analyses involving computation of root mean squared

error, mutual information, and smooth place field generation

were done using custom-built software written within IGOR

Pro (Wavemetrics).

Results

Experimental evidence suggest that induction of bidirectional

synaptic plasticity is accompanied by bidirectional changes

in HCN conductance (Fan et al., 2005; Brager and Johnston,

2007; Narayanan and Johnston, 2007; Campanac et al.,

2008). This bidirectional plasticity in HCN conductance has

been postulated as a key regulator of input/output response

homeostasis and information transfer (van Welie et al., 2004;

Brager and Johnston, 2007; Narayanan and Johnston, 2007, 2010).

Moreover, a previous computational framework has suggested

a linear relationship between synaptic plasticity and HCN

conductance plasticity for maintaining input/output response

homeostasis and robust mutual information transfer (Honnuraiah

and Narayanan, 2013). In this study, we examined whether

the previously derived linear relationship between synaptic

plasticity and HCN conductance plasticity for maintaining

input/output response homeostasis and robust information

transfer could be extended to a multi-compartmental model

having multiple synapses and gradients of various ion-channels.

This question is particularly important, especially given the

fact that previous computational frameworks employed a single

compartmental model, devoid of gradients in ion channels,

and having a single synapse (Honnuraiah and Narayanan,

2013).
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Linear relationship between synaptic
plasticity and HCN conductance plasticity
maintains homeostasis of input/output
response profile

We employed 3D reconstructed morphology of hippocampal

CA1 pyramidal neuron (Figure 1A), which expressed five different

voltage-gated ion channels (VGICs): Na+,A-type K+ (KA), delayed

rectifier K+ (KDR), T-type Ca++ (CaT), and hyperpolarization-

activated h (HCN) channels (Figure 1B), as described previously

(Rathour and Narayanan, 2014; Rathour and Kaphzan, 2022) (also

see Materials and methods). With this pattern of distribution

of VGICs (Figure 1B), the model neuron was able to satisfy

various experimental constrains regarding the co-existence of six

functional maps along the same neuronal topography (Rathour

and Narayanan, 2014). We placed 303 synapses on the apical

side of the dendritic arbor (green region in Figure 1A) and tuned

the permeability values of these synapses so that somatic EPSP

amplitudes of all synapses were highly similar to each other

(Figure 1C), therefore, maintaining dendritic democracy (Hausser,

2001). Toward this end, we had a model neuron expressing

gradients of various VGICs and AMPA receptor conductance

(Figures 1B, C). Next, we assessed the synaptically driven

input/output response profile of this model neuron by stimulating

all synapses at given frequencies (1–50Hz in steps of 1Hz) 10 times

(Figure 1D). For each trial, stimulating timings of all synapses were

drawn from independent Poisson distribution, thus, providing a

response variability across trials for the given stimulus frequencies.

To this end, we had only AMPA receptor type conductance

at the synapses, given that baseline synaptic transmission is

largely carried by AMPA receptors. Next, we examined whether

induction/expression of synaptic plasticity disrupts these response

profiles (Figure 1D) and if so, could they be restored by HCN

conductance plasticity using previously derived linear relationship

between synaptic plasticity and HCN conductance plasticity for

maintaining input/output response homeostasis.

To answer this question, we introduced NMDA receptors

at synapses along with AMPA receptors. Permeability values

of NMDA receptors were defined by NMDA-to-AMPA ratio

(NAR) for any given synapse, which was set to be 1.5 for all

synapses. To induce synaptic plasticity, individual synapses were

assigned a stimulus frequency by random sampling from the

uniform distribution in the range of 4–12Hz. All synapses were

stimulated simultaneously and stimulating timings of synapses

were determined by independent Poisson distributions. Owing to

synaptic stimulation, and consequent entry of Ca++ from NMDA

receptors and T-type Ca++ channels, synaptic weights evolved

(Figure 1F) based upon intracellular Ca++ levels (Figure 1E). At

the end of the simulation most synapses expressed LTP whereas

few synapses underwent LTD (Figure 1G). When assessed for

correlation between final synaptic weights and stimulus frequencies

or final synaptic weights and location of synapses, we found weak

correlations; R2 = 0.046 for final synaptic weight and stimulus

frequency, and R2 = 0.326 for final synaptic weight and location

of the synapse. These results suggest that synaptic plasticity was

not just a function of either stimulus frequency or AMPA and

NMDA receptor permeability values. This result should be expected

given that the synaptic plasticity response profile is determined

by multiple factors including synaptic and active membrane

properties. Consequent to the increase in synaptic weights, somatic

EPSP amplitude also increased (Figure 1H). Next, we assessed

the synaptically driven input/output response profiles after the

expression of synaptic plasticity. We found that after the expression

of synaptic plasticity, input/output response profiles shifted toward

the left (Figure 1I) owing to the increase in the synaptic drive

following synaptic plasticity (Figure 1H). This shift in input/output

response profiles constitutes a perturbation for a given input

pattern, and requires some kind of homeostatic mechanism

to restore the input/output response profile (Honnuraiah and

Narayanan, 2013).

