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Neuronal loss is one of the striking causes of various central nervous

system (CNS) disorders, including major neurodegenerative diseases, such as

Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD),

and Amyotrophic lateral sclerosis (ALS). Although these diseases have different

features and clinical manifestations, they share some common mechanisms of

disease pathology. Progressive regional loss of neurons in patients is responsible

for motor, memory, and cognitive dysfunctions, leading to disabilities and

death. Neuronal cell death in neurodegenerative diseases is linked to various

pathways and conditions. Protein misfolding and aggregation, mitochondrial

dysfunction, generation of reactive oxygen species (ROS), and activation of

the innate immune response are the most critical hallmarks of most common

neurodegenerative diseases. Thus, endoplasmic reticulum (ER) stress, oxidative

stress, and neuroinflammation are the major pathological factors of neuronal

cell death. Even though the exact mechanisms are not fully discovered, the

notable role of mentioned factors in neuronal loss is well known. On this basis,

researchers have been prompted to investigate the neuroprotective effects of

targeting underlying pathways to determine a promising therapeutic approach

to disease treatment. This review provides an overview of the role of ER stress,

oxidative stress, and neuroinflammation in neuronal cell death, mainly discussing

the neuroprotective effects of targeting pathways or molecules involved in these

pathological factors.
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Introduction

Neurodegenerative diseases are nervous system disorders
in which millions of people, especially the elderly, are being
affected worldwide. The rising prevalence of these diseases
has put the world with a serious challenge (Bloem et al.,
2021; Milošević et al., 2021). Despite the developments in
this field of study and advancements in pharmacological
aspects, there is not a promising drug to consummately cure
neurodegenerative diseases yet (Pohl and Kong Thoo Lin,
2018). However, there are still so many studies to alleviate
disease symptoms and extend life span (Breijyeh and Karaman,
2020). Neurodegenerative diseases are mostly characterized by
toxic protein aggregates with abnormal conformation within
neurons or neuroglia, leading to memory, cognitive, and/or
movement disorders (Dugger and Dickson, 2017). These
diseases include a wide range of neurological disorders, but
the major types are Alzheimer’s disease (AD), Parkinson’s disease
(PD), Huntington’s disease (HD), and amyotrophic lateral
sclerosis (ALS; Lezi and Swerdlow, 2012). Protein misfolding
and accumulation of amyloid-β (Aβ) and phosphorylated
Tau is the major pathological feature in AD, as well as α-
synuclein in PD, and mutant superoxide dismutase 1 (mSOD1)
in ALS (Ghemrawi and Khair, 2020). Clinical manifestations
in these kinds of diseases mainly occur as a consequence
of neuron dysfunction or neuronal cell death (Andreone
et al., 2020). Besides apoptosis, depending on the conditions,
other different types of cell deaths, such as ferroptosis,
necroptosis, and parthanatos are also possible to affect cell
fidelity (Wang et al., 2018; Ferrada et al., 2020; Reichert
et al., 2020; David et al., 2022; Mangalmurti and Lukens,
2022). The mitochondria and endoplasmic reticulum (ER)
play crucial role in the occurrence of neuronal cell death
among many other organelles (Gorman et al., 2012; Johnson
et al., 2021; Markovinovic et al., 2022). Mitochondria are
dynamic organelles that participate in producing energy and
maintaining cellular redox balance, among many other functions
(Johri and Beal, 2012). Therefore, mitochondrial dysfunction,
including excessive reactive oxygen species (ROS) production,
mitochondrial calcium overload, loss of the mitochondrial
membrane potential leading to release of apoptosis-inducing
factor (AIF), and other pro-apoptotic factors could lead to
caspase activation and cell death (Culmsee and Plesnila, 2006;
Kaminskyy and Zhivotovsky, 2014; Hoffmann et al., 2021).
Evidence also reveals that mitochondrial DNA (mtDNA) mutations
are present in patients with neurodegeneration (Johri and
Beal, 2012). Also, aberrant ROS production and imbalance in
antioxidant activity could influence mitochondria and impair
mitochondria’s function, leading cells to death (Angelova and
Abramov, 2018; Doroudian et al., 2021), which is explained in
the following sections. Of note, ROS can also contribute to the
production of protein aggregates and exacerbate disease pathology
(Van Dam and Dansen, 2020).

On the other hand, the ER is a large and dynamic organelle
responsible for protein folding and maturation. Once a protein
folds with an abnormal conformation, the misfolded protein enters
the ER-associated degradation (ERAD) pathway to prevent the
following plausible detrimental effects of the protein (Schwarz

and Blower, 2016). Aberrant misfolded proteins or aggregates
can potentially trigger the process “Unfolded Protein Response”
(UPR) to attenuate ER stress or initiate apoptosis pathways
(Schwarz and Blower, 2016). UPR has three signaling arms,
including IRE1-α, PERK, and ATF6, which are highly conserved
pathways (Shi et al., 2022). However, toxic protein aggregates
may also undergo degradation by lysosomes (i.e., autophagy),
to ameliorate disease progression (Djajadikerta et al., 2020).
Autophagy is able to activate or inhibit the apoptosis signaling
to maintain intracellular balance or induce neuronal cell death
(Gupta R. et al., 2021). All three UPR arms, Ca2+ release, and
oxidative stress can directly or indirectly activate autophagy
induction (Andhavarapu et al., 2019; Ramirez-Moreno et al.,
2019; Ren et al., 2021). Although protein aggregates are the
key reasons for the pathology of neurodegenerative diseases,
other factors, including activation of glutamate ionotropic
receptors, excitotoxicity from dysregulation of neuronal calcium
homeostasis, dysfunction of lysosomes, aberrant cell-cycle
re-entry, and impairments in axonal transport and synaptic
function can also contribute to neuronal injury or death in
various neurodegenerative diseases such as AD and PD (Emerit
et al., 2004; Fricker et al., 2018; Sushma and Mondal, 2019;
Behl et al., 2021; Hoffmann et al., 2021). In addition, increased
levels of inflammatory factors in the serum and brain tissue,
known as neuroinflammation, participates in the pathophysiology
of neurodegenerative diseases (Calsolaro and Edison, 2016).
Emerging evidence indicates that neuroinflammation can be
the cause and consequence of both ER stress and oxidative
stress (Salminen et al., 2009; Sochocka et al., 2013; Pintado
et al., 2017). A neurotoxic microenvironment caused by
the activation of microglial cells and release of cytotoxic
inflammatory factors in the CNS can affect cell fidelity and
induce neuronal cell death (Behl et al., 2021; Wu and Zou,
2022). This can be carried out by triggering pyroptosis, an
inflammasome-mediated type of cell death (Kovacs and Miao,
2017). However, the undeniable contribution of age, genetics, and
environmental factors in the disruption of neuronal homeostasis
and subsequently neuronal cell death cannot be discounted
(Bejanin et al., 2017).

There have been clinical trials targeting neuropathological
hallmarks of neurodegenerative diseases, investigating
glucagon-like peptide-1 receptor (GLP-1R) agonists, monoclonal
antibodies against toxic protein aggregates, antioxidant agents,
beta-secretase (BACE1) inhibitors and other receptor inhibitors
such as 5HT-6 serotonin receptor inhibitor (Table 1, Hung
and Fu, 2017). The results were controversial, as there
was no evidence of beneficial effect on patients’ cognitive
and functional status in most trials; while in some cases
the condition of patients who received drugs worsened,
compared with those who received placebo (Table 1, Egan
et al., 2019). These results indicate that novel agents with
different features must be studied and trialled. Given the complex
interplay of ER stress, oxidative stress, and neuroinflammation
in the pathology of most neurodegenerative diseases,
developments in the knowledge of underlying mechanisms
may be crucial for researchers to propose a promising
therapeutic strategy to achieve a more efficient treatment for
neurodegenerative diseases.
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TABLE 1 Clinical trials associated with neurodegenerative diseases.

