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The blood–brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB)

represent two complex structures protecting the central nervous system

(CNS) against potentially harmful agents and circulating immune cells. The

immunosurveillance of the CNS is governed by immune cells that constantly

patrol the BCSFB, whereas during neuroinflammatory disorders, both BBB and

BCSFB undergo morphological and functional alterations, promoting leukocyte

intravascular adhesion and transmigration from the blood circulation into the CNS.

Multiple sclerosis (MS) is the prototype of neuroinflammatory disorders in which

peripheral T helper (Th) lymphocytes, particularly Th1 and Th17 cells, infiltrate the

CNS and contribute to demyelination and neurodegeneration. Th1 and Th17 cells are

considered key players in the pathogenesis of MS and its animal model, experimental

autoimmune encephalomyelitis. They can actively interact with CNS borders by

complex adhesion mechanisms and secretion of a variety of molecules contributing

to barrier dysfunction. In this review, we describe the molecular basis involved in

the interactions between Th cells and CNS barriers and discuss the emerging roles

of dura mater and arachnoid layer as neuroimmune interfaces contributing to the

development of CNS inflammatory diseases.

KEYWORDS
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1. Introduction

The central nervous system (CNS) is protected against potentially harmful molecules
and circulating immune cells by two distinct biological barriers localized at its borders: the
blood–brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) (Mastorakos
and McGavern, 2019). Under physiological conditions, CNS immunosurveillance is mediated
by a low and strictly controlled number of immune cells that constantly patrols the BCSFB
by migrating through pial vessels or crossing the choroid plexus (Prinz and Priller, 2017).
However, during neuroinflammatory diseases, both BBB and BCSFB undergo morphological
and functional alterations, promoting leukocyte migration from the blood stream into the CNS
parenchyma and CSF and consequent glial and neuronal dysfunction (Solár et al., 2020; Takata
et al., 2021).

Multiple sclerosis (MS) represents the most common chronic inflammatory disorder
affecting the CNS, and it is characterized by multifocal perivascular inflammatory infiltrates,
gliosis, progressive myelin loss, and axon degeneration (Compston and Coles, 2008). It is one of
the most widespread causes of neurological disability in young adults, arising usually between
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20 and 40 years of age and affecting women about twice as often as
men (Compston and Coles, 2008). Although the etiopathology is still
unknown, MS is a complex multifactorial disorder, in which genetic
susceptibility and environmental factors, such as infectious agents,
play a key role in disease development (Sospedra and Martin, 2005).
In most clinical cases (85–90%), the disease starts as a relapsing-
remitting disorder (RRMS), characterized by transient episodes of
neurologic dysfunction and acute lesions in which inflammation is
the main component. Chronic forms of the disease are mainly defined
by neurodegeneration and brain atrophy with a minor inflammatory
component, and can result from a gradual worsening of the RRMS
course [secondary progressive MS (SPMS)] or start from the disease
onset as primary progressive MS (PPMS) (Kaskow and Baecher-
Allan, 2018; Tillery et al., 2018).

Multiple sclerosis has long been supposed to be mediated by
an autoimmune process (Rivers et al., 1933; Kabat et al., 1947;
Sospedra and Martin, 2005). A crucial role for CD4+ lymphocytes
was suggested by pioneering studies in experimental autoimmune
encephalomyelitis (EAE), an animal model of MS (Ben-Nun et al.,
1981; Zamvil et al., 1985). The contribution of CD4+ T cells has been
further dissected by using the 2D2 transgenic mouse strain, whose
T cell receptor repertoire biased toward the myelin oligodendrocyte
glycoprotein (MOG) 35–55 antigen spontaneously determines the
onset of CNS autoimmunity (Bettelli et al., 2003). The genetic risk
related to the major histocompatibility complex (MHC) class II
locus (Barcellos et al., 2003; Sawcer et al., 2005), along with the
local inflammatory response orchestrated particularly by T helper
(Th) 1 and Th17 cells (Kunkl et al., 2020), prompted the scientific
community to investigate the specific contribution of activated T
cell subpopulations in the pathogenesis of MS. A higher number
of different populations of activated T cells was found in the CNS
parenchyma, CSF and blood of MS patients compared to control
subjects indicating that these cells have the capacity to cross brain
borders (Wallström et al., 2000; Arbour et al., 2003; Brucklacher-
Waldert et al., 2009; El-Behi et al., 2011). These observations opened
numerous research lines using the EAE model to elucidate the
mechanisms controlling T cell trafficking into the inflamed CNS.

Pathogenic features, clinical symptoms and disease course are
highly variable in MS patients, suggesting that multiple mechanisms
can contribute to disease development. Two main hypotheses on
the role of immune cells in the etiopathogenesis of MS have been
proposed to date. One is the “outside-in” hypothesis supporting the
idea that autoreactive CD4+ T lymphocytes activate in peripheral
lymphoid organs during infections or other inflammatory reactions,
supposedly due to molecular mimicry or bystander activation, and
then reach the “naïve” CNS starting local autoimmune responses
and neuroinflammation. On the other hand, the “inside-out”
hypothesis suggests that the pathological process begins within
the CNS, leading to the release of highly antigenic constituents
that secondarily promote an autoimmune and neuroinflammatory
response in predisposed individuals (Stys et al., 2012; Sen et al., 2020).
Dysfunctional brain barriers may represent critical contributors
to both scenarios, either promoting the onset of the peripheral
immune attack according to the “outside-in” hypothesis or sustaining
the “inside-out” pathway by facilitating peripheral recruitment of
ancillary proinflammatory and autoimmune cells. Moreover, in
both circumstances, the pathological outcome of BBB and BCSFB
breakdown contributes to myelin and axonal loss and, consequently,
to neurodegeneration and neurological impairment (Engelhardt,
2010).

2. BBB modulation during MS: The
classical paradigm

The BBB represents a specialized layer of endothelial cells with
tight junctions sealing cell-to-cell contacts and regulating the passage
of cells and molecules between the blood and the CNS. Together,
pericytes, astrocytes, microglial cells, neurons, and endothelial
cells contribute to the neurovascular unit, a key anatomical and
functional structure for the maintenance of CNS homeostasis
(Zenaro et al., 2017; Saint-Pol et al., 2020). BBB dysfunction is
considered a pathological hallmark in several inflammatory and
neurodegenerative disorders, including MS, since this barrier is one
of the gateways to the CNS for circulating leukocytes (Prinz and
Priller, 2017). BBB perturbation upon neuroinflammatory disorders
is associated with two main processes: (i) alteration of junctional
molecules leading to BBB breakdown and vascular leakage, and
(ii) endothelial activation with upregulation of adhesion molecules
and chemokines driving leukocyte recruitment into the brain
parenchyma and thus favoring their subsequent local reactivation.
While migration of autoreactive T cells into the CNS is required
to mount an autoimmune response, other activated T lymphocytes
can infiltrate the CNS regardless of antigen specificity, contributing
to the inflammation process (Hickey et al., 1991). In support of
these data, it was recently shown that in a passive EAE model
most invading CD4+ T cells were not myelin-specific. Particularly,
these lymphocytes displayed an antigen-independent, bystander-
activated, memory phenotype and contributed to disease pathology
by expanding the local production of pro-inflammatory cytokines
(Lee et al., 2019).