Plasticity in HCN conductance along with synaptic plasticity

has been postulated to play a key role in maintaining homeostasis

of the input/output response profile (van Welie et al., 2004;

Fan et al., 2005; Brager and Johnston, 2007; Narayanan and

Johnston, 2007, 2010). A quantitative modeling study showed

that a linear relationship between synaptic plasticity and HCN

conductance plasticity is sufficient for maintaining the homeostasis

of the input/output response profile (Honnuraiah and Narayanan,

2013). Hence, we employed this linear relationship (Figure 2A),

derived from a single-compartment model having a single synapse

(Honnuraiah and Narayanan, 2013), to our morphologically

realistic model that has multiple synapses and gradients of

various VGICs. We found that increasing the slope of the linear

relationship between synaptic plasticity and HCN conductance

plasticity shifted the input/output response profiles toward the right

(Figure 2B). Next, we employed root mean squared error (RMSE)

as a measure to achieve homeostasis of input/output response

profile. RMSE between the baseline response frequency profile

and the response frequency profile obtained after synaptic and

HCN conductance plasticity yielded inverted bell shaped curve

as a function of the slope of the linear relationship (Figure 2C).

Slope at which RMSE reached minimum value was taken as

the optimal slope for yielding the homeostasis of input/output

response profile. Looking at the evolution of synaptic weights

during concurrent synaptic and HCN conductance plasticity

(Figure 2D), we found that the overall change in magnitude of

synaptic weights was lesser compared to the one achieved with

only synaptic plasticity due to synaptic stimulation and Ca++

influx (compare Figures 1F vs. 2D). This is due to the concurrent

increase in HCN conductance (Figure 2E). This decrease in

magnitude of synaptic plasticity is also reflected in distribution

of final synaptic weights (Figure 2F), thereby leading to decreased

somatic EPSP amplitudes (Figure 2G). Owing to increase in HCN

conductance during synaptic and HCN conductance plasticity

(Figure 2E), input resistance (Figure 2H) and intrinsic firing rate

(Figure 2I) decreased as observed experimentally (Fan et al.,

2005; Narayanan and Johnston, 2007). Taken together, the herein

results suggest that a linear relationship between synaptic plasticity

and HCN conductance plasticity is sufficient for maintaining

the homeostasis of input/output response profiles in a multi

compartmental neuronal model having various synapses and

gradients of ion channels.
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Optimal slope of the linear relationship
decreases with increase in baseline synaptic
permeability values and HCN conductance

Given that synaptic gradient along the neuronal arbor

can undergo scaling depending upon the incoming network

activity (Turrigiano, 1999; Turrigiano and Nelson, 2004), we

asked whether scaling of the synaptic gradient in our model

would change the optimal slope of the linear relationship

between synaptic plasticity and HCN conductance plasticity for

maintaining the homeostasis of input/output response profile.

To test this, we multiplied the baseline synaptic permeability

values of our base model (Figure 1C) by various scaling

factors (Supplementary Figure S1A) to get the unitary EPSP

amplitude of different magnitudes (Supplementary Figure S1B),

while making sure that dendritic democracy is maintained.

First, we generated synaptically driven input/output response

profiles under baseline conditions for different scaling factors

(black traces in Supplementary Figures S1C–F). We found that

an increase in scaling factor shifted the baseline input/output

response profiles toward the left (compare black traces in

Supplementary Figures S1C–F; right), owing to the increase

in synaptic drive. Next, we induced synaptic plasticity in

different models having different scaling factors by employing

the aforementioned protocol and assessed their input/output

response profiles after the expression of synaptic plasticity. We

found that expression of synaptic plasticity resulted in a further

leftward shift in input/output response profiles for various scaling

factors (red traces in Supplementary Figures S1C–F; right), and

that the input/output response profile with the highest scaling

factor exhibited a drop for high stimulus frequencies (red trace

in Supplementary Figure S1F; right), owing to depolarization-

induced inactivation of sodium channels.

Next, we introduced HCN conductance plasticity along

with synaptic plasticity with different slopes of the linear

relationship (Figure 2A) for various scaling factors. As found

previously (Figure 2C), RMSE between the baseline response

frequency profile and the response frequency profile obtained

after synaptic and HCN conductance plasticity yielded an

inverted bell-shaped curve as a function of the slope of the

linear relationship (Supplementary Figures S1C–F; left). Looking

at the optimal slope that produces homeostasis of input/output

response profiles, we found that the optimal slope decreases as

the scaling factor increases (Supplementary Figures S1C–F; left,

Supplementary Figure S1G). We also found that irrespective of the

scaling factor, baseline input/output response profiles exhibited

type-I firing rate profiles, whereas after homeostasis of input/output

response profiles, the firing rate profiles became type-II through

an increase in HCN conductance (compare black and green traces

Supplementary Figures S1C–F; right) (Connor, 1975; Drion et al.,

2015).