Trial Identification Drug used Drug description Delivery route Disease Phase Status Results

NCT03659682 Semaglutide GLP-1R agonistprevents neurons from apoptosis, alleviates
oxidative stress and neuroinflammation (Chen et al., 2023)

Subcutaneous PD II Not yet
recruiting

NA

NCT03439943 Lixisenatide GLP-1R agonist prevents neurons from apoptosis, alleviates
oxidative stress and neuroinflammation (Chen et al., 2023)

Subcutaneous PD II Unknown NA

NCT04305002 Exenatide GLP-1R agonist prevents neurons from apoptosis, alleviates
oxidative stress and neuroinflammation (Chen et al., 2023)

Subcutaneous PD II Active, not
recruiting

NA

NCT04232969 Bydureon (Exenatide) GLP-1R agonist prevents neurons from apoptosis, alleviates
oxidative stress and neuroinflammation (Chen et al., 2023)

Subcutaneous PD III Active, not
recruiting

NA

NCT04154072 NLY01 a pegylated form of exenatide (Lv et al., 2021) Subcutaneous PD II Active, not
recruiting

NA

NCT04269642 PT320 sustained-release Exenatide (Li et al., 2019) Subcutaneous PD II Active, not
recruiting

NA

NCT04777409 Semaglutide GLP-1R agonist prevents neurons from apoptosis, alleviates
oxidative stress and neuroinflammation (Chen et al., 2023)

Oral AD III Recruiting NA

NCT02953665 Liraglutide GLP-1R agonist prevents neurons from apoptosis, alleviates
oxidative stress and neuroinflammation (Chen et al., 2023)

Subcutaneous PD II Completed NA

NCT00004731 Coenzyme Q10 An antioxidant involved in electron transport chain (Gherardi
et al., 2022)

NA PD II Completed NA

NCT00608881 Coenzyme Q10 An antioxidant involved in electron transport chain (Gherardi
et al., 2022)

Oral HD III Terminated CoQ had no effect on
avoiding functional
decline in HD patients
(Mcgarry et al., 2017)

NCT01892176 Coenzyme Q10 An antioxidant involved in electron transport chain (Gherardi
et al., 2022)

Oral PD II and III Completed NA

NCT00243932 Coenzyme Q10 An antioxidant involved in electron transport chain (Gherardi
et al., 2022)

Oral ALS II Completed Showed insufficient
promise to warrant phase
III testing (Kaufmann
et al., 2009)

NCT00740714 Coenzyme Q10 with VitE VitE: a fat-soluble antioxidant (Blaner et al., 2021) Oral PD III Terminated No evidence of benefit

NCT00076492 CoQ10 and GPI 1485 GPI 1485: a neuroimmunophilin ligand (Poulter et al., 2004) NA PD II Completed NA

NCT03514875 MitoQ A mitochondrial reactive oxygen species scavenger (Piscianz
et al., 2021)

Oral AD NA Withdrawn NA

NCT00329056 MitoQ A mitochondrial reactive oxygen species scavenger (Piscianz
et al., 2021)

Oral PD II Completed NA

NCT04777331 Prasinezumab Humanized monoclonal antibody against aggregated
α-synuclein (Pagano et al., 2022)

Intravenous (IV)
infusion

PD II Recruiting NA

NCT03114657 Crenezumab Monoclonal antibody against Aβ (Avgerinos et al., 2021) Intravenous (IV)
infusion

AD III Terminated Could not reduce clinical
decline in participants
with early AD
(Ostrowitzki et al., 2022)

(Continued)
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TABLE 1 (Continued)

Trial Identification Drug used Drug description Delivery route Disease Phase Status Results

NCT03491150 Crenezumab Monoclonal antibody against Aβ (Avgerinos et al., 2021) Intravenous (IV)
infusion

AD III Terminated Crenezumab was
unlikely to meet its
primary endpoint

NCT00676143 Bapineuzumab Monoclonal antibody against Aβ (Avgerinos et al., 2021) Intravenous (IV)
infusion

AD III Terminated Phase 3 studies showed
no clinical benefit

NCT00606476 Bapineuzumab Monoclonal antibody against Aβ (Avgerinos et al., 2021) Intravenous (IV)
infusion

AD II Terminated NA

NCT01656525 Gantenerumab Monoclonal antibody against Aβ (Avgerinos et al., 2021) Subcutaneous AD I Completed NA

NCT02051608 Gantenerumab Monoclonal antibody against Aβ (Avgerinos et al., 2021) Subcutaneous AD III Completed Gantenerumab doses up
to 1200 mg resulted in
robust amyloid-β plaque
removal at 2 years (Klein
et al., 2019)

NCT04374253 Gantenerumab Monoclonal antibody against Aβ (Avgerinos et al., 2021) Subcutaneous AD III Active, not
recruiting

NA

NCT03444870 Gantenerumab Monoclonal antibody against Aβ (Avgerinos et al., 2021) Subcutaneous AD III Active, not
recruiting

NA

NCT03443973 Gantenerumab Monoclonal antibody against Aβ (Avgerinos et al., 2021) Subcutaneous AD III Active, not
recruiting

NA

NCT05310071 Aducanumab Monoclonal antibody against Aβ (Dhillon, 2021) Intravenous (IV)
infusion

AD III Recruiting NA

NCT03639987 Aducanumab Monoclonal antibody against Aβ (Dhillon, 2021) Intravenous (IV)
infusion

AD II Terminated Study was discontinued
based on futility analysis
conducted on Phase III
trials

NCT05108922 Aducanumab,
Donanemab

Monoclonal antibody against Aβ (Decourt et al., 2021) Intravenous (IV)
infusion

AD III Active, not
recruiting

NA

NCT03582137 Cannabidiol A major constituent of Cannabis sativa L. (Karimi-Haghighi
et al., 2022)

Oral PD II Completed NA

NCT01502046 Sativex Contains Tetrahydrocannabinol and Cannabidiol in a
1:1 molecular ratio (Cristino et al., 2020)

Oromucosal Spray HD II Completed No significant molecular
effects were detected on
the biomarker analysis
No significant
symptomatic effects were
detected at the prescribed
dosage and for a 12-week
period (López-Sendón
Moreno et al., 2016)

NCT04075435 High CBD/low THC
sublingual solution

CBD: Cannabidiol
THC: Tetrahydrocannabinol

Sublingual AD Early phase
I

Recruiting NA

NCT02783573 Lanabecestat (AZD3293) BACE1 inhibitor (Patel et al., 2022) Oral AD III Terminated Did not slow cognitive or
functional decline
(Wessels et al., 2020)

(Continued)
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TABLE 1 (Continued)

Trial Identification Drug used Drug description Delivery route Disease Phase Status Results

NCT02245737 Lanabecestat (AZD3293) BACE1 inhibitor (Patel et al., 2022) Oral AD II and III Terminated Did not slow cognitive or
functional decline
(Wessels et al., 2020)

NCT02956486 Elenbecestat (E2609) BACE1 inhibitor (Patel et al., 2022) Oral AD III Terminated No evidence of potential
efficacy, and the adverse
event profile of
E2609 being worse than
placebo

NCT01600859 Elenbecestat (E2609) BACE1 inhibitor (Patel et al., 2022) Oral AD I Completed NA

NCT01496170 Verubecestat (MK-8931) BACE1 inhibitor (Patel et al., 2022) Oral AD I Completed NA

NCT01739348 Verubecestat (MK-8931) BACE1 inhibitor (Patel et al., 2022) Oral AD II and III Terminated Did not reduce cognitive
or functional decline in
patients with
mild-to-moderate
Alzheimer’s disease
(Egan et al., 2018)

NCT01953601 Verubecestat (MK-8931) BACE1 inhibitor (Patel et al., 2022) Oral AD III Terminated Cognition and daily
function were worse
among patients who
received verubecestat
than among those who
received placebo
Did not improve clinical
ratings of dementia
among patients with
prodromal Alzheimer’s
disease (Egan et al., 2019)

NCT01689246 TRx0237 Tau aggregation inhibitor (Hung and Fu, 2017) Oral AD III Completed No evidence of benefits
for patients with mild to
moderate Alzheimer’s
disease (Gauthier et al.,
2016)

NCT03539380 TRx0237 Tau aggregation inhibitor (Hung and Fu, 2017) NA AD NA Available NA

NCT02585934 Intepirdine (RVT-101)
and donepezil

Intepirdine: 5HT-6 serotonin receptor inhibitor (Hung and Fu,
2017)
Donepezil: acetylcholinesterase inhibitor (Marucci et al., 2021)

Oral AD III Completed Did not produce
statistical improvement
over placebo on
cognition or activities of
daily living in
mild-to-moderate AD
dementia patients (Lang
et al., 2021)
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ER stress-induced cell death in
neurodegenerative diseases