Magnetic resonance imaging (MRI), using gadolinium (Gd) as
a marker of cerebral vascular leakage, is a diagnostic tool and a
prognostic evaluator for MS (Filippi, 2000; Steinman, 2001; Leray
et al., 2010; Polman et al., 2011). Previous studies have shown that
BBB alterations may appear at very early disease stages, preceding
active lesion formation, and clinical manifestation (Filippi et al., 1998;
Plumb et al., 2002; Soon et al., 2007; Alvarez et al., 2015; Barkauskas
et al., 2015). A recent report based on elegant in vitro experiments
even speculates that an intrinsic BBB malfunctioning could represent
an additional pathogenetic mechanism for the development of MS
(Nishihara et al., 2022). Further, in RRMS patients, MRI clearly
indicates how areas of BBB disruption are topologically heterogenous
and coincide with perivascular inflammation and demyelinating
lesions during relapses (Miller et al., 1998; Treabă et al., 2014).
This suggests that BBB dysfunction is an early feature of MS and
may favor T cell transendothelial migration and subsequent immune
attack contributing to clinical worsening (Ortiz et al., 2014; Spencer
et al., 2018). Moreover, as previously shown in animal models,
leukocyte-BBB adhesive interactions during the process of leukocyte
extravasation in the CNS may lead to vascular inflammation
and further BBB impairment, amplifying neuroinflammation and
promoting neuronal damage (Siffrin et al., 2010; Rossi et al., 2011,
2021; Zenaro et al., 2013; Rossi and Constantin, 2016; Spencer et al.,
2018).

Multiple sclerosis evolution to neurodegeneration and brain
atrophy during chronic forms seems to be less associated to BBB
alterations and more to brain-compartmentalized self-sustaining
pathological processes (Steinman, 2001; Leray et al., 2010). Indeed,
the absence of Gd-enhancing lesions and the paucity of therapeutical
responses in the progressive stages of MS suggested that the BBB
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could regain integrity during disease progression (Coles et al.,
1999; Molyneux et al., 2000; Filippi and Rocca, 2005; Anderson
et al., 2006; Waxman, 2008; Young et al., 2008), whereas brain-
compartmentalized inflammation could be fostered by meningeal
lymphoid follicles (Serafini et al., 2004; Meinl et al., 2008; Choi et al.,
2012). Nevertheless, several observations, such as cortical deposition
of fibrinogen and diffuse tight junction aberrations, argue that BBB
dysfunction can still be present in the progressive forms of MS (Leech
et al., 2007; Yates et al., 2017).

2.1. BBB activation and expression of
adhesion molecules

Lymphocyte trafficking into the inflamed tissues represents a
critical event in the pathogenesis of autoimmune diseases. Based
on in vitro and in vivo evidence, leukocyte migration through the
vascular wall is described as a sequential process including distinct
adhesive events: tethering, rolling, chemoattractant-dependent
activation of integrins, slow rolling, firm adhesion (also called
arrest or sticking), crawling, and diapedesis (Ley et al., 2007;
Vestweber, 2015). Specificity and diversity in leukocyte-endothelial
cell interactions are generated by different combinations of
interchangeable ligand-receptor pairs for each step of the adhesion
cascade. The molecular specificity directing leukocytes to the site of
inflammation is regulated by adhesion molecules such as selectins,
integrins, and members of the immunoglobulin superfamily.
A critical step in the transition from leukocyte rolling to arrest is the
induction of firm adhesion by chemokines expressed on activated
endothelium. Chemokine receptors on the surface of rolling immune
cells bind to their cognate ligand, triggering a G protein-dependent
signaling that leads to the activation of membrane-expressed β1 and
β2 integrins (Montresor et al., 2012). At the BBB level, leukocyte
extravasation follows the standard paradigm of cell migration, and
the inhibition of adhesion mechanisms using different therapeutical
approaches proved to be beneficial in several models of brain
inflammatory conditions (Yednock et al., 1992; Piccio et al., 2002;
Constantin, 2008; Rossi et al., 2011; Fabene et al., 2013; Zenaro et al.,
2015; Farinazzo et al., 2018).

Adhesion molecules expressed by brain endothelial cells have
been studied for three decades for their role in lymphocyte trafficking
during EAE and MS. P-selectin is upregulated on CNS vasculature
during EAE (Piccio et al., 2002, 2005; Döring et al., 2007), whereas
E-selectin was found expressed on autoptic cerebral micro-vessels
of MS patients (Washington et al., 1994). In support of these
data, in vitro studies have shown that P-selectin glycoprotein ligand
(PSGL)-1, the major P-selectin ligand, is involved in rolling of
CD8+ T cells isolated from MS patients and contributes to the
transendothelial migration of MS-derived CD4+ T cells (Battistini
et al., 2003; Bahbouhi et al., 2009). Moreover, MRI targeting
of P-selectin with iron oxide-conjugated antibodies, to evaluate
the modulation of its expression on the endothelium during
inflammation, was found useful as a predictive method of EAE
activity (Fournier et al., 2017). However, blockade of P- and E-selectin
had no therapeutic effect on EAE models (Engelhardt et al., 2005;
Döring et al., 2007). Intriguingly, combined blockade of P-selectin
and α4 integrins resulted in significantly better clinical outcome than
anti-α4 integrin alone in EAE mice, suggesting that selectin blockade
may have some therapeutic effect in MS as well (Kerfoot et al., 2006).

Together, these data suggest that further studies are needed to better
understand the potential pathological role of endothelial selectins in
MS.

Cellular adhesion molecules (CAM) belonging to the
immunoglobulin superfamily such as vascular CAM-1 (VCAM-1),
intercellular CAM-1 (ICAM-1), activated leukocyte CAM (ALCAM),
and platelet endothelial CAM-1 (PECAM-1) are upregulated on the
CNS vasculature, enhancing leukocyte adhesion and migration to the
brain in both EAE and MS (Steffen et al., 1994; Cayrol et al., 2008;
Steiner et al., 2010; Greenwood et al., 2011; Wimmer et al., 2019).
The involvement of VCAM-1 and ICAM-1 is confirmed by the high
expression of very late antigen (VLA)-4 and lymphocyte function-
activated antigen (LFA)-1, their main ligands, respectively, on the
immune infiltrates populating MS lesions (Cannella and Raine,
1995; Bö et al., 1996). ICAM-1 expression on neuro-vasculature was
found to strongly correlate with relapses in RRMS patients, while the
blood levels of its soluble form is associated with the degree of BBB
impairment and disease activity in MS subjects (Cannella et al., 1990;
Hartung et al., 1995). Although VLA-4 can also bind fibronectin
with low affinity, its high affinity ligand VCAM-1 is believed to have
a central role in encephalitogenic T cell migration into the CNS,
as suggested by the strong blocking effect of anti-α4 integrin and
anti-VCAM-1 antibodies on EAE development, corroborated by
the therapeutic success of Natalizumab in MS patients (Yednock
et al., 1992; Baron et al., 1993; Chan and Aruffo, 1993; Steffen et al.,
1994; Miller et al., 2003; Belachew et al., 2011). Moreover, ALCAM
and its counter-ligand CD6 were correlated to an increased risk of
MS development (Wagner et al., 2014), further emphasizing the
relevance of CAMs in MS.