Since it is established that the expression of HCN conductance

is highly variable within the homogenous neuronal population,

and synaptic plasticity protocols induce variable change in the

magnitude of HCN conductance (Fan et al., 2005; Narayanan

and Johnston, 2007; Campanac et al., 2008), we examined the

dependence of the optimal slope formaintaining the homeostasis of

input/output response profile against baseline HCN conductance.

To test this, we employed a model neuron with the highest

scaling factor (Supplementary Figure S1F; right). The reason for

choosing this model as opposed to the baseline model (Figure 1C)

was to maintain a significant synaptic drive for providing

input/output response profiles with various baseline HCN

conductance values. We varied the baseline HCN conductance

values and generated distinct gradients of HCN conductance

(Supplementary Figure S2A). Thereafter, we generated synaptically

driven input/output response profiles under baseline conditions

for the different baseline HCN conductance values (black traces

in Supplementary Figures S2B–F; left). We found that increasing

the baseline HCN conductance values shifted baseline input/output

response profiles toward the right (compare black traces in

Supplementary Figures S2B–F; left), owing to a decrease in intrinsic

excitability. Next, we induced synaptic plasticity in different models

having different HCN conductance gradients and assessed their

input/output response profiles after the expression of synaptic

plasticity. We found that expression of synaptic plasticity resulted

in a leftward shift and an increase in input/output response

frequencies for various baseline HCN conductance values (red

traces in Supplementary Figures S2B–F; left). In all cases, the

input/output response profile exhibited a drop for high stimulus

frequencies (red trace in Supplementary Figures S2B–F; left), owing

to depolarization-induced inactivation of sodium channels.

Next, we introduced HCN conductance plasticity along with

synaptic plasticity with different slopes of the linear relationship

for various base HCN conductance values. As previously, by

employing RMSE as a measure to obtain optimal slope (Figure 2C),

we found that the optimal slope decreased with the increase in

baseline HCN conductance values (Supplementary Figures S2B–

F; left, Supplementary Figure S2H). Here also, we observed the

switch in input/output response profiles from type-I to type-

II after achieving input/output response homeostasis for various

baseline HCN conductance values (compare black and green traces

Supplementary Figures S2B–F; left). Taken together, these results

suggest that the linear relationship between synaptic and HCN

conductance plasticity could be employed for a wide range of

synaptic permeability and HCN conductance values in order to

maintain homeostasis of input/output response profiles, where an

optimal slope of the linear relationship is critically dependent upon

baseline synaptic permeability values and HCN conductance levels.

HCN conductance plasticity together with
synaptic plasticity maintains homeostasis
of input/output response profile during
repeated synaptic stimulation

The major negative impact of Hebbian plasticity is the

positive feedback loop incurred by an increase/decrease in

AMPA and/or NMDA receptor permeability during repetitive

synaptic stimulation. These positive feedback loops could result

in cessation of action potential firing either through a reduction

in synaptic drive during LTD or enhanced synaptic drive during

LTP, which eventually could lead to depolarization-induced
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inactivation of sodium channels. Therefore, it is essential to

address the validity of a linear relationship between synaptic

and HCN conductance plasticity in maintaining the homeostasis

of input/output response profiles during repetitive synaptic

stimulation. To test this, we employed our baseline model

(Figure 1C) and examined whether a linear relationship between

synaptic and HCN conductance plasticity is sufficient for

maintaining homeostasis of input/output response profiles during

repetitive synaptic stimulation. We induced synaptic plasticity by

stimulating individual synapses at a given frequency, drawn from

the uniform distribution of 4–12Hz range, where stimulating

timings of each synapse were determined by independent

Poisson distribution. After the expression of synaptic plasticity,

permeability values of AMPA receptors for each synapse were

updated according to the final synaptic weight and then the

model neuron was assessed for synaptically driven input/output

response profile. During the next synaptic stimulation, synapses

expressed updated AMPA receptor permeability values while the

spatio-temporal synaptic stimulation pattern was kept constant.

This procedure was repeated seven times. Increasing evidence

suggest that along with AMPA receptor conductance, NMDA

receptor conductance could also undergo plasticity (Hunt and

Castillo, 2012), and in certain cases it is found that plasticity

in NMDA receptor conductance along with AMPA receptor

conductance maintains NMDA-to-AMPA ratio constant before

and after synaptic plasticity (Watt et al., 2004). Therefore, in our

simulations, following the change in AMPA receptor expression

due to plasticity we updated NMDA receptor permeability

values so that the NMDA-to-AMPA ratio was kept at 1.5

throughout all iterations of synaptic stimulation. This means that

after every iteration, AMPA and NMDA receptor conductance

expressed synaptic plasticity. Therefore, our model successfully

incorporated positive feedback loops associated with both AMPA

and NMDA receptors.