Mechanism of ER stress-induced apoptotic
cell death

The ER is known as an organelle involved in protein maturation
and folding (Read and Schröder, 2021). Toxic protein aggregates
in neurodegenerative diseases, pathogen-associated molecular
patterns (PAMPs), danger-associated molecular patterns (DAMPs),
ROS, and reactive nitrogen species (RNS), can disrupt protein
folding processes in the ER lumen, leading to ER stress (Zhang and
Kaufman, 2008). In the condition of ER stress, the aggregation of
unfolded or misfolded proteins within the ER lumen of neurons
and neuroglia leads to failure of ER in maintaining protein
homeostasis through UPR and ERAD. For instance, accumulation
of tau protein in AD can affect essential components of ERAD and
block this pathway, leading to the accumulation of more misfolded
proteins in the ER lumen (Hetz and Saxena, 2017; Ghemrawi
and Khair, 2020). Subsequently, UPR-dependent inflammation and
apoptotic pathways are induced, resulting in neuronal cell death
(Sprenkle et al., 2017; Ghemrawi and Khair, 2020). The ER stress
can also be induced by ER Ca2+ dysregulation, impairments in
vesicular trafficking, or any defects in UPR components (Cooper
et al., 2006; Sprenkle et al., 2017). PKR-like ER kinase (PERK),
inositol-requiring transmembrane kinase/endoribonuclease 1 α

(IRE1α), and activating transcription factor 6 (ATF6) are three vital
sensor proteins that are involved in UPR regulation (Ghemrawi
and Khair, 2020). Under normal conditions, these proteins are
inactive due to association with ER chaperone proteins such
as Immunoglobulin binding protein (BiP) or 78 kDa glucose-
regulated protein (GRP78), which are members of heat shock
protein families (Halperin et al., 2014).

Under ER stress conditions, the misfolded proteins interact with
the substrate binding domain of BiP. Consequently, BiP is released
and leads to dimerization and auto-phosphorylation of PERK, as
well as intramembrane proteolysis of ATF6 and phosphorylation
of IRE1α. Subsequently, the UPR cascade activates to maintain
protein homeostasis (Ghemrawi and Khair, 2020). To elaborate,
the phosphorylation of the alpha subunit of eukaryotic translation
initiation factor (eIF2α) followed by activation of PERK occurs
through BiP dissociation. This process inhibits protein synthesis to
prevent overload of proteins in the ER lumen (Hetz and Saxena,
2017; Almeida et al., 2022), therefore attempting to restore protein
homeostasis (Da Silva et al., 2020). Besides, under prolonged ER
stress conditions and failure in the UPR mechanism, p-eIF2α

promotes activating transcription factor 4 (ATF4) translation,
which enhances up-regulation of pro-apoptotic factors, including
CHOP (also known as GADD153; Ghemrawi and Khair, 2020).
Eventually, down-regulation of anti-apoptotic Bcl-2 family makes
neurons more susceptible to death (Doyle et al., 2011; Hetz and
Saxena, 2017; Da Silva et al., 2020; Figure 1A). Moreover, it has
been claimed that TRB3 genes, GADD34, death receptor 5 (DR5),
ER oxidase 1 (ERO1), and other apoptotic molecules can potentially
receive apoptosis signals from CHOP and induce cell death (Taalab
et al., 2018; Da Silva et al., 2020). ATF4 also induces transcription of
the p53-upregulated modulator of apoptosis (PUMA), which results

in ER-stress-induced neuronal apoptosis (Galehdar et al., 2010).
Interestingly, experiments have indicated that CHOP could not
induce apoptosis in PUMA-deficient neurons, demonstrating the
key role of PUMA in CHOP-induced neuronal apoptosis (Galehdar
et al., 2010). Moreover, in IRE1-α signaling pathway, the second
arm of UPR, after the release of BiP by aggregated proteins,
IRE1-α undergoes oligomerization and auto-phosphorylation. p-
IRE1α facilitates neuronal death by activation of the apoptotic-
signaling kinase-1 (ASK1) and other apoptotic factors as a result of
c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein
kinase (p38 MAPK) pathways activation (Ghemrawi and Khair,
2020). This pathway may induce p53 activation and lead to the
upregulation of Bcl-2 associated X (BAX) protein, which triggers
the release of cytochrome C (Cyt C) from the mitochondria to the
cytosol and cause apoptotic neuronal cell death (Stefani et al., 2012).
Furthermore, the RNase activity of IRE1α plays a critical role in
splicing the mRNA coding for X-box binding protein 1 (XBP1)
and increases the expression of genes involved in ER machinery,
such as BiP (Lee et al., 2003; Hirota et al., 2006; Chen et al., 2022).
Besides outlined functions, IRE1α participates in the degradation
of some mRNAs and microRNAs, known as “regulated IRE1α-
dependent decay” (RIDD; Hetz and Saxena, 2017; Figure 1B).
Mutations in Presenilin 1 and 2 (PS1 and PS2), which are frequently
involved in AD, can inhibit IRE1 and impair UPR, leading to AD
pathology and neuronal cell death (Doyle et al., 2011). ATF6 is
the third sensor protein of UPR cascades which is embedded
in the ER membrane. By interaction of aggregated proteins with
ATF6 in the ER lumen and release of BiP, ATF6 translocates to the
Golgi apparatus and undergoes proteolysis. Subsequently, cleaved
ATF6 induces transcription of ER chaperones and XBP1 in the
nucleus and participates in protein homeostasis (Da Silva et al.,
2020; Figure 1C).

ER stress-associated alterations of
apoptotic factors

In AD, Aβ can trigger ER stress, mitochondrial fragmentation,
and neuronal death through ER Ca2+ release by ryanodine
receptors (RyRs) and inositol triphosphate receptors (IP3R; Chami
and Checler, 2020). Based on studies, overexpression of RyRs
contributed to Ca2+ dysregulation in AD mouse models and cell
lines. In addition, increase in IP3 receptor-mediated Ca2+ signaling
was indicated in AD patients’ fibroblast cells (Callens et al., 2021).
Aβ oligomer-dependent ER stress responses can subsequently
activate different kinases which phosphorylate specific epitopes on
tau leading to the development of neurofibrillary tangles (NFTs)
and propagating AD pathology (Sprenkle et al., 2017). Aβ peptides
can activate ASK1 and JNK pathways, which can subsequently
mediate ER stress-induced apoptosis (Ghemrawi and Khair, 2020).
Both ASK1 and JNK were reported to be upregulated in transgenic
mouse brains and post-mortem AD samples, respectively (Galvan
et al., 2007; Sbodio et al., 2019). It has been revealed that
CHOP activation plays a crucial role in the triggering and
progression of pathological hallmarks of AD. In agreement,
CHOP and its downstream effectors, including caspase-12 and
GADD34, are markedly upregulated in the brains of AD patients
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FIGURE 1

The role of three arms of UPR in inducing apoptosis and the neuroprotective effects of particular inhibitors (shown in yellow box). (A) The
PERK pathway: interaction of substrate binding domain of BiP with misfolded or aggregated proteins leads to BiP dissociation, dimerization, and
autophosphorylation of PERK, which further causes eIF2α phosphorylation. Phosphorylated eIF2α induces cell death by transcription of apoptotic
factors by means of ATF4 transcription factor as well as inhibition of protein synthesis. (B) The IRE1 pathway: after dissociation of BiP from
IRE1 receptor by misfolded or aggregated proteins in the ER lumen, IRE1 undergoes oligomerization and autophosphorylation. This results in mRNA
degradation termed “regulated IRE1alpha-dependent decay” (RIDD) and inducing apoptotic factors by initiating JNK/MAPK cascade. To mitigate ER
stress, the IRE1 pathway also leads to XBP1 mRNA splicing to transcript ER chaperones to improve ER machinery. (C) The ATF6 pathway: translocation
of ATF6 to the Golgi apparatus as a result of BiP dissociation, and the proteolysis of ATF6 in Golgi brings out an activated ATF6 transcription factor to
transcript ER chaperones and XBP1 for ER machinery.

(Ghemrawi and Khair, 2020). In addition, phosphorylated forms of
PERK and eIF2α were significantly increased in the hippocampal
pyramidal cells and frontal cortex of AD patients (Stutzbach et al.,
2013). The evidence also shows that ER chaperones, including BiP,
are also upregulated in the cerebrospinal fluid (CSF) and AD brains
(Ghemrawi and Khair, 2020).