Chemokines are fundamental molecules for integrin activation
and leukocyte migration into the CNS (Constantin, 2008). C-C
motif chemokine ligand 19 (CCL19) and CCL21, two chemokines
able to induce integrin activation, were found to be expressed on
CNS endothelial cells of post-capillary venules in both healthy and
EAE mice, and these data correlated to C-C chemokine receptor
type 7 (CCR7) expression on perivascular T cells (Alt et al.,
2002). However, cerebral expression of CCL19 and CCL21 was not
found in MS subjects, suggesting that different chemokines may be
responsible for triggering intravascular integrin activation during
human disease (Kivisäkk et al., 2004). Several studies have instead
identified a constitutive expression of C-X-C motif chemokine
ligand 12 (CXCL12) on BBB endothelial cells in EAE mice and MS
patients (Krumbholz et al., 2006; McCandless et al., 2006, 2008).
Particularly, a CXCL12 expression gradient was detected along the
abluminal BBB surface in healthy animals and during early EAE,
as well as in uninflamed regions of the MS brain and in control
subjects. However, a preferential luminal localization of CXCL12
was found at EAE peak and in active MS lesions, suggesting a
role for this chemokine in integrin activation and intravascular
leukocyte adhesion (McCandless et al., 2006, 2008). Indeed, in both
MS and EAE, the intravascular expression of CXCL12 was associated
to the presence of intraluminal CXCR4+ adhering leukocytes as
well as to CXCR4 expression on perivascular infiltrating leukocytes
(McCandless et al., 2008). Previous studies have also suggested an
involvement of CXCR4 in the confinement of infiltrated T cells at
the perivascular level, promoting their compartmentalization around
blood vessels and preventing widespread parenchymal infiltration
(McCandless et al., 2006; Siffrin et al., 2009). Moreover, CXCR7,
an alternative receptor for CXCL12, is present on endothelial cells
within the CNS and its expression is increased in EAE at sites

Frontiers in Cellular Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fncel.2023.1101379
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1101379 February 9, 2023 Time: 15:2 # 4

Angelini et al. 10.3389/fncel.2023.1101379

FIGURE 1

Leukocyte intravascular adhesion contributes to vascular leakage during EAE. In vivo two photon laser scanning microscopy was performed on exposed
spinal cord of an EAE mouse at disease peak. Pial vessels were visualized through the intravenous injection of 70,000 kDa molecular weight
FITC-dextran. White arrows indicate leakage of FITC-dextran into the extravascular space at the point where circulating leukocytes (detected by the
imaging system as black dots) perform intravascular adhesion. Representative sequential images at T0 (A), after 40 s (B), and 80 s (C). Adapted and
modified from Dusi et al., 2019, (supplementary videos 1 and 2).

of inflammatory infiltration (Cruz-Orengo et al., 2011). Notably,
CXCR7 was shown to be critical in mediating CXCL12 internalization
and redistribution at CNS endothelial barriers and CXCR7 inhibition
ameliorated EAE and reduced leukocyte infiltration into the CNS
parenchyma (Cruz-Orengo et al., 2011). CCL2, CCL4, and CCL5
were also found to be expressed on cultured brain endothelial cell
suggesting that multiple chemokines may contribute to integrin
activation and subsequent arrest in inflamed CNS vessels, even if
their expression on the BBB and potential role during in vivo CNS
inflammation remains to be elucidated (Andjelkovic et al., 1999;
Quandt and Dorovini-Zis, 2004).

2.2. BBB leakage during
neuroinflammation

During inflammatory conditions, leukocyte adhesion on vascular
wall per se may lead to increased endothelial permeability (Figure 1).
Accordingly, the overexpression of endothelial CAMs during
neuroinflammation was shown to promote not only leukocyte
adhesion, but also BBB dysfunction and increased permeability.
Indeed, ICAM-1 cross-linking leads to reorganization of endothelial
cytoskeleton and tight junctions phosphorylation and destabilization,
favoring leukocyte adhesion and increasing BBB leakage (Durieu-
Trautmann et al., 1994; Adamson et al., 1999). In this context,
Rho/ROCK and Rac downstream signals are central modulators
of endothelial alterations induced by ICAM-1 and VCAM-1
crosslinking during leukocyte adhesive contacts. Particularly, ICAM-
1 engagement elicits RhoA activation and intracellular calcium
increase with subsequent reactive oxygen species (ROS) production,
actomyosin contraction, and formation of stress fibers (Etienne et al.,
1998; Etienne-Manneville et al., 2000; Wang and Doerschuk, 2000).
On the other hand, VCAM-1 clustering triggers Rac1 activation
and intracellular calcium release, allowing ROS generation, transient
disruption of adherent junctions and focal adhesion formation
(Lorenzon et al., 1998; Matheny et al., 2000; van Wetering et al., 2003).
The relevance of RhoA signaling was confirmed in vivo, since its
blockade attenuated EAE severity by reducing leukocyte migration
into the CNS (Greenwood et al., 2003). This activating signaling
within the cerebral endothelium deserves further investigation as a

potential molecular target to prevent leukocyte CNS invasion and
safeguard BBB integrity in MS. In addition to ICAM-1 and VCAM-1,
ALCAM was also found to be present on CNS endothelium during
MS and EAE and its expression was associated to T cell migration
(Cayrol et al., 2008). However, other studies performed in a chronic
EAE model demonstrated that ALCAM maintains BBB integrity by
controlling tight junction stability (Lécuyer et al., 2017), suggesting
a dual function of ALCAM in neuroinflammation as well as BBB
homeostasis (Cayrol et al., 2008; Lyck et al., 2017). Similarly, it was
shown that PECAM-1 favors T cell diapedesis across the BBB during
neuroinflammation, but also stabilizes BBB integrity (Graesser et al.,
2002; Wimmer et al., 2019). Together, these findings suggest that,
in addition to the inhibition of leukocyte trafficking into the CNS,
BBB stabilization and tight junctions recovery may also represent
a therapeutic strategy in brain inflammatory and demyelinating
diseases (Spencer et al., 2018).