First, we tested the effect of repetitive synaptic plasticity

on input/output response profiles under the condition of

only synaptic plasticity. We found that input/output response

profiles of the model neuron kept on shifting toward the

left during repetitive synaptic stimulation (Figure 3A), owing

to the increased synaptic drive after the expression of LTP

(Figure 1G). However, after certain iterations, the model

neuron ceased firing at high stimulation frequencies and

eventually stopped firing for any stimulation frequency owing

to depolarization-induced inactivation of sodium channels

due to increase in synaptic drive during repetitive synaptic

stimulation (Figure 3A). This increase in response frequency

followed by cessation of firing of action potential during

repetitive synaptic stimulation was also reflected in the RMSE

for various iterations (Figure 3B). The RMSE exhibited an

initial increase as the response frequency increased and later

on it decreased as the model neuron underwent depolarization-

induced inactivation of sodium channels (Figure 3B). Given

that during repetitive synaptic stimulation the model neuron

completely lost input/output response homeostasis (Figure 3A),

and given the fact that the loss of firing efficiency due to

depolarization-induced inactivation of sodium channels

could severely limit information transfer efficacy of neurons

(Honnuraiah and Narayanan, 2013), we aimed to examine

whether the linear relationship between synaptic plasticity and

HCN conductance plasticity would be sufficient for maintaining

homeostasis of input/output response profile during repetitive

synaptic stimulation.

Our previous sensitivity analyses showed that the optimal slope

of the linear relationship between synaptic and HCN conductance

plasticity for maintaining input/output response homeostasis

strongly depends on baseline synaptic permeability values and

HCN conductance levels (Supplementary Figures S1, S2). Since

synaptic permeability values and thereby HCN conductance levels

alter after each iteration of synaptic stimulation, the optimal

slope of the linear relationship for maintaining homeostasis

of the input/output response profile change for each iteration

of synaptic stimulation. By employing RMSE as a measure to

obtain the optimal slope (Figure 2C), we found that the optimal

slope for reducing RMSE decreased as a function of iteration

number (Figure 3C). This is expected given that overall synaptic

permeability value and thereby HCN conductance magnitude

increase after every iteration of synaptic stimulation, hence,

the optimal slope would decrease accordingly (Figures 3, 4).

We also found that for each iteration of synaptic stimulation,

RMSE was lesser (Figure 3D green line) as compared to only

synaptic plasticity condition (Figure 3D red line) and it did not

change much with an increase in iteration number of synaptic

stimulation (Figure 3D). Finally, after looking at the input/output

response profiles for each iteration of synaptic stimulation, under

the condition of synaptic and HCN conductance plasticity, we

found that homeostasis of input/output response profiles was

maintained throughout various iterations of synaptic stimulation

(Figure 3E). These results suggest that a linear relationship

between synaptic and HCN conductance plasticity is sufficient for

maintaining homeostasis of input/output response profiles during

repetitive synaptic stimulations, where the slope of the linear

relationship is determined by synaptic permeability values and

HCN conductance levels.

Although, this analysis confirms that the linear relationship

between synaptic and HCN conductance plasticity is sufficient for

maintaining homeostasis of input/output response profiles during

repetitive synaptic stimulation, it is still unclear whether this

homeostasis of input/output response profiles is also accompanied

by homeostasis of response frequency distribution. This is

particularly important, especially given the fact that response

frequency distribution could profoundly affect the information

encoding capabilities of a neuron (Stemmler and Koch, 1999;

Triesch, 2007). Therefore, we looked into the distribution of

response frequencies. We found that under the baseline condition

the distribution of response frequencies inclined to be uniform

(Figure 3F), whereas after the first iteration of introducing only

synaptic plasticity, response frequency distribution shifted toward

exponential (Figure 3G). On the other hand, under the condition

of introducing both synaptic and HCN conductance plasticity,

distribution response frequency shifted toward bimodal after

the first iteration (Figure 3H), which eventually converged to

be lognormal toward the last iteration (Figure 3I). This result

suggests that homeostasis of input/output response profiles could

be achieved with different distributions of response frequencies.
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Homeostasis of input/output response
profiles occurs at the expense of robust
mutual information transfer

Our previous results suggest that a linear relationship

between synaptic and HCN conductance plasticity is sufficient

for maintaining homeostasis of input/output response profiles

during repetitive synaptic stimulation (Figure 3), however, it is

not clear whether homeostasis of input/output response profiles is

accompanied by maintenance of robust information transfer. The

general notion is that the homeostasis of input/output response

profiles is sufficient for maintaining robust information transfer

(Triesch, 2007; Honnuraiah and Narayanan, 2013). Therefore, we

analyzed our data under rate coding schema to test whether the

homeostasis of the input/output response profile was accompanied

by robust information transfer.

At first, we looked at the probability distributions of response

frequencies for various stimulus frequencies. We observed that

probability distributions of response frequencies for various

stimulus frequencies were confined within the range of 0–

45Hz under baseline conditions (Figure 4A), whereas during

the introduction of only synaptic plasticity, these distributions

shifted toward the right in the first iteration of synaptic

stimulation (Figure 4B) owing to increase in synaptic drive.