Mutations in PARK7, a gene involved in familial PD, might
activate ASK1-induced neuronal death in PD. This can be due to
the dysfunction in protecting against the Daxx-ASK1 cell death
axis, which plays a key role in the completion of signaling pathways
from cell surface death receptors (Chang et al., 1998; Homma
et al., 2009). In addition, upregulation of ER stress markers,
such as GRP78, p-PERK, and p-eIF2α in dopaminergic (DA)
neurons of post-mortem PD samples (Shi et al., 2022), demonstrate
their function in initiating apoptosis pathways, which could cause
serious clinical implications. According to evidence, upregulation
in ER stress markers, including BiP and CHOP in post-mortem
HD brains, may be associated with neuronal death in HD (Shi
et al., 2022). Mutation in genes such as SOD1, a gene encoding

Superoxide dismutase 1 (SOD1), can also induce ER stress in
neurons in ALS and cause neuronal damages (Sprenkle et al., 2017).
ALS-associated mutations in vesicle-associated membrane protein-
associated protein B (VAPB) can physically interact with ATF6 and
disturb its natural function (Hetz and Saxena, 2017). Patients with
ALS-associated VAPB mutations indicated malfunctions in Ca2+

signaling and storage, excessive ER stress, and neuronal death
as a result of inhibition of ATF6 (Ghemrawi and Khair, 2020).
Furthermore, upregulation of PERK, IRE1α, and ATF6 was found
in the ALS mouse models (Ghemrawi and Khair, 2020; Zhao et al.,
2022).

Targeting ER stress-induced apoptotic cell
death

According to the critical role of ER stress in the occurrence
of neuronal cell death in neurodegenerative diseases, targeting
associated pathways seem to have hopeful effects on protecting
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neurons from death (Figure 1). Among three arms of UPR in
ER stress conditions, the PERK pathway is the most well-studied
in the neuroprotective effects of inhibition of ER stress. In
parallel with this, Salubrinal, an anti-ER stress compound, has
been well investigated in neurodegenerative disease pathology
and treatment (Gupta S. et al., 2021; Ajoolabady et al., 2022).
Salubrinal is an activator of UPR, which raises ER chaperone
levels, including BiP. It inhibits eIF2α dephosphorylation which
can attenuate neuronal death by interfering with death-related
signaling pathways, including ATF4 or ASK1 (Figure 1, Table 2;
Niso-Santano et al., 2011; Wu et al., 2014; Sprenkle et al.,
2017). Accumulating evidence indicates that Salubrinal reduced
ER accumulation of α-synuclein and significantly protected against
α-synuclein-mediated dopaminergic (DA) neuronal death in
transgenic mouse models (Colla et al., 2012). Also, Salubrinal
reduced the accumulation of mutant huntingtin (mHTT) by
upregulation of BiP and p-eIF2α, and prevent neuronal cell
death (Maity et al., 2022). In addition, the drug Adaptaquin
blocks Tribbles pseudokinase 3 (Trib3) induction by inhibiting
ATF4 and CHOP activity probably through an eIF2α-independent
mechanism, leading to neuronal protection in mouse models
of PD (Figure 1, Table 2). More investigation is required for
the neuroprotective effects of Adaptaquin in ER stress-induced
neuronal cell death (Karuppagounder et al., 2016; Aime et al., 2020).
Moreover, the PKR inhibitor “C16” can reduce transcriptional
induction of pro-apoptotic target genes of ATF4, such as CHOP,
Trib3, and PUMA (Figure 1, Table 2). This could significantly
reduce MPP+ and 6-OHDA neurotoxin-induced neuronal cell
death in PD models (Demmings et al., 2021). According to the
experimental study, PUMA expression can be downregulated by
directly targeting CHOP to decrease ER stress-induced neuronal
apoptosis (Galehdar et al., 2010). Notably, pharmacological
inhibition of ATF4, using imidazole-oxindole PKR inhibitor,
indicated neuroprotection against neurotoxin-induced cell death
in PD models (Demmings et al., 2021). Comparing motor neuron
death in ATF4-ablated transgenic ALS mouse models with those
expressing normal levels of ATF4 demonstrated the possible role
of ATF4 ablation in neuroprotection against ALS by reducing
apoptosis components, including CHOP (Matus et al., 2013).
Likewise, another study revealed an increase in neuronal death
in PD rat models by overexpression of ATF4 using recombinant
Adeno-Associated Virus (rAAV; Gully et al., 2016). Halliday et al.
(2017) revealed the inhibition of UPR-induced p-eIF2α signaling
and neuronal survival by two chemical compounds termed
“Trazodone” and “dibenzoylmethane” (DBM) in prion-infected
mice (Figure 1, Table 2), presumably by reversing translational
attenuation and lowering levels of ATF4 and CHOP which needs to
be more inquired in other neurodegenerative diseases including AD
and PD. Interestingly, it has been demonstrated that PERK inhibitor
GSK2606414 (Figure 1, Table 2), despite its pancreatic toxicity
(Halliday et al., 2015), inhibits and reduces PERK expression, which
has a neuroprotective effect on DA neurons in Substantia Nigra
pars compacta (SNpc) of PD mouse models, and improves the
motor performance and neuronal excitability of PD mice (Mercado
et al., 2018). In addition, inhibition of PERK signaling with IRSIB
has been investigated in ALS rodent models, and a reduction in
ATF4 and CHOP levels has been indicated (Figure 1, Table 2),
which results in significant neuronal survival. In the same study,

a reduction in IRE1-dependent signaling has also been indicated
(Halliday et al., 2015, 2017).

Inhibition of the IRE1 pathway is also a possible way to
attenuate neuronal cell death. For instance, Kinase-Inhibiting
RNase Attenuator 6 (KIRA6) inhibits apoptosis by breaking
IRE1 oligomers and inhibiting RNase activity of IRE1α (Figure 1,
Table 2, Ghosh et al., 2014). Given the vital role of ASK1 in
IRE1-mediated UPR and inducing apoptosis, targeting and
deletion of ASK1 in mutant SOD1-transgenic mice have been
indicated to mitigate motor neuronal death (Homma et al.,
2009). Additionally, evidence shows that overexpression of
XBP1 protects DA neurons against neurotoxin-induced ER
Stress-associated cell death (Valdes et al., 2014; Shi et al.,
2022). Furthermore, upregulation of autophagy by targeting
XBP1 in ALS and HD models is known to be another way
of protection from neuronal cell death (Remondelli and Renna,
2017). The experiments have been demonstrated that ablation
of ATF6 facilitates DA neuronal death caused by neurotoxins,
including 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-
pyridinium (MPP+; Shi et al., 2022). This indicates the plausible
role of the third arm of UPR pathways in inducing neuronal
death. Kaempferol (Table 2), a plant-derived ER stress-induced
cell death inhibitor, has also reduced the expression of ATF6,
PERK, IRE1α, as well as CHOP in Brefeldin A (BFA)-induced
ER stress in IMR32 cell lines. More investigations is needed
to determine whether it is effective in animal and human
neurodegenerative models (Abdullah and Ravanan, 2018). It is
also claimed that 3β-Hydroxysteroid-∆24 reductase (DHCR24)
can protect neuronal cells by reducing BiP and CHOP levels
and attenuating ER stress-specific apoptotic signaling pathways
(Table 2; Lu X. et al., 2014). Targeting other indirect factors
involved in ER stress, such as IP3 receptors and Ryanodine
receptors, has also been examined. Remarkably, the first research
confirming blocking Inositole triphosphate receptors (IP3Rs) and
ryanodine receptors (RyRs) to decrease ER stress-induced Ca2+

dyshomeostasis in DA neurons revealed that a RyRs blocker
(RY) markedly reduced 6-OHDA-induced cytosolic Ca2+ increases.
In contrast, an IP3Rs blocker (Xes) had no considerable effect
on cytosolic Ca2+ levels and neuronal cell death (Table 2).
Moreover, pre-treatment with an ER stress inhibitor 4-phenyl
butyric acid (4-PBA) had a neuroprotective effect on DA
neurons from 6-OHDA-induced apoptosis (Table 2, Huang et al.,
2017).

Oxidative stress-induced apoptotic
cell death in neurodegenerative
diseases

Mechanism of oxidative stress-induced
apoptotic cell death

Healthy mitochondria produce ROS as a byproduct of
oxidative phosphorylation mainly as signaling messengers
(Hajam et al., 2022; Trushina et al., 2022), while defective
mitochondria generate aberrant amounts of ROS and cause
oxidative stress and suspend cellular homeostasis due to
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TABLE 2 The function and target molecules of drugs tested in neurodegenerative disease models in different cellular stress conditions.