3. T helper cells and BBB breaching: A
matter of adhesion molecules and
cytokines

3.1. Th1 and Th17 cell adhesion to the
BBB: A brief overview

Multiple sclerosis has been described as a T cell-mediated
autoimmune disease and its widely used model, EAE, is characterized
by a Th1 and Th17-driven autoimmune and neuroinflammatory
process (Segal, 2019). The study of recruitment kinetics of Th1 and
Th17 cells into the CNS during EAE led to the publication of some
contrasting reports, probably due to the in vivo phenotype plasticity
of these cells (Geginat et al., 2014). Whereas some EAE studies
indicated Th1 lymphocytes as the earliest CD4+ T cells infiltrating
the CNS, followed by secondary Th17 migration (O’Connor et al.,
2008), more recent findings suggested that Th17 are the pioneer
lymphocytes with a later accumulation of Th1 cells during EAE
development (Murphy et al., 2010). Accordingly, in vitro migration
studies support a preferential capacity of Th17 cells to migrate across
the BBB when compared to Th1 lymphocytes (Kebir et al., 2007), but
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the precise kinetics of Th cell infiltration into the CNS in MS and EAE
still remains a matter of debate.

To date, Natalizumab, a monoclonal antibody that blocks
activated T cell trafficking targeting the α4 chain of VLA-4 integrin,
is one of the most efficient treatments for MS (Polman et al., 2006),
demonstrating the involvement of VLA-4 in leukocyte migration into
the CNS (Schneider-Hohendorf et al., 2014). However, while the
blockade of α4 integrin completely abolishes Th1 recruitment and
partially reduces Th17 cell accumulation in the spinal cord of EAE
mice, it fails to prevent Th17 lymphocyte entrance into the cerebrum
in an experimental EAE model with atypical brain manifestations
(Rothhammer et al., 2011). Under flow adhesion assays using an
in vitro BBB model confirmed that VCAM-1, the main VLA-4 ligand,
is required for the arrest of murine Th1 cells (Steiner et al., 2010).
β2 integrins have also a role in firm adhesion and crawling of Th1
lymphocytes on the BBB in in vitro models, whereas LFA-1 expression
on human Th17 cells has a critical contribution to transmigration
across interferon (IFN)-γ activated BBB, suggesting that both VLA-
4 and LFA-1 integrins control Th lymphocyte trafficking into the
brain in MS (Kebir et al., 2009; Steiner et al., 2010). Intriguingly,
in MS patients treated with Natalizumab, Th cells overcome α4
blockade by upregulating alternative adhesion receptors, such as
PSGL-1 and melanoma CAM (MCAM) (Schneider-Hohendorf et al.,
2014). MCAM binds to laminin 411, a component of the endothelial
basement membrane, facilitating T lymphocyte penetration into the
parenchyma during EAE (Sixt et al., 2001; Wu et al., 2009). Recently,
the dual immunoglobulin domain containing CAM (DICAM) was
shown to be preferentially expressed on Th17 cells contributing to
their migration and pathogenic capacity during EAE. Interestingly,
DICAM is particularly expressed on circulating CD4+ T lymphocytes
of MS patients and, together with its ligand αVβ3, is upregulated on
lesion-associated BBB, further suggesting a role for this molecules in
Th cell migration during EAE and MS (Du et al., 2016; Charabati
et al., 2022).

3.2. IFN-γ produced by Th1 cells: Costs
and benefits for the BBB

Interferon-γ, the main Th1-related cytokine, is massively
produced during neuroinflammatory conditions. The analysis of
blood, CSF, and brain tissue samples from MS patients clearly
supported the pathogenic role of Th1 cells and their signature
cytokine in disease development. Particularly, increased frequency
of IFN-γ-producing myelin-reactive T lymphocytes in the blood
of MS subjects correlated with the active phase of disease and the
worsening of neurological symptoms (Arbour et al., 2003; Moldovan
et al., 2003). IFN-γ+ T cells were also found to be enriched in the
CSF of MS patients compared to healthy controls (Wallström et al.,
2000). Accordingly, IFN-γ levels were significantly elevated in the
blood, CSF and CNS lesions of subjects with MS (Mycko et al., 2003;
Arellano et al., 2017). The pathogenic effect of IFN-γ is corroborated
by an early pilot study evaluating the efficacy of recombinant IFN-
γ administration to RRMS patients, who showed a significantly
higher exacerbation rate with respect to pre- and post-treatment rates
(Panitch et al., 1987).

The overall picture emerging from in vitro and in vivo
observations is that IFN-γ alone is able to regulate the expression
of several surface molecules on brain endothelium including MHCI,
MHCII, programmed death-ligand (PD-L)1 VCAM-1, mucosal

vascular addressin (Mad)CAM-1 and ICAM-1 (Brown et al., 2007;
Sonar et al., 2017; Figure 2 and Table 1). Interestingly, time-
lapse confocal microscopy experiments showed that IFN-γ, rather
than inducing ICAM-1 overexpression, determined a rapid re-
localization of this molecule from the basal to the apical side of
endothelial cells, potentially promoting leukocyte adhesion (Sonar
et al., 2017). Notably, in vitro and in vivo data suggested that
IFN-γ promote BBB leakage by inducing STAT-1 expression and
cytoskeleton remodeling affecting tight junction protein organization
(Sonar et al., 2017; Bonney et al., 2019). Also, exposure to IFN-γ
promotes endothelial permeability through zonula occludens (ZO)-1
and claudin (CLDN) 5 delocalization and adherent junction molecule
VE-cadherin perturbation in an in vitro system using bEnd3.1 cell
line, and these changes were associated to a relevant increase of actin
stress fibers and cytoskeletal contraction (Sonar et al., 2017; Liu et al.,
2018). In vitro inhibition of Rho kinase (ROCK) was sufficient to
restore the integrity of brain endothelial cells during IFN-γ treatment
by blocking the junctional localization of phosphorylated myosin
light chain (Bonney et al., 2019), a phenomenon linked to weakened
cell-cell interactions (Hirano and Hirano, 2016). In line with this,
in vivo ROCK inhibition induced the upregulation of occludin and
ZO-1 tight junction proteins on cerebral vessels, making this drug a
valuable candidate to tackle BBB breakdown in MS (Yan et al., 2019).

However, the detrimental effect of IFN-γ on BBB integrity was
challenged by Ni et al. (2014), whose findings suggested a role for
IFN-γ in inducing the clinching of brain endothelial junctions. In
particular, these authors showed that IFN-γ treatment of bEnd3.1
cells enhances their paracellular tightness in a dose-dependent
manner and dramatically reduces splenocyte transmigration, with
CLDN 5 being essential to link cytokine-dependent signaling to
junctional strengthening (Ni et al., 2014). Additionally, exposure of
murine brain endothelial cells to IFN-γ decreased CXCR7 expression
and led to a reduction of CXCL12 internalization (Cruz-Orengo
et al., 2011). Interestingly, blocking CXCL12 sequestration may allow
CXCL12 to tether T cells to the perivascular space, preventing
infiltration and having a beneficial effect on EAE (Cruz-Orengo
et al., 2011). In support of these results, EAE induction in mice
expressing IFN-γ receptor exclusively on endothelial cells was
sufficient to significantly mitigate brain inflammation, resulting in a
lower incidence of atypical symptoms, compared to IFN-γ receptor
deficient animals (Ni et al., 2014). Notably, studies performed almost
three decades ago showed that IFN-γ signaling plays a protective
role during neuroinflammation, as proved by exacerbation of EAE
symptoms in IFN-γ−/− mice (Ferber et al., 1996; Willenborg et al.,
1996) or disease alleviation upon IFN-γ administration, supporting
the idea that IFN-γ promotes BBB stability (Voorthuis et al., 1990;
Naves et al., 2013). However, more recent studies showed that IFN-γ
signaling is required to trigger spinal cord inflammation and classic
EAE, whereas IFN-γ receptor deficiency promotes the development
of atypical EAE symptoms, associated to Th17 cell migration in the
brainstem and cerebellum (Lees et al., 2008; Stromnes et al., 2008;
Pierson et al., 2012). Together, these data suggest that regional CNS
responses to IFN-γ, including BBB inflammation and breakdown,
determine lesion localization patterns during EAE development.