On the other hand, distributions of response frequency for

various stimulus frequencies after the 7th iteration of synaptic

stimulation converged toward lowermost values with distributions

heavily overlapping with each other (Figure 4C). This is expected,

given that after the 7th iteration of synaptic stimulation, the

model neuron ceased firing owing to depolarization-induced

inactivation of sodium channels (Figure 3A). Next, we looked into

the probability distributions of response frequencies for various

stimulus frequencies under the condition of synaptic and HCN

conductance plasticity. We found that the probability distributions

of response frequencies were maintained within similar ranges as

to that of the baseline condition (Figure 4A) after the first iteration

of synaptic stimulation (Figure 4D). Analyzing the distributions of

response frequencies after the 7th iteration of synaptic stimulation,

we found that the overall distribution shifted toward the right, but

still maintained the large range of response frequencies (Figure 4E).

We also noticed that the overall variability in response frequencies

was increased after the 7th iteration of synaptic stimulation, which

caused the distributions of response frequencies across various

stimulus frequencies to strongly overlap (Figure 4E). This result

suggests that although a linear relationship between synaptic

and HCN conductance plasticity could maintain a similar range

of response frequencies, it could not account for the shape of

individual probability distributions of response frequencies across

various stimulus frequencies.

Looking at the distributions of response probability (derived

from traces shown in Figures 4A–E) under various conditions,

we found that for only synaptic plasticity condition, the response

probability distribution shifted toward the right compared to

baseline condition for the first iteration of synaptic stimulation,

while after the 7th iteration of synaptic stimulation the response

probabilities converged toward the lowermost values (Figure 4F).

On the other hand, the distribution of response probability, under

the condition of synaptic and HCN conductance plasticity, was

spread over the range of response frequencies irrespective of the

iteration of synaptic stimulation (Figure 4G). Turning toward the

mutual information, we found that irrespective of the condition,

whether only synaptic plasticity or synaptic and HCN conductance

plasticity, mutual information decreased as a function of iteration

number (Figure 4H). We also noticed that mutual information,

under the condition of only synaptic plasticity, was higher

compared to the condition of synaptic and HCN conductance

plasticity for the initial few iterations of synaptic stimulation,

while after that mutual information was lower (Figure 4H). This

result suggests that homeostasis of input/output response profiles

is not sufficient in maintaining robust information transfer during

repetitive synaptic stimulation.

Optimal slope for information
maximization does not rescue the decrease
in mutual information during repetitive
synaptic stimulation

Our previous results showed that homeostasis of input/output

response profiles was accompanied by a decrease in mutual

information transfer (Figures 3, 4). Next, we investigated whether

this loss of mutual information transfer could be rescued by

optimizing the slope of the linear relationship between synaptic

and HCN conductance plasticity, in order to maximize the

information transfer during repetitive synaptic stimulation. In our

previous analysis we computed mutual information in 0–50Hz

stimulus frequency range. But given that our model neuron does

not fire action potentials until 10Hz (Figure 1D), we computed

mutual information in 10–50Hz stimulus frequency range to

maximize mutual information. While doing this, we computed

mutual information for various slopes of linear relationships

between synaptic and HCN conductance plasticity; and the slope,

where mutual information exhibited maximum value, was taken

as the optimal slope (Figure 5A). We found that the optimal

slope decreased with the increase in the number of iterations

of synaptic stimulations (Figure 5B). Looking into the mutual

information as a function of iteration number and for the

corresponding optimal slope, we found that mutual information

still decreased with the increase in iteration of synaptic stimulation

(Figure 5C) [mutual information (bits); 3.96 for baseline; 3.74

for 1st iteration; 2.49 for 7th iteration]. Correspondingly,

looking at the input/output response profiles, we found that the

homeostasis of input/output response profiles was completely lost

(Figure 5D), and RMSE between baseline response profile and

response profile obtained after synaptic and HCN conductance

plasticity increased as a function of number of iteration

(Figure 5E). Compared to aforementioned results for maintaining

the homeostasis of input/output response profiles during repeated

synaptic stimulation (Figure 3), where the distribution of response

frequencies became bimodal and lognormal after 1st and 7th

synaptic stimulation, respectively (Figures 3H, I), here, we found

that response frequencies retained the exponential distribution

after the 1st and 7th synaptic stimulations (Figure 5F). These
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results suggest that linear relationship between synaptic and HCN

conductance plasticity is sufficient for maintaining the homeostasis

of input/output response profiles (Figure 3) but could not sustain

robust information transfer irrespective of the optimal slope

for RMSE minimization or mutual information maximization

(Figures 4, 5).