Condition Drug name Target Molecule(s) Function Reference

ER stress Salubrinal ATF4 Inhibit transcription of apoptotic factors Kim et al. (2014) and Ghemrawi and Khair (2020)

Salubrinal ASK1 Prevent apoptosis by affecting downstream molecules of JNK/MAPK pathway Ghemrawi and Khair (2020)

Adaptaquin ATF4 Inhibit transcription of apoptotic factors Aime et al. (2020)

C16 ATF4 Inhibit transcription of apoptotic factorsreduce neuronal death caused by neurotoxins Demmings et al. (2021)

Trazodone p-eIF2α Decrease ATF4 levels Halliday et al. (2017)

Dibenzoylmethane p-eIF2α Decrease ATF4 levels Halliday et al. (2017)

GSK2606414 PERK Inhibit PERK pathway by preventing the phosphorylation of eIF2α Mercado et al. (2018)

IRSIB PERK Reduce ATF4 and CHOP levels Halliday et al. (2015) and Halliday et al. (2017)

KIRA6 IRE1 Break IRE1 oligomersinhibit RNase activity of IRE1 Ghosh et al. (2014)

Kaempferol ATF6, IRE1, PERK, CHOP Reduce the expression of mentioned factors Abdullah and Ravanan (2018)

DHCR24 BiP, CHOP Reduce the expression of mentioned factorsattenuate apoptotic signaling pathways Lu X. et al. (2014)

xestospongin C IP3R Regulate Ca2+ homeostasis Wang et al. (2019)

Ryanodine RyR Regulate Ca2+ homeostasis Adasme et al. (2015)

4-Phenyl Butyric acid Unfolded protein Interaction between hydrophobic regions of the chaperone and hydrophobic regions
of the unfolded protein

Pao et al. (2021)

Oxidative stress Humanin Pro-apoptotic Bcl-2 family Inhibit CytC and AIF release Ma and Liu (2018) and Hazafa et al. (2021)

L-NAT Caspase Inhibit CytC and AIF releaseinhibit caspase activity Li et al. (2015) and Sirianni et al. (2015)

NAS NA Increase antioxidant levels Yoo et al. (2017)

CoQ10 Mitochondrial permeability transition
pore

Inhibit CytC and AIF release Young et al. (2007) and Akanji et al. (2021)

Diphenyleneiodonium NADPH oxidase Inhibit ROS production by NOX activity Chocry and Leloup (2020)

Apocynin NADPH oxidase Inhibit ROS production by NOX activity Chocry and Leloup (2020)

VAS2870 NADPH oxidase Inhibit ROS production by NOX activity Chocry and Leloup (2020)

Aucubin Nrf2 Regulating mitochondrial membrane potential and decreasing ROS generation Wang et al. (2020) and Li Y. C. et al. (2021)

Salidroside Pro-apoptotic Bcl-2 family caspase Inhibit CytC and AIF release inhibit caspase activation Wang et al. (2015)

Borneol pro-apoptotic Bcl-2 family Inhibit Cyt C and AIF release Hur et al. (2013)

[6]-Gingerol Free radicals Scavenge free radicals and decrease phospholipid peroxidation Lee et al. (2011)

Isoorientin GSK-3β Blocks GSK-3β via an ATP noncompetitive inhibition to attenuate tau
hyperphosphorylation

Liang et al. (2016)

(Continued)
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TABLE 2 (Continued)

Condition Drug name Target Molecule(s) Function Reference

Neuroinflammation Rosmarinic acid miR-155-5p Attenuate inflammation by miR-155–5p regulation Lv et al. (2020)

Alpha1-antitrypsin Calpain Inhibit calpain activity Feng et al. (2020)

Alpha1-antitrypsin NA Attenuate microglial inflammation Feng et al. (2020)

Epigallocatechin-3-
gallate

NA Attenuate neuroinflammation Cheng C.-Y. et al. (2021)

Aucubin NF-κB, JNK, p38, and ERK Reduce phosphorylation levels of mentioned factors to decrease inflammatory factor
overexpression

Li Y. C. et al. (2021)

Hesperetin TLR4, NF-κB
ERK, p38 MAPK

Modulate TLR4/NF-κB signaling pathway downregulate the phosphorylation of ERK
and p38 MAPK

Jo et al. (2019) and Muhammad et al. (2019)

15d-PGJ2 PPAR-γ Inhibit production of interleukins Xu et al. (2008)

Anakinra IL-1 Inhibit pyroptosis mediated by IL-1β Wang et al. (2019)

GW501516 PPAR-β/δ Attenuate NLRP3-mediated neuroinflammation Chen et al. (2019) and Altinoz et al. (2021)

MCC950 NLRP3 inflammasome Inhibit inflammasome activation Gordon et al. (2018) and Deora et al. (2020)

Dihydromyricetin
(DHM)

NLRP3 inflammasome Inhibit inflammasome activation Feng et al. (2018)

Benzyl isothiocyanate
(BITC)

IL-1β, NLRP3 inflammasome Inhibition of IL-1β release and NLRP3 inflammasome Lee et al. (2016)

Dopamine Dopamine D1 receptor The binding of cAMP with NLRP3 and NLRP3 degradation Yan et al. (2015)

Baicalein NLRP3 inflammasome, Caspase Decreasing pro-inflammatory cytokines production Rui et al. (2020)

Resveratrol NF-κB Decrease phosphorylation of NF-κB Inhibit microglial activation (Zhong et al. (2012), Zhang et al. (2017), and Huang
et al. (2021)

Fro
n

tie
rs

in
C

e
llu

lar
N

e
u

ro
scie

n
ce

10
fro

n
tie

rsin
.o

rg

https://doi.org/10.3389/fncel.2023.1105247
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#articles
https://www.frontiersin.org


Karvandi et al. 10.3389/fncel.2023.1105247

the disruption of the balance between ROS generation
and antioxidant function (Figure 2; Höhn et al., 2020;
Holubiec et al., 2022). Neurons are susceptible to produce
free radicals due to being metabolically very active. Evidently,
any pathological situation or dysfunction in neurons can
generate excess ROS leading to oxidative stress (Bhat et al.,
2015). Given that the metabolism rate of neurons is very
high, the brain has a high oxygen consumption rate (20%-
25% of the total body oxygen consumption). Furthermore,
the high content of easily peroxidizable unsaturated fatty
acids (PUFA) and the relative paucity of antioxidant enzymes
compared with other organs makes the brain vulnerable to
free radical damage (Nunomura et al., 2007; Rocha et al.,
2018). Therefore, the excessive production of ROS and RNS
resulting from various factors, including calcium influx and
mitochondrial dysfunction, can compromise cell fidelity and
exacerbate disease progression. Hydrogen peroxide (H2O2),
superoxide anion (O2

−), and highly reactive hydroxyl radical
(HO•) are the ROS involved in neurodegeneration. The
RNS, such as nitric oxide (NO), are also found to have a
deleterious effect on neurons (Singh et al., 2019; Korovesis et al.,
2023).

ROS adversely affects the oxidation or peroxidation of specific
macromolecules such as lipid peroxidation to malondialdehyde
(MDA), protein carbonylation, and oxidation of specific nucleic
acids (Singh et al., 2019). It has been claimed that ROS allows
Cyt C and AIF to be released from the inner mitochondrial
membrane (IMM) and initiate an apoptotic cascade (Figure 2;
Bhat et al., 2015). The neural brain cells are enriched in
PUFA, such as docosahexaenoic acid, arachidonic acid, and
cardiolipin, which makes cells susceptible to lipid peroxidation
and subsequent outcomes (Höhn et al., 2020; Falabella et al.,
2021). For example, Cardiolipin (CL), a specific phospholipid of
IMM, located in the sites of ROS production in the mitochondrial
electron transport chain, can potentially be a target for ROS
due to its high composition of unsaturated acyl chains. After
peroxidation by ROS, CL is supposed to be involved in the
conformational changes in IMM and the release of pro-apoptotic
proteins, including Cyt C (Bhat et al., 2015; Falabella et al.,
2021). However, a serine protease called HTRA2 takes part in
the inhibition of pro-apoptotic protein release from mitochondria,
but its function may not be sufficient, or it may be disturbed
(Bhat et al., 2015). Moreover, the brain is also enriched in
redox-active metals (copper and iron) that involve in generating
free radicals and peroxidation of lipids (Sbodio et al., 2019;
Falabella et al., 2021). These metals could be reduced by
proteins such as Aβ, which leads to the formation of H2O2
and pro-apoptotic lipid peroxidation (LPO) products, such as
4-hydroxy-2-nonenal (HNE; Opazo et al., 2002; Jiang et al.,
2009). In addition to the role of HNE in decreasing antioxidant
levels by reacting with sulfhydryl groups (Taso et al., 2019),
HNE forms stable adducts with amine or thiol groups in
proteins and may eventually anomalously activate caspases and
triggers neuronal cell death (Figure 2; Gaschler and Stockwell,
2017; Barrera et al., 2018). It has been demonstrated that
Cadmium (Cd) could easily penetrate the blood-brain barrier
and contribute to neurotoxicity. Cd can induce mitochondrial
ROS production in neurons as well as downregulation of

x-linked inhibitor of apoptosis (XIAP), leading to an increase
in mouse double minute 2 (MDM2). Consequently, decrease in
p53 facilitates neuronal apoptosis cell death (Figure 2; Zhao et al.,
2020).