3.3. Th17 cytokines and the BBB: A toxic
relationship

IL-17A, IL-17F, IL-22, and IL-26 represent a group of cytokines
produced by Th17 cells and are classically associated to the CNS
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FIGURE 2

Modulation of BBB permeability and function by T helper cell cytokines. Encephalitogenic T cells communicate with brain vasculature in a paracrine
fashion secreting cytokines. During neuroinflammation, IL-17, and IL-22 exert a detrimental effect on brain endothelium functioning. The exposure to
these cytokines triggers the loosening of the vascular barrier along with increased expression of adhesion molecules and leukocyte recruitment. Also,
although it has been described as an anti-inflammatory cytokine, IL-4 triggers a loss of BBB integrity coupled with changes in endothelial cell
morphology. Conversely, IL-26 induces a downregulation of pro-inflammatory and oxidative pathways in endothelial cells, concomitantly stimulating the
upregulation of tight junction protein transcripts. IFN-γ can contribute to both BBB breakdown and sealing. Created with BioRender.com.

inflammatory milieu during MS (Figure 2 and Table 1). Indeed,
increased levels of IL-17 mRNA and IL-17 secreting CD4+ T cells
were detected in the blood, CSF, and brain lesions of MS patients
(Matusevicius et al., 1999; Lock et al., 2002; Tzartos et al., 2008;
Durelli et al., 2009). Particularly, IL-17A is elevated in the CSF of
RRMS subjects and correlates with CSF/serum albumin quotient, an
index of BBB permeability. In this regard, treating RRMS patients
with secukinumab, an anti-IL-17A antibody, reduced MRI lesion
activity compared to placebo, supporting a role for IL-17 in disease
development (Havrdová et al., 2016).

Cytokines produced by Th17 cells may directly affect BBB
integrity and function. Indeed, in vitro stimulation of human brain
endothelial cells (HBEC) with IL-17A diminishes the expression
of tight junction protein-encoding genes Pecam1, Cdh5, and Tjp1
and leads to the disassembly of ZO-1 and reduction of occludin
and CLDN 5 protein expression (Rahman et al., 2018; Setiadi
et al., 2019). Similarly, in vitro data obtained using the mouse
bEnd.3 cell line showed that IL-17A activates endothelial contractile
machinery through a ROS-dependent pathway, inducing occludin
downregulation, ZO-1 disorganization, and ICAM-1 upregulation
(Huppert et al., 2010) (Figure 2 and Table 1). In line with this,
inhibition of IL-17A in a model of EAE led to a reduced leukocyte
infiltration of the CNS, lower CNS oxidative stress and milder clinical
disease, further demonstrating a role for IL-17 in BBB breakdown
(Huppert et al., 2010; Setiadi et al., 2019). Moreover, IL-17, conversely
to IFN-γ, induces upregulation of CXCR7 on primary mouse brain
endothelial cells (Cruz-Orengo et al., 2011) potentially promoting
leukocyte migration, as also suggested by in vivo data demonstrating

that activation of CXCR7 reduces abluminal CXCL12 concentration
and leads to an increased leukocyte entry in the inflamed CNS during
EAE (Cruz-Orengo et al., 2011). IL-22 produced by Th17 cells can
also affect BBB permeability, as shown by studies performed with
primary endothelial cells from human CNS tissue specimens (Kebir
et al., 2007; Figure 2 and Table 1). Remarkably, the receptors for IL-
17 and IL-22 are absent in CNS samples from healthy human subjects,
but they are strongly expressed on CNS endothelial cells within MS
lesions, suggesting that the human BBB is highly responsive to the
detrimental effect of these two cytokines (Kebir et al., 2007). In
agreement with these data, both IL-17 and IL-22 can boost Th cell
transmigration across brain endothelium in vitro, although IL-17
is more effective in inducing the production of endothelial pro-
inflammatory molecules (Kebir et al., 2007; Wojkowska et al., 2017).
However, differently from IL-17, which downregulates tight junction
proteins, the mechanisms underlying IL-22 effect on the BBB remain
uncertain.

Unlike IL-17 and IL-22, IL-26 showed a protective effect on BBB
integrity (Broux et al., 2020; Figure 2 and Table 1). Brain endothelial
cells treated with IL-26 showed a general downregulation of pro-
inflammatory pathways and upregulation of Tjp1, Ocln, and Cldn18
gene transcripts. Additionally, IL-26 treatment of EAE mice resulted
in a reduced infiltration of pathogenic T lymphocytes and disease
attenuation, clearly demonstrating a protective effect of IL-26 at the
BBB level (Broux et al., 2020). Overall, the existing literature on
MS and EAE point to Th17 cytokines as key players in modulating
BBB permeability and leukocyte trafficking during CNS autoimmune
inflammatory conditions.
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TABLE 1 Summary of the effects of Th-derived cytokines on BBB homeostasis.

Cytokine Main cellular
source

Effects on the BBB Type of effect References

IFN-γ Th1 Upregulation of the surface proteins VCAM-1,
MadCAM-1, MHC I, and II, PD-L1; apical re-localization
of ICAM-1; dysregulation of tight junction proteins ZO-1
and claudin 5; increase of actin stress fibers.

Detrimental Brown et al., 2007; Sonar et al.,
2017; Liu et al., 2018; Bonney
et al., 2019

IFN-γ Th1 Claudin 5-dependent enhancement of paracellular
tightness; upregulation of tight junction proteins ZO-1 and
occludin; reduction of CXCR7 expression on brain
microvessels endothelial cells and consequent decrease of
CXCL12 internalization.

Beneficial Cruz-Orengo et al., 2011; Ni et al.,
2014

IL-17 Th17 Mainly mediated by IL-17A; dysregulation of tight junction
proteins occludin, ZO-1, and claudin 5; downregulation of
Pecam1 gene expression; trigger of ROS-dependent
endothelial contraction; upregulation of the adhesion
molecule ICAM-1; secretion of inflammatory mediators
such as CCL2, CXCL1, IL-6, and IL-8; CXCR7-dependent
scavenging of abluminal CXCL12 in turn reducing
leukocyte perivascular retention.