To understand the mechanistic basis for the reduction in

information transfer for the two above-mentioned cases, we looked

into changes in response entropy as well as noise entropy with

repeated synaptic stimulation. Usually, mutual information can

be reduced by either reduction in response entropy, or increase

in noise entropy, or by a combination of the two (Equation

23). Hence, we computed the percentage change in response and

noise entropy with respect to baseline values as a function of the

iteration number of synaptic stimulation. We found that under

the scenario of RMSE minimization, response entropy did not

change significantly whereas noise entropy increased up to three-

fold by the end of the 3rd iteration of synaptic stimulation and

later on stabilized (Figure 5G). On the other hand, under the

condition of mutual information maximization, noise entropy did

not change much by the end of the 3rd iteration of synaptic

stimulation, but afterward, it increased while response entropy

did not change significantly throughout the various iterations

of synaptic stimulation (Figure 5H). These results suggest that

irrespective of the condition of slope optimization, the reduction

in mutual information is due to the increase in noise entropy.

Synaptic plasticity disrupts place field
activity in the model neuron

So far, our study focused on Poisson-distributed synaptic

stimulation in order to understand the relationship between

synaptic and HCN conductance plasticity in enabling homeostasis

of input/output response profiles and its consequence on mutual

information transfer. Although Poisson-distributed synaptic inputs

have been widely used in computational models for understanding

various aspects of neuronal and/or network functioning, it is

noteworthy that these inputs were shown to occur largely in cortical

regions (Softky and Koch, 1993; Compte et al., 2003), whereas

hippocampal neurons are driven by Gaussian modulated synaptic

inputs during exploratory behavior and rapid eye moment (REM)

sleep (Buzsaki, 2002). Therefore, it is important to validate the

usefulness of a linear relationship between synaptic and HCN

conductance plasticity for enabling homeostasis of input/output

response profiles under the condition of Gaussian-modulated

synaptic inputs. To do this, we employed a place cell model given

that place field activity could be regulated by both synaptic plasticity

as well as HCN conductance (Mehta et al., 2000; Hussaini et al.,

2011).

To generate place field activity, first, we placed 151 synapses

(base theta synapses) on the apical side of the dendritic arbor

(Figure 6A) and activated them using Gaussian-modulated input

timings (Schomburg et al., 2012; Sinha and Narayanan, 2015) to

obtain baseline theta frequency membrane potential oscillations at

around 8Hz with sparse firing of action potentials (Figure 6B; non-

shaded region). Then, we introduced another 61 synapses (place

theta synapses), along the same dendritic arbor to that of base

theta synapses, and activated them to induce place field activity

(Figure 6B; shaded region). With this kind of synapse distribution

and activation pattern, we ran the simulation for 10 s. Base theta

synapses were activated throughout this 10 s period, whereas place

theta synapses were activated between 3–8 s period (Figure 6B;

shaded region). Correspondingly, an asymmetric depolarizing

ramp current was delivered at the soma during 3–8 s period. With

this kind of setup, our model place field activity was able to

satisfy various experimental observations; (1) During non-place

field activity, action potential firing was sparse (Harvey et al., 2009).

(2) Power of intracellular theta membrane potential oscillations

was higher during place field activity compared to non-place

field activity. (3) Average membrane potential was almost 4mV

depolarized during place field activity compared to non-place

field activity.

Next, we introduced synaptic plasticity during place field

activity. Given that theta frequency synaptic stimulation is

sufficient for inducing synaptic plasticity in vitro, we examined

whether Gaussian-modulated synaptic inputs at theta frequency are

sufficient for inducing synaptic plasticity in our place field model.

Therefore, we assessed the evolution of synaptic weights of place

theta synapses during place field activity, given that only place theta

synapses were allowed to undergo synaptic plasticity. We found

that during the ongoing theta activity, the weights of place theta

synapses evolved during the place field activity (Figure 6C), and a

number of place theta synapses exhibited robust LTP at the end

of that place field activity (Figure 6D). Correspondingly, unitary

EPSP amplitudes at soma also increased after the expression of

LTP (Figure 6E). Looking at the membrane potential dynamics

during place field activity during which synaptic weights also

evolved (Figures 6C, D), we found that as synaptic weights evolved

during place field activity, the firing rate also increased and

eventually, synaptic drive increased so much that depolarization-

induced inactivation of sodium channels kicked in and the model

neuron ceased to fire action potentials during place field activity

(Figures 6F, G). This cessation of action potential firing constitutes

a loss of information and has to be rescued in order to maintain

place field activity.

Linear relationship between synaptic and
HCN conductance plasticity is su�cient for
maintaining stable place field activity

To test whether a linear relationship between synaptic and

HCN conductance plasticity is sufficient for maintaining stable

place field activity, we introduced HCN conductance plasticity

along with synaptic plasticity using a linear relationship (Figure 7A)

as described previously (Honnuraiah and Narayanan, 2013). We

employed RMSE between baseline place field profile and place field

profile obtained after synaptic and HCN conductance plasticity

as a measure of stability of place field activity. We found that

introducing HCN conductance plasticity along with synaptic

plasticity, using different slopes, resulted in the restoration of place

field activity (Figure 7B), where RMSE exhibited an inverted bell-

shaped form as the function of the slope of that linear relationship
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(Figure 7C). Looking at the membrane potential dynamics during

the optimal slope of the linear relationship between synaptic and

HCN conductance plasticity, we found that place field activity

was completely restored (Figure 7D). Owing to the increase

in HCN conductance during synaptic and HCN conductance

plasticity (Figure 7E), the evolution of synaptic weights was

decreased (Figures 7F, G) and correspondingly, somatic unitary

EPSP amplitude (Figure 7H) and input resistance (Figure 7I) along

the neuronal trunk also decreased. These results suggest that

a linear relationship between synaptic and HCN conductance

plasticity is sufficient for maintaining stable place field activity and

also point that a linear relationship between synaptic and HCN

conductance plasticity could be utilized for enabling homeostasis

of input/output response profiles under the condition of Gaussian-

modulated inputs.