ROS can influence protein oxidation and contribute to the
formation of insoluble protein aggregates (Figure 2), including
Aβ peptides and NFTs, α-synuclein, and mSOD1. Oxidative stress
can enhance expression of gamma-secretase and beta-secretase
(BACE1) through activation of MAPK pathway and involves
in Aβ production in neurons and amyloidogenic processing of
amyloid precursor protein (APP; Tamagno et al., 2005; Lin and
Beal, 2006; Höhn et al., 2020). Oxidative stress also increases
tau phosphorylation by activation of glycogen synthase kinase 3
(GSK3; Lin and Beal, 2006). ROS also mediate JNK/stress-activated
protein kinase pathways, which subsequently contributes to hyper-
phosphorylation of tau proteins, formation of intracellular NFTs,
and Aβ-induced neuronal death (Liu et al., 2017). Indeed, hydrogen
peroxide and deficiency of mitochondrial antioxidant enzymes has
been tested in animal models, which led to increase in Aβ levels
(Gerakis and Hetz, 2019) and neuronal cell death (Lin and Beal,
2006). Interestingly, it has been revealed that neurons close to Aβ-
plaques seem to be more at risk of cell death due to more severe
toxicity of the microenvironment caused by oxidative stress in AD
(Xie et al., 2013). Aβ-mediated oxidative stress can enhance the
activity of a serine/threonine phosphatase, known as calcineurin,
and promotes neuronal death by associating with caspases and/or
triggering pro-apoptotic Bcl-2 proteins (Figure 2; Awasthi et al.,
2005; Akanji et al., 2021). Moreover, ROS can have noxious effects
by affecting Ca2+ cation channels on the ER and plasma membrane.
Impaired Ca2+ channels can, in turn, lead to Ca2+ influx to the
cytosol, as well as impairment in pumping intracellular Ca2+ out
of the cell to maintain homeostasis (Brini et al., 2014). Toxic
levels of calcium can trigger cell death through activation of
apoptotic factors, including calcium-dependent proteases calpain
and caspases (Figure 2; Fairless et al., 2014). Importantly, ROS
has also a deleterious effect on nuclear factor erythroid 2-related
factor 2 (Nrf2) regulation. Nrf2 is a transcription factor that
has an essential role in regulating cellular redox homeostasis
(Kovac et al., 2015). Reduced levels of Nrf2 can subsequently
result in mitochondrial dysfunction and apoptosis. Therefore,
upregulation of Nrf2 reduces oxidative stress by promoting the
expression of antioxidant enzymes (Figure 2; Li Y. C. et al.,
2021). Besides, the Repressor element 1-silencing transcription
factor (REST) regulates cell death-associated genes, including BAX,
BH3 interacting domain death agonist (BID), and also PUMA, and
maintains resistance to stress conditions. REST-depleted neurons
are more susceptible to oxidative stress and anomalously express
apoptosis-inducing genes which facilitates neuronal death in AD
(Lu T. et al., 2014). Remarkably, upregulation of the transient
receptor potential melastatin-2 (TRPM2) in the SNpc of human
PD brains agrees with the role of TRPM2 in ROS-induced cell
death in PD pathogenesis (Malko et al., 2021). The function
of Parkin can be affected by mitochondrial dysfunction and
oxidative stress. This will promote Cyt C release and caspase-9
activation, which leads to neuronal cell death and facilitating PD
pathogenesis (Figure 2; Lin and Beal, 2006). Defect in Complex I
of the mitochondrial electron transport chain by aggregation of α-
synuclein and PTEN-induced putative kinase 1 (PINK1) mutations
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FIGURE 2

Cause and consequences of ROS production in the CNS and the neuroprotective effects of inhibitory factors (shown in yellow box).

can be also involved in PD pathogenesis by inducing neuronal
apoptosis and failure in maintaining mitochondrial membrane
potential, respectively (Liu et al., 2017; Morales-Martínez et al.,
2022).

Oxidative stress-associated alterations of
apoptotic factors

Besides the oxidation of macromolecules is elevated in the
brain of patients, decreased levels of antioxidants, including
uric acid, vitamin C and E, superoxide dismutase (SOD),
catalase, and especially the antioxidant glutathione (GSH), lead
to decreased detoxification of ROS in the brain cells which has
been discovered in various AD, PD, and other neurodegenerative
disease patients (Singh et al., 2019). Oxidative damage occurs
before the onset of significant plaque pathology in the AD by
triggering glycogen synthase kinase 3 (Lin and Beal, 2006; Wu
et al., 2019). Overproduction of ROS and RNS in AD patients
has been detected. Additionally, 8-hydroxydeoxyguanosine (8-
OHdG), a biomarker of oxidative damage, was elevated in AD
ventricular CSF (Niedzielska et al., 2016). However, alterations

in plasma levels of antioxidants in AD patients are paradoxical
in experimental reports (Niedzielska et al., 2016). Aβ plaques
can cause Ca2+ dyshomeostasis in ER leading to Ca2+ influx in
the cytosol. Consequently, endogenous GSH levels are reduced,
and ROS can cause neurotoxic effects (Liu et al., 2017). The
alterations of transition metals, including Cu2+, Zn2+, Fe3+, have
been assessed in AD samples. The results indicated that transition
metals seem to be imbalanced in AD brains which contributed to
oxidative damage and subsequent neuronal death (Bhat et al., 2015).
Evidence also shows reduction in nuclear REST levels in neurons
of degenerated regions in AD brains, such as prefrontal cortical
and hippocampal neurons, which transcriptional dysregulation in
apoptotic genes and vulnerability to oxidative stress has made
them susceptible to apoptosis cell death (Lu T. et al., 2014).
Elevated levels of activated JNK have been reported in post-mortem
AD samples, which is probably associated with Aβ formation.
JNK implicates in the upregulation of BACE1 and promotes the
formation of Aβ, leading to oxidative stress and neuronal apoptosis
cell death (Yao et al., 2005; Guglielmotto et al., 2011; Sbodio et al.,
2019).

HNE levels were significantly high in the CSF of AD and
PD patients, which can be considered as an important reason for
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neuronal demise and behavioral symptoms in neurodegenerative
diseases (Taso et al., 2019). Decreased level of GSH in the Substantia
Nigra (SN) of PD patients is one of the earliest biochemical
alterations that facilitate the neurotoxic effects of ROS (Niedzielska
et al., 2016). Moreover, overexpression of α-synuclein in transgenic
mice results in mitochondrial dysfunction and increased oxidative
stress (Song et al., 2004). It has been observed that aberrant
activity of mutant human SOD1 in ALS patients leads to increase
in the level of free radicals in CSF, serum, and urine samples
of ALS patients, which exacerbates neuronal damage (Liu and
Wang, 2017). Indeed, mSOD1 accumulation in outer mitochondrial
membrane (OMM) can result in mitochondrial dysfunction and
promotes aberrant ROS production. In an experimental study,
mice expressing mSOD1 showed more oxidative damage to
mitochondrial lipids and molecules (Mattiazzi et al., 2002; Liu
et al., 2004). P53 can regulate genes involved in oxidative stress
and mitochondrial function. Environmental toxicants such as
bisphenol A (BPA) play a role in inducing neurotoxicity by
significantly increased oxidative stress. BPA subsequently leads to
upregulation in apoptotic inducing factors, including p53, PUMA,
and Drp-1 (Ishtiaq et al., 2021). Additionally, in Huntington’s
disease pathology, mHTT can interact with p53 and increase
p53 levels, and eventually upregulates apoptotic factors BAX and
PUMA, which leads to apoptosis (Bae et al., 2005; Lin and
Beal, 2006). mHTT also interacts with mitochondrial membranes,
causing mitochondrial abnormalities and an increase in ROS
generation, which potentially leads to neuronal degeneration and
cell death (Ross and Tabrizi, 2011; Liu et al., 2017). Elevated levels
of lipid peroxidation and decreased levels of GSH content have been
indicated in the plasma of HD patients (Klepac et al., 2007). In
addition, increased levels of 8-OHdG have been observed in the
serum of HD patients and post-mortem HD samples (Sbodio et al.,
2019).