Detrimental Kebir et al., 2007; Huppert et al.,
2010; Cruz-Orengo et al., 2011;
Wojkowska et al., 2017; Rahman
et al., 2018; Setiadi et al., 2019

IL-22 Th17 Increase of BBB permeability by unknown molecular
mechanisms; secretion of CCL2.

Detrimental Kebir et al., 2007

IL-26 Th17 Downregulation of pro-inflammatory and oxidative
phosphorylation pathways; upregulation of Tjp1, Ocln, and
Cldn18 gene expression.

Beneficial Broux et al., 2020

IL-4 Th2 Loss of BBB integrity; induction of endothelial cells
morphological changes.

Detrimental Smyth et al., 2018

4. MS-associated reshaping of BCSFB
barrier: The emerging scenario

Whereas the BBB is considered a major gateway for T cell
migration from the blood into the CNS, the BCSFB represents a weir
tightly regulating the passage of solutes and migrating cells form the
blood directly into the CSF. The BCSFB includes two main structures:
the leptomeningeal compartment, in which the pial vessels have a
central role, and the choroid plexus. The leptomeninges have proven
to be an important entry site for peripheral leukocytes (Bartholomäus
et al., 2009; Kivisäkk et al., 2009). Notably, a growing body of
experimental evidence identifies the leptomeninges as a pivotal
anatomical site for T cell reactivation by local antigen presenting
cells, development of inflammatory reactions and subsequent CNS
invasion by immune cells (Bartholomäus et al., 2009; Kivisäkk et al.,
2009; Lodygin et al., 2013; Schläger et al., 2016). On the other
hand, the choroid plexus is a highly specialized structure lining the
walls of cerebral ventricles and populated by patrolling leukocytes
under physiological conditions (de Graaf et al., 2011; Kunis et al.,
2013). Interestingly, the selectivity of the choroid plexus barrier is
not due to its endothelial cells, which are fenestrated and leaky, but
to its innermost epithelial cell layer, which has tight junctions and
modulates the trafficking of immune cells into the CSF in response
to environmental cues (Maxwell and Pease, 1956; Engelhardt et al.,
2001; Ayub et al., 2021).

4.1. The leptomeningeal BCSFB

The discovery of lymphoid follicles in the leptomeninges of
MS patients and EAE mice redirected the attention from the

BBB dysfunction to meningeal inflammation and its potential role
in disease pathogenesis (Magliozzi et al., 2004; Serafini et al.,
2004). In RRMS and PPMS, the leptomeningeal area seems to
be predominantly characterized by a chaotic accumulation of
inflammatory cells, whereas in SPMS, immune cells were found
in highly organized tertiary lymphoid structures, pointing to
leptomeningeal inflammation as a pathogenic driver for disease
development (Choi et al., 2012; Howell et al., 2015; Magliozzi
et al., 2018). As observed in EAE, MRI investigations corroborated
by histopathology studies highlighted a direct correlation between
leptomeningeal contrast enhancement, subarachnoid space (SAS)-
localized inflammation and subpial cortical pathology in MS patients
(Lucchinetti et al., 2011; Choi et al., 2012; Howell et al., 2015;
Harrison et al., 2017; Magliozzi et al., 2018; Bergsland et al., 2019;
Zurawski et al., 2020). At early stages of human disease, meningeal
inflammation is mainly detected in the proximity of areas with
altered BBB, cortical demyelination, and gray matter lesions and
seems to develop before the emergence of white matter plaques
(Lucchinetti et al., 2011). Similarly, inflammatory features appear
in the cerebral and spinal cord meninges before EAE onset (Brown
and Sawchenko, 2007; Shrestha et al., 2017). Finally, a recent ultra-
high field MRI study demonstrated that the cerebral leptomeningeal
contrast enhancement magnitude, which reaches a peak of intensity
during the acute phase of EAE, is associated to the clinical signs
and high inflammatory cell density in EAE mice (Pol et al., 2019).
Together, these data underline the importance of the leptomeningeal
BCSFB as one of the earliest routes of entry for peripheral immune
cells in both MS and EAE.

The SAS is a surgically easily accessible area, and several
in vivo imaging studies have described the central role of pial
vessels during autoreactive T cell recruitment into the CNS (Zenaro
et al., 2013; Rossi and Constantin, 2016). Given their permissive
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endothelial layer and the lack of astrocyte sheathes typical of the BBB,
leptomeningeal pial vessels represent a preferential CNS gateway for
pioneer circulating autoreactive CD4+ T cells during the preclinical
phase of EAE (Bartholomäus et al., 2009). Th cells reach the
maximum accumulation in the leptomeninges at EAE peak and
migrate in the SAS attracted by the CXCL9-11 and CCL5 chemokines
(Bartholomäus et al., 2009; Lodygin et al., 2013; Schläger et al., 2016).
The endothelium of inflamed pial vessels expresses P- and E-selectins
(Kerfoot and Kubes, 2002; Piccio et al., 2002; Kivisäkk et al., 2003).
Particularly, P-selectin was found to be a key molecule involved in
leukocyte adhesive interactions in brain pial vessels during the early
stages of EAE (Kerfoot and Kubes, 2002; Kerfoot et al., 2006). In
agreement with these data, intravital microscopy studies performed
in the leptomeningeal microcirculation have shown that a properly
glycosylated PSGL-1 is the major P-selectin ligand for efficient
tethering and rolling of activated T cells (Piccio et al., 2002, 2005).
Likewise, CD8+ T cells from MS patients preferentially exploit PSGL-
1 for their rolling on inflamed pial vessels endothelium, further
indicating a role for PSGL-1 in activated T cell adhesion in brain pial
vessels (Battistini et al., 2003). Interestingly, T cell immunoglobulin
and mucin domain 1 (TIM-1) was shown to cooperate with PSGL-1
in the mediation of Th1 and Th17 tethering and rolling on inflamed
pial vasculature, contributing to the CNS infiltration of autoreactive
T cells and to the development of EAE (Angiari and Constantin,
2014; Angiari et al., 2014). Moreover, integrins VLA-4 and LFA-
1 were found to be involved in rolling and G protein-mediated
firm adhesion of peripheral leukocytes on inflamed endothelium of
cerebral pial vessels, potentially leading to vascular disfunction and
leakage (Kerfoot and Kubes, 2002; Piccio et al., 2002; Kerfoot et al.,
2006; Figure 1).