Discussion

Homeostatic regulation of neuronal physiological properties

lies at the heart of normal brain functioning. Various homeostatic

mechanisms at synaptic, intrinsic, and molecular level act either

independently or in concert with each other to provide stability

to various neurophysiological properties (Turrigiano and Nelson,

2000, 2004; Turrigiano, 2007, 2011). To this end, in this study,

we show that the previously derived linear relationship between

synaptic plasticity and HCN conductance plasticity in a single

compartmental model having a single synapse for maintaining

input/output response homeostasis (Honnuraiah and Narayanan,

2013) could be extended further to a multi-compartmental model

having multiple synapses and gradients of various ion-channels

(Figures 1, 2), where the optimal slope of the linear relationship

between synaptic and HCN conductance plasticity is heavily

dependent upon synaptic permeability values and base HCN

conductance levels. We also found that various distributions of

response frequencies could yield similar input/output response

profiles (Figure 3). Therefore, we further show that homeostasis

of input/output response profiles does not necessarily translate to

robust information transfer (Figures 4, 5), given that information

transfer heavily depends upon the distribution of response

frequencies (Stemmler and Koch, 1999; Triesch, 2007). Lastly,

using a Gaussian-modulated input pattern, we show that HCN

conductance plasticity along with synaptic plasticity could provide

stability to place field activity (Figures 6, 7).

Homeostasis of neuronal properties and
various ion channels

Homeostasis of neuronal properties is extremely important

for physiological, behavioral, and cognitive functions. Here, we

specifically focused on the homeostasis of input/output response

profiles during synaptic plasticity. Using biophysically rooted and

experimentally constrained computational principles, we show

that a linear relationship between synaptic plasticity and HCN

conductance plasticity is sufficient for maintaining input/output

response homeostasis. Although, homeostasis of input/output

response profiles was achieved by concurrent synaptic and HCN

conductance plasticity, certain intrinsic physiological properties

that are mediated/regulated by HCN conductance, exhibited huge

change, commonly not observed in typical plasticity experiments.

For example, in our model, the change in somatic input resistance

after HCN conductance plasticity was very high compared to

typical experiments (Figure 2H). Several factors could contribute to

this anomaly between modeling and experimental data. Prominent

among these is the total synaptic weight change in our model

that could be far greater than the one found in experiments,

where plasticity is highly localized. In our model, a large number

of synapses distributed over a wide range of the neuronal

tree underwent LTP (Figure 2F). Therefore, in order to restore

input/output response homeostasis, a sizable amount of change in

HCN conductance was required. This rationale was corroborated

by the results of homeostasis of place field activity during

synaptic plasticity in our model. Specifically, place field activity

was generated using a lesser number of synapses, as a result, the

plasticity in HCN conductance for maintaining place field activity

was lesser, and subsequently, the change in input resistance was

within experimentally observed ranges (Figures 6, 7). Here, we

exclusively considered only HCN conductance plasticity during

synaptic plasticity, whereas experimentally it is known that several

other voltage-gated ion channels change during synaptic plasticity-

inducing protocols (Frick and Johnston, 2005;Magee and Johnston,

2005; Lin et al., 2008; Narayanan and Johnston, 2012; Rathour and

Narayanan, 2019). Therefore, a future model should also account

for the plasticity in various other ion channels during synaptic

plasticity and should delineate specific roles of various ion channels

in contributing toward homeostasis of input/output response

profiles. This is extremely important, given that each type of ion

channel has its own influence on a given physiological property,

therefore, combinatory dynamics of various ion channels should be

accounted while achieving homeostasis of input/output response

profiles and also constraining various physiological properties.

Homeostasis and information transfer

Within the framework of rate coding schema, it is inferred

that homeostasis of input/output response profiles maintains

robust information transfer (Triesch, 2007; Honnuraiah and

Narayanan, 2013). Our results challenge this notion as we observed

that homeostasis of input/output response profiles occurred at

the expense of information coding capabilities (Figures 3, 4).

Information transfer heavily depends upon the distribution of

response frequencies (Stemmler and Koch, 1999; Triesch, 2007).