Targeting oxidative stress-induced
apoptosis cell death

Undoubtedly, oxidative stress has neurotoxic effects in the
pathogenesis of neurodegenerative diseases. However, the exact
molecular pathways remain unclear and need to be more inquired
about finding a promising therapeutic strategy to decrease neuronal
death in neurodegenerative diseases and extend the lifespan
of patients. In this regard, the antioxidant properties of many
candidate compounds have been reported. In addition, many other
molecules that mediate oxidative stress-induced apoptosis have
been targeted to prevent neuronal cell death and disease progression
(Figure 2). A cytoprotective polypeptide called Humanin (HN),
which is encoded by mtDNA, has neuroprotective activity against
cellular stress conditions, such as oxidative stress. HN regulates
mitochondrial function by targeting apoptotic factors and inhibits
apoptosis by upregulation of Bcl-2 and downregulation of Bid and
Bax (Figure 1, Table 2; Hazafa et al., 2021). Also, some amino
acid derivatives have shown anti-apoptotic effects in ALS models
in vitro (Sirianni et al., 2015). N-acetyl-L-tryptophan (L-NAT)
and N-acetyl-DL-tryptophan (DL-NAT) have inhibited neuronal
cell death in H2O2-induced NSC-34 motor neurons (Figure 1,
Table 2). L-NAT inhibits the release of Cyt C/Smac/AIF from

mitochondria, as well as inhibition of caspase activity, thereby
preventing neuronal apoptosis cell death (Sirianni et al., 2015).
Another study by Yoo et al. (2017) showed that N-acetyl serotonin
(NAS) has anti-apoptotic properties by activating neurotrophic
signaling TrkB/CREB/BDNF pathways. NAS induces and activates
the expression of antioxidant enzymes to reduce the level of ROS
(Figure 1, Table 2). It also regulates anti- and pro-apoptotic
factors and restores mitochondrial membrane potential to prevent
neuronal cell death in neurodegenerative disease models (Yoo
et al., 2017). According to evidence, mitochondrial permeability
transition pore (mPTP) can increase mitochondrial calcium
retention and cause cell death. CoQ10 is considered as an
inhibitor of mitochondrial permeability transition pore and
protects neurons from oxidative stress and apoptosis. The exact
protective mechanism of CoQ10 is still indistinct and needs
more experiments. CoQ10 may decrease apoptosis by maintaining
the integrity of the mitochondrial membrane and inhibiting
Cyt C release. CoQ10 may also decrease the Bcl-2 protein
level and prevent caspase activation (Figure 1, Table 2; Akanji
et al., 2021). As previously mentioned, protein aggregates can
potentially induce oxidative stress in neuronal cells. For instance,
Aβ can interact and bind to Aβ-binding alcohol dehydrogenase
(ABAD), a mitochondrial-matrix protein, and induce apoptosis and
free-radical generation. Blocking the interaction of Aβ and ABAD
with a “decoy peptide” suppress oxidative stress and neuronal death.
In contrast overexpression of ABAD in mouse models contribute
to exaggerating cellular stress and further complications (Lustbader
et al., 2004). Moreover, NADPH oxidase (NOX) catalyzes the
formation of O2

- and participates in elevating neurotoxicity and
increasing cell death in HD. Treatment of HD models with
NOX inhibitors, including diphenyleneiodonium, apocynin, and
VAS2870, prevented neurons from cell death (Figure 1, Table 2;
Sbodio et al., 2019).

In several studies, it has been reported that plant iridoids
have therapeutic applications in several neurodegenerative diseases
by regulating apoptotic factors and neuroprotective proteins
(Dinda et al., 2019). Aucubin (AU) is an iridoid glycoside
with neuroprotective properties, which significantly increases cell
viability in neurons via oxidative stress reduction. AU enhances the
antioxidant capacity of cells through the Nrf2 signaling pathway
and decreases ROS-induced neuronal apoptosis by regulating
mitochondrial membrane potential and reducing ROS generation
(Figure 1, Table 2; Li Y. C. et al., 2021). The pharmacological effects
of other herbal compounds have also been investigated. Salidroside
(Sald), is a Chinese plant-derivative compound that could detoxify
neurons by suppressing the elevation of the intracellular ROS level
and induction of antioxidant enzymes. Sald also participates in
the downregulation of pro-apoptotic protein Bax and upregulation
of anti-apoptotic protein Bcl-xl, and prevents neuronal cell death
(Figure 1, Table 2; Zhang et al., 2010). Some plant-derived organic
oils, including a bicyclic monoterpene termed “Borneol”, indicated
neuroprotective effects against H2O2-induced apoptosis in vitro.
Borneol alleviates neuronal apoptosis by inhibiting Cyt C and AIF
release through increase in the expression of anti-apoptotic protein
Bcl-2 and decrease in expression of pro-apoptotic protein Bax
(Figure 1, Table 2; Hur et al., 2013). [6]-gingerol also attenuates
Aβ-induced oxidative stress. Studies revealed that [6]-gingerol
scavenges free radicals and decreases phospholipid peroxidation,
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FIGURE 3

The possible role of inhibiting inflammatory factors to attenuate neuroinflammation-induced neuronal cell death.

as well as improves cellular redox balance (Figure 1, Table 2;
Lee et al., 2011). Increase in the activity of glycogen synthase
kinase-3β (GSK-3β) under oxidative stress condition leads to
Nrf2 dysregulation (Kumar et al., 2012). Thus, GSK-3β inhibitors,
including an anti-oxidative phytochemical known as Isoorientin,
can have neuroprotection against oxidative damage by regulating
Nrf2 antioxidant activity (Figure 1, Table 2; Lim et al., 2007;
Gianferrara et al., 2022).

Neuroinflammation-induced cell
death in neurodegenerative diseases

Mechanism of neuroinflammation-induced
cell death

Research findings have indicated that several neurodegenerative
diseases are associated with inflammation (Kwon and Koh, 2020).
Activated microglia and T lymphocytes have been detected in
the SN of PD patients (Dias et al., 2013). In parallel with this,
high expression levels of chemokines, interleukins, interferons,
and tumor necrosis factor-α (TNF-α) have been discovered in
the striatum and substantia nigra of PD post-mortem brain
samples and CSF of AD patients (Hirsch and Hunot, 2009; Llano

et al., 2012; Gelders et al., 2018). A neurotoxic microenvironment
can be promoted by the continuous secretion of inflammatory
mediators from microglia and astrocytes, thus facilitating neural
degeneration, and glial cell death (Pardillo-Díaz et al., 2022; Song
et al., 2022). In addition to apoptosis cell death, pyroptosis, a
non-apoptotic programed cell death, can also occur in the CNS,
which is mainly mediated by inflammatory processes. Pyroptosis
is characterized by cell swelling, formation of pores in the plasma
membrane carried out by cleaved Gasdermin D, and the release
of pro-inflammatory cytosolic contents into the extracellular space
(Figure 3; Walle and Lamkanfi, 2016; Man et al., 2017; Wang
et al., 2019). Besides, some specific caspases, including caspase-
1, 4, 5, 11, are called “inflammatory caspases”, can mediate
pyroptosis (Taylor et al., 2008; Gaidt and Hornung, 2016). Some
factors are associated with initiation of inflammatory cascades
and promotion of disease pathology. For instance, ER stress can
cause inflammation in neurodegenerative diseases. In other words,
inducing ER stress in neurons mostly initiates apoptosis, whereas
intense ER stress in glial cells can potentially trigger inflammation
in neurodegenerative diseases (Sprenkle et al., 2017). The UPR
can increase the production and the release of inflammatory
factors, such as transcription factor “nuclear factor kappa-light-
chain-enhancer of activated B cells” (NF-κB), interleukin 1 (IL-
1), IL-6, IL-8, and TNF-α (Feng et al., 2017). Furthermore, in
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ER stress condition, p-IRE1 can bind to the TRAF-2 protein
and forms the TRAF2-IRE1 complex. The complex may bind
to ASK-1 and activate the JNK signaling pathway that enhances
inflammation (Vukic et al., 2009; Mohammed-Ali et al., 2015). In
addition, p-PERK also facilitates neuroinflammation by inducing
the JAK1/STAT3 signaling pathway in glial cells (Meares et al.,
2014). Moreover, neuroinflammation is a cause and a consequence
of chronic oxidative stress. Studies indicate that the production
of free radicals (such as ROS) are elevated in neurodegenerative
diseases, which can be due to neuroinflammation (Dias et al., 2013;
González-reyes et al., 2017). On the other hand, increased levels
of ROS can contribute to pro-inflammatory gene transcription
and release of cytokines, including IL-1, IL-6, and TNF-α
(Sochocka et al., 2013; Teleanu et al., 2022). Debris of dead
neurons may trigger glia-mediated neuroinflammation and initiate
a pro-inflammatory cascade that can exacerbate disease progression
(Wang et al., 2015; Joshi et al., 2019). Recently, it was revealed
that microglial pro-inflammatory cytokines are associated with
increased α-synuclein aggregation (Guo et al., 2020). Thereby,
protein aggregates can be involved in inducing neuroinflammation
in the CNS parenchyma.