Once migrated in the leptomeninges, autoreactive CD4+ T cells
are reactivated by local antigen presenting cells and directed to the
underlying CNS parenchyma (Bartholomäus et al., 2009; Lodygin
et al., 2013; Schläger et al., 2016). However, how autoreactive T cells
access the parenchyma from the SAS is still unclear. In this respect, it
was suggested that, similar to the blood circulation, CSF dynamics
could operate as a physical transport mechanism facilitating cell
migration into the inflamed areas of the CNS (Schläger et al., 2016).
A potential molecular mechanism controlling T cell migration into
the parenchyma could be mediated by laminin 111 (α1β1γ1 or
laminin 1), which is preferentially expressed by the leptomeningeal
cells and in close contact with astrocyte end feet (Sixt et al., 2001;
Agrawal et al., 2006). Also, glia limitans breakdown and microglia
activation, both potentially due to meningeal inflammation, may
promote autoreactive T cell entry in the cortex and spinal cord during
MS and EAE (Gardner et al., 2013; Magliozzi et al., 2018, 2019;
James et al., 2020). Furthermore, astrocytes can also contribute to T
cell trafficking during EAE. In this context, Th1 and Th17 cytokines
induce region-specific astrocyte expression of VCAM-1 and CXCR7,
modulating local astrocyte-dependent immune cell trafficking into
the CNS during EAE (Williams et al., 2020).

4.2. The choroid plexus

Due to its location within the cerebral ventricles and the presence
of fenestrated capillaries, the choroid plexus is another important
gateway involved in CNS immunosurveillance (Nathanson and
Chun, 1989). However, the poor vascular selectivity is compensated
by the expression of apical tight junctions and basolateral adherens

junctions in the epithelial layer of ependymal cells that strictly
controls immune cell trafficking from the choroid plexus stroma
into the CSF (Maxwell and Pease, 1956; van Deurs and Koehler,
1979; Lippoldt et al., 2000; Ayub et al., 2021). Indeed, the murine
choroid plexus epithelium constitutively expresses ICAM-1, VCAM-
1, MadCAM, P-selectin, and CCL20, which may explain, at least in
part, why memory CD4+ T cells are the most represented leukocytes
within the CSF under physiological conditions (Steffen et al., 1996;
Wolburg et al., 1999; Kivisäkk et al., 2003; Reboldi et al., 2009; de
Graaf et al., 2011; Figure 3). Additionally, recent in vitro studies
suggest that, once migrated in the choroid plexus stroma, human
CD4+ T cells could further migrate into the CSF by binding ICAM-1
expressed at the luminal side of epithelial cells (Nishihara et al., 2020).

The onset of CNS-targeted autoimmune responses during EAE
induces a prominent upregulation of ICAM-1 and VCAM-1 on
choroid plexus epithelium, further favoring leukocytes trafficking
through this anatomical route (Steffen et al., 1996; Figure 3).
When exposed to IFN-γ, the murine choroid plexus epithelium
becomes activated, producing chemokines (CCL2, CCL5, CXCL9,
CXCL10, CX3CL1, and M-CSF) and upregulating cell adhesion
receptors (ICAM-1 and VCAM-1) and MHC-II molecules (Figure 3;
Kunis et al., 2013). On the other hand, exposing choroid plexus
epithelial cells to IL-17 results in further upregulation of CCL20, a
chemokine involved in the recruitment of CCR6+ encephalitogenic
Th17 cells during early EAE (Reboldi et al., 2009; Kunis et al.,
2013; Figure 3). Notably, CCR6+ CD25- CD4+ pro-inflammatory
lymphocytes are present in the CSF of MS patients starting from the
earliest disease episode, supporting the pivotal involvement of the
evolutionarily conserved CCL20-CCR6 axis in the establishment of a
pathological loop amplifying local CNS immune responses (Reboldi
et al., 2009; Kara et al., 2015). Interestingly, CD4+ memory T cells
expressing CXCR3, a receptor highly present on Th1 cells, were found
enriched in the CSF compared to circulating levels (Kivisäkk et al.,
2002). However, no differences in CXCR3 expression were detected
between MS and control subjects, suggesting a potential role for this
chemokine receptor in T cell intrathecal residency (Kivisäkk et al.,
2002).

The analysis of postmortem MS brain samples revealed an
impairment of epithelial CLDN 3 at the level of the choroid plexus.
Accordingly, mice lacking CLDN 3 displayed an earlier EAE onset
due to higher levels of infiltrated leukocytes in the CSF (Kooij
et al., 2014). The early accumulation of activated T cells in the
choroid plexus during EAE suggests a crucial role for this CNS
compartment in disease pathogenesis (Brown and Sawchenko, 2007;
Murugesan et al., 2012). Throughout the EAE course, the choroid
plexus appears enlarged, morphologically altered, and expresses
immune-related genes including proinflammatory cytokines, co-
stimulatory molecules for T cells and adhesion molecules, suggesting
its potential capacity to recall and activate migrating autoreactive T
cells (Murugesan et al., 2012). Also, high-throughput studies showed
that the majority of T cell receptor repertoire inside the choroid
plexus is specific for CNS antigens in mice that were immunized
with spinal cord homogenates (Baruch et al., 2013). In addition,
recent data demonstrated that the choroid plexus is characterized
by the constitutive presence of CNS antigens and antigen presenting
cells, that can rapidly react to inflammatory signals, promoting T
cell proliferation and a second wave of leukocyte migration into the
CNS (Strominger et al., 2018). In agreement with studies performed
in mouse models, results obtained on post-mortem choroid plexus
samples found increased T cell migration and HLA-DR expression on

Frontiers in Cellular Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fncel.2023.1101379
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1101379 February 9, 2023 Time: 15:2 # 9

Angelini et al. 10.3389/fncel.2023.1101379

FIGURE 3

T helper cells regulate choroid plexus function through cytokine secretion. T helper (Th) cells contribute to fine-tune immune processes at the level of
the choroid plexus during both homeostasis and neuroinflammation. In the steady state, IFN-γ released by local effector memory CD4+ T lymphocytes
is required for an efficient CNS immune surveillance, since it regulates the expression of key trafficking molecules expressed on ependymal cells. Under
neuroinflammatory conditions, IFN-γ signaling in the choroid plexus promotes the transmigration of pro-resolving macrophages, which can exert their
protective function in the CNS. IL-17 is relevant for EAE development through the induction of CCL20 secretion by choroid plexus epithelium, leading to
subsequent invasion of CCR6+ encephalitogenic T lymphocytes. Created with BioRender.com.

the choroid plexus stroma of patients with MS compared to control
subjects, suggesting that choroid plexus may represent a site for
lymphocyte entry in the CSF and antigen presentation also during
human disease (Vercellino et al., 2008).

Recent MRI data showed a significant increase of choroid
plexus volume in EAE mice compared to untreated animals at
baseline, as well as in RRMS patients compared to healthy controls,
correlating to acute disease episodes and disability worsening
(Fleischer et al., 2021). Notably, Natalizumab treatment proved
effective in reducing choroid plexus enlargement in MS patients at
follow-up, while dimethyl fumarate, which does not interfere with
leukocyte recruitment into the CNS, had no effect (Fleischer et al.,
2021). Altogether, these data suggest a role for leukocyte migration
through the choroid plexus in promoting MS pathology.