Therefore, looking into the distributions of response frequencies,

we found that disparate distributions of response frequencies could

yield similar input/output response profiles (Figure 3). This implies

that for similar input/output response profiles, information transfer

could be very different, as similar input/output response profiles

are coming from different distributions of response frequencies

(Figures 3, 4). This is one aspect of the dependence of information

transfer on the distribution of response frequencies, which we

found need not be the rule of thumb. Specifically, when we

optimized the slope of the linear relationship between synaptic

and HCN conductance plasticity for maximizing information

transfer, we found that even with similar distributions of response

frequencies, the model neuron had distinct information transfer
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capabilities (Figure 5). After probing into the mechanistic basis

of this anomaly we found that it is noise entropy (a measure of

response variability of the system itself), which played a critical role

in determining information coding capabilities (Figure 5). Under

both scenarios, homeostasis of input/output response profile or

maximizing information transfer, noise entropy was increased.

Although, we did not explore the mechanistic basis for the

alteration of noise entropy with repeated synaptic stimulation,

under both scenarios, homeostasis and information maximization,

only two things changed in the system, synaptic permeability

values and HCN conductance levels. Therefore, future studies

should focus on exploring the relative contributions of synaptic

and HCN conductance plasticity in determining information

coding capabilities. Moreover, given that several other voltage-

gated ion channels exhibit plasticity during synaptic plasticity-

inducing protocols (Frick and Johnston, 2005;Magee and Johnston,

2005; Lin et al., 2008; Narayanan and Johnston, 2012; Rathour

and Narayanan, 2019), the role of these channels should also

be investigated in determining information coding capabilities

along with homeostasis of intrinsic properties and input/output

response profiles.

Regenerative events, synaptic plasticity and
input/output relationship

Hippocampal CA1 neuron dendrites posses a myriad of VGICs

(Johnston et al., 1996; Migliore and Shepherd, 2002; Lai and Jan,

2006). The presence of these VGICs transform these dendrites

into a powerful computational machinery (Llinas, 1988; Marder,

1998; Hutcheon and Yarom, 2000; London and Hausser, 2005;

Johnston and Narayanan, 2008; Remme et al., 2010; O’Donnell

and Nolan, 2011). One aspect of this is their capability of

generating regenerative events (e.g., dendritic Na+ spikes, Ca++

spike and NMDA spikes) during a strong stimulus. The role of

these regenerative events in modulating synaptic plasticity and

neuronal physiology is well-established. Although we did not

explicitly analyzed the role of such regenerative events in our

study, in our model, during the induction of synaptic plasticity

the stimulus was not strong, which mostly rules out the possibility

for generation of regenerative events during the induction period.

On the other hand, during input/output relationship stimulus

was strong enough to produce high frequency firing and hence

generation of regenerative events cannot be neglected. How these

regenerative events affect input/outout relationship is a question

which should be targeted in future studies. Moreover, in this study

we did not include NMDA receptors while computing input/output

relationship. But given that the role of NMDA receptors in

generating regenerative events is well established, we believe that

future studies should also focus on NMDA receptors and their role

in modulating input/output relationship.
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SUPPLEMENTARY FIGURE S1

Optimal slope of the linear relationship between synaptic and HCN

conductance plasticity decreases with increase in baseline synaptic

permeability. (A, B) Synaptic permeability values after scaling with various

permeability scaling factors (A) and corresponding somatic EPSP amplitudes

(B) plotted as a function of synaptic locations. (C–F) Left; Input/output

response profiles of model neuron under baseline condition (black) and

after synaptic plasticity (red) for various permeability scaling factors. Note

the increase in baseline response firing rate after increasing synaptic

permeability values. Middle; Root mean squared error (RMSE) between

baseline input/output response profile and response profile obtained after

synaptic and HCN conductance plasticity (green trace) as a function of

slope of the liner relationship for various permeability scaling factors. Red

dot denotes RMSE between baseline input/output response profile and

response profile obtained after only synaptic plasticity. Arrow indicates

optimal slope. Right; Input/output response profiles of model neuron under

baseline condition (black), after synaptic plasticity (red) and after synaptic

and HCN conductance plasticity (green) for various permeability scaling

factors. Data is presented as mean ± SD. (G) Optimal slope of the linear
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relationship between synaptic and HCN conductance plasticity plotted as a

function of synaptic scaling factor and baseline HCN conductance.

SUPPLEMENTARY FIGURE S2

Optimal slope of the linear relationship between synaptic and HCN

conductance plasticity decreases with increase in baseline HCN

conductance. (A) Schematic representation of various HCN conductance

gradients tested. (B–F) Left; Input/output response profiles of model neuron

under baseline condition (black) and after synaptic plasticity (red) for various

baseline HCN conductance values. Right; Root mean squared error (RMSE)

between baseline input/output response profile and response profile

obtained after synaptic and HCN conductance plasticity (green trace) as a

function of slope of the liner relationship for various baseline HCN

conductance. Red dot denotes RMSE between baseline input/output

response profile and response profile obtained after only synaptic plasticity.

Data is presented as mean ± SD. (G) RMSE as a function of various baseline

HCN conductance values. (H) Optimal slope of the linear relationship

between synaptic and HCN conductance plasticity plotted as a function of

baseline HCN conductance values.
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