5. Dural interface: The outsider

Recent studies showed that the dura mater also represents
a bona fide immune interface, opening new scenarios on the
role of meningeal immunity during homeostasis and pathological
conditions (Rustenhoven et al., 2021). The rediscovery of a full-
fledged CSF-draining lymphatic system located in the dura mater
sparked interest in the immune properties of this overlooked
meningeal structure (Louveau et al., 2015). Interestingly, the ablation
of the meningeal lymphatics impairs the drainage of immune cells
and macromolecules from the CSF to deep cervical lymph nodes,
dampening the capacity of encephalitogenic T cells to mount an

efficient autoimmune response during EAE (Louveau et al., 2018).
Furthermore, dural sinuses are characterized by VCAM-1 expression
and are surrounded by gradients of CXCL12, representing an
ideal spot for T cell extravasation (Rustenhoven et al., 2021). The
preferential distribution of antigen presenting cells and patrolling T
lymphocytes at the peri-sinusal level is also of strategic importance
for local immune surveillance, further pointing to this meningeal
layer as a true neuro-immune interface (Rustenhoven et al., 2021).
Moreover, the abundance of dural dendritic cells with a migratory
phenotype suggests an active transport of CNS antigens to the
draining lymph nodes (Van Hove et al., 2019). Recent studies
have shown that, following EAE induction, the number of dural
antigen presenting cells is not altered, but there is a significant
peri-sinusal accumulation of peripherally activated MOG-reactive
T cells that, once migrated into the dura, acquire a tissue resident
memory phenotype (Rustenhoven et al., 2021). However, the role
of dural interface during CNS autoimmunity has been recently
challenged by data showing that meningeal inflammatory processes
underlying MS and EAE pathogenesis take place predominantly
in the leptomeningeal compartment, whereas the dura mater is
only marginally and passively involved in CNS autoimmunity
(Merlini et al., 2022). Interestingly, the pool of dural leukocytes
seems to be constantly replenished by the skull and vertebral
bone marrow through direct channels under normal conditions,
with a massive cell mobilization to the dura upon inflammation
(Cugurra et al., 2021; Mazzitelli et al., 2022). However, these newly
described immune mechanisms mainly regard myeloid cells, while T
lymphocytes seem to migrate preferentially through the blood vessels
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(Rustenhoven et al., 2021). Overall, the role of dural interface in T cell
migration and immune responses during MS and EAE is still unclear
and requires further investigation.

6. Th2 cells and brain barriers

T helper 2 cells were first described as a distinct subset of IL-4-
secreting CD4+ T lymphocytes, laying the foundation for the classical
Th1/Th2 dualism (Mosmann et al., 1986). Later, the array of Th2-
related cytokines was broadened to also include IL-5, IL-10, and IL-13
(Fiorentino et al., 1989; Fort et al., 2001). Th2 cells and their cytokines
are mainly considered neuroprotective in EAE and MS (Weiner et al.,
1994; Sospedra and Martin, 2005; Fernando et al., 2014). However,
contrasting evidence highlighted that CD4+ T lymphocytes with a
Th2-like phenotype clonally expanded and actively fueled the B cell
response in MS lesions characterized by antibody and complement
deposition (Planas et al., 2015), pointing to a multifaceted role for
Th2 cells in CNS autoimmune conditions.

Contrary to Th1 and Th17 cells, whose ability to cross brain
barriers has been widely investigated, little is known about Th2
lymphocyte migration into the CNS during neuroinflammatory
conditions. Intravital microscopy experiments demonstrated that
both murine and human Th2 cells show a reduced capability to
adhere in inflamed brain pial vessels compared to Th1 lymphocytes,
due to their low expression of a specific glycosylation epitope on
PSGL-1 molecule (Wagers et al., 1998; Colantonio et al., 2004; Piccio
et al., 2005). However, in vitro Th2 cell migration through a layer
of HBEC was more efficient when compared to Th1 cells and was
dependent on the CCR2-CCL2 axis and ICAM-1 (Biernacki et al.,
2001). These in vitro data were recently challenged by other studies
showing that Th2 lymphocytes display the lowest ability to migrate
using in vitro models of human BBB and BCSFB, when compared
to other Th subsets (Wimmer et al., 2019; Nishihara et al., 2020).
These discrepancies suggest that different experimental settings of
brain barriers and Th cell preparations may be responsible for
the contrasting results obtained using Th2 lymphocytes in vitro.
Recent findings confirmed a key role for ICAM-1 and also showed
a role for CD99 in Th2 cell migration using models of human BBB
and BCSFB, suggesting this may also be the case during human
neuroinflammatory diseases (Wimmer et al., 2019; Nishihara et al.,
2020). Interestingly, recent in vitro data showed that ICAM-1 mediate
the reverse migration of CSF-derived Th2 and other Th cells through
the epithelial layer of the choroid plexus, suggesting that these cells
may leave the CNS by crossing the BCSFB (Nishihara et al., 2020).

Despite the seemingly protective role played by Th2 lymphocytes
and their signature cytokine, treating in vitro cultured HBEC with
IL-4 triggers a loss of barrier integrity together with changes in
cellular morphology (Smyth et al., 2018; Table 1 and Figure 2).
These surprising data indicate that IL-4 and Th2 cell-dependent anti-
inflammatory functions are not necessarily linked to protective effects
on the BBB, and more studies are needed to clarify the impact of Th2
lymphocytes on brain barriers.

7. Perspectives

Whereas T cell migration at the BBB and leptomeningeal level has
been more extensively studied, the interplay between T lymphocytes

and other CNS borders such as the choroid plexus and dura
mater is still largely unexplored. Also, the anatomy of the choroid
plexus is still not fully characterized, adding further difficulty to the
understanding of this CNS border and its relationship with immune
cells (Wolburg and Paulus, 2010). Hopefully, cutting-edge in vivo
imaging approaches will help to better determine how T cells traffic
through the choroid plexus into the CSF (Shipley et al., 2020).
A deeper knowledge of the inflammatory events at the level of the
choroid plexus may also be relevant from a therapeutic point of view,
as suggested by recent studies which propose the targeting of this
interface between the systemic circulation and the ventricular system
as a novel therapeutic approach for CNS diseases (Bryniarski et al.,
2020).

Dura mater has also emerged as an additional neuroimmune
interface due to its functional organization and specific localization.
However, its involvement in the immune responses and interplay
with Th lymphocytes during EAE and MS deserves further
investigation. Whether T cells can directly migrate through the
meningeal layers is unclear. In support of this possibility, it was
shown that CLDN 11, a tight junction protein enriched in the
arachnoid mater, is downregulated at later stages of EAE, potentially
allowing the migration of T lymphocytes through an impaired
arachnoid layer (Uchida et al., 2019). The pathological changes of
the arachnoid barrier during CNS autoimmune and inflammatory
diseases have been poorly dissected and can constitute a future field
of investigation.

Finally, the scientific community has long considered the BBB as
a weir, but, at the same time, a major route of leukocyte migration
into the brain during neuroinflammation, dedicating significant
efforts to the identification of therapeutic targets interfering
with Th1 and Th17 cell migration into the brain. Nevertheless,
the restoration of BBB morphological integrity and functionality
following neuroinflammatory insults may represent a promising
therapeutic strategy to accelerate CNS recovery during MS (Spencer
et al., 2018).
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