It has been investigated that the failure to clear apoptotic
cells and activation of glial cells by DAMPs and PAMPs can
enhance inflammation response and subsequent neuronal damage
and loss (Imbeault et al., 2014; Salter and Stevens, 2017; Voet
et al., 2019; Cheng Y. et al., 2021). Activation of complex signaling
cascades such as the NLR family pyrin domain containing 3
(NLRP3) inflammasome can be triggered by a wide range of factors
including cellular stress, infection (Bader and Winklhofer, 2020;
Mahboubi Mehrabani et al., 2022), protein aggregates, and activated
microglia (Nichols et al., 2019; Bader and Winklhofer, 2020;
Tansey et al., 2022). This phenomenon contributes to producing
more neurotoxic cytokines and chemokines such as IL-1β, IL-
6, TNF-α, and CCL2 (also known as monocyte chemo-attractant
protein-1 or MCP-1), that cause enhancement in neurotoxicity and
cell death (Sprenkle et al., 2017; Rocha et al., 2018; Joshi et al.,
2019; Nichols et al., 2019). The exact mechanism of neuronal
death through activation of NLRP3 inflammasome in microglia
has not been perfectly discovered yet (Lee et al., 2019). In fact,
NLRP3 inflammasome induces heteromer formation or aggregation
of apoptosis-associated speck-like protein containing a caspase
recruitment domain (ASC), which subsequently activates caspase-
1. It results in the maturation of IL-1β and induction of pyroptosis
using cleaved Gasdermin D and membrane pores (Figure 3; Stancu
et al., 2019; Wang et al., 2019; Bader and Winklhofer, 2020; Feng
et al., 2020; Onyango et al., 2021).

Specific receptors, including TLRs and NLRs expressing on
neurons or neuroglia, can recognize extracellular neurotoxic
protein aggregates (Nichols et al., 2019; Leng and Edison,
2021; Heidari et al., 2022). This may facilitate neuronal cell
death (Li Y. et al., 2021) by involvement in caspase activation and
secretion of pro-inflammatory factors through NF-κB activation
(Figure 3; Rocha et al., 2018; Leng and Edison, 2021). The
expression of the receptors for cytokines was indicated in DA
neurons, making neurons more susceptible to damage and death
(Hirsch and Hunot, 2009). Complement receptors and Fc receptors
on microglia can also mediate pro-inflammatory responses
independent from extracellular protein aggregates (Leng and

Edison, 2021). Activation of microglia can potentially contribute
to activating astrocytes, which rapidly upregulates inflammatory
signaling molecules (Sims et al., 2022), and can potentially
initiate or enhance nitrosative stress due to producing NO (Rocha
et al., 2018). In support of this claim, the presence of activated
astrocytes is confirmed in post-mortem brain samples of various
neurodegenerative disease patients (Hashioka et al., 2021). DAMPs
released by dying neurons may also activate microglia through
the ionotropic P2X and metabotropic P2Y purinergic receptors
and initiate an inflammatory response. For example, under
pathological conditions, P2X7 receptors can be overexpressed in
the CNS. ATP acts as a DAMP and activates P2X7 receptors, and
promotes chronic inflammatory neurological disorders (Thawkar
and Kaur, 2019). Post-mortem brain samples of AD patients
showed overexpression of P2X7 receptors, which can be associated
with disease pathology and progression. It is also suggested that
P2X4 receptor overstimulation may result in neuronal cell death
(Thawkar and Kaur, 2019). Interestingly, upregulation of P2X
and P2Y receptors in ALS patients can subsequently lead to
overproduction of TNF-α and cyclooxygenase-2 (COX2), which
facilitates neurotoxicity (Liu and Wang, 2017).

Targeting neuroinflammation-induced cell
death

Even though the neuroinflammatory cascades exacerbate
neurodegenerative disease progression and participate in
neuronal death, the exact mechanism of this involvement and
therapeutic strategies regarding targeting neuroinflammation is
not well studied. According to some investigations, targeting
neuroinflammation can be a promising therapeutic approach
to decrease inflammation and its further complications in
neurodegenerative diseases (Figure 3). Therefore, it can improve
patients’ neuronal function in mental and physical activities.
Incipiently, some specific microRNAs, such as miR-155-5p, can
be key regulators of inflammatory cascades in neurodegenerative
diseases. Overexpression of miR-155-5p has been reported in the
CSF of AD and MS patients (Lv et al., 2020). It has been recently
found that Rosmarinic acid (RA) can inhibit neuroinflammation
in neurodegenerative disease samples by regulating miR-155-
5p, leading to attenuation in inflammation-associated neuronal
damage and loss (Figure 3, Table 2; Lv et al., 2020). Calpains as
non-caspase proteases participate in the execution of neuronal cell
death and cooperate with key factors of neuronal cell death. Thus,
targeting these proteases may result in neuroprotection. Studies
have demonstrated that Alpha1-antitrypsin (A1AT) can attenuate
microglial neuroinflammation as well as inhibition of calpain
activity (Figure 3, Table 2; Feng et al., 2020). Other novel strategies
have also been recruited with a focus on neuroinflammation. A
recent study by Cheng C.-Y. et al. (2021) targeted inflammation
in the substantia nigra of lipopolysaccharide (LPS)-treated rats
by liposomes carrying Epigallocatechin-3-gallate (EGCG), a
natural antioxidant in green tea. It demonstrated neuroprotection
by inhibiting neuroinflammation (Figure 3, Table 2; Cheng
C.-Y. et al., 2021). Aucubin, which showed neuroprotective
effects in oxidative stress-induced neurotoxicity, can also reduce
phosphorylation levels of NF-κB, JNK, p38, and ERK, leading

Frontiers in Cellular Neuroscience 15 frontiersin.org

https://doi.org/10.3389/fncel.2023.1105247
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#articles
https://www.frontiersin.org


Karvandi et al. 10.3389/fncel.2023.1105247

to a decrease in the level of inflammatory factors (Figure 3,
Table 2; Li Y. C. et al., 2021). Additionally, a polyphenol named
Resveratrol indicated a similar effect by down-regulation of the
transcription factor NF-κB in vitro (Figure 3, Table 2; Zhong
et al., 2012; Zhang et al., 2017). Targeting TLR4/NF-κB signaling
pathway by Hesperetin, a Citrus flavonoid, protected neurons from
neuroinflammation and apoptosis (Table 2; Muhammad et al.,
2019). Many other similar signaling pathways can be inhibited,
aiming to alleviate neuroinflammation in the CNS (Hou et al.,
2021). Furthermore, targeting inflammation-associated receptors
expressed on neurons can also be an approach. For example,
15d-PGJ2 is a peroxisome proliferator-activated receptor-gamma
(PPAR-γ) agonist that inhibits the production of some interleukins
and suppresses inflammation in microglial cells in vitro (Figure 3,
Table 2; Xu et al., 2008). Suppressing neuroinflammation by
targeting P2X7R has been studied, but blood-brain barrier (BBB)
permeability limits candidate drugs, so more studies are needed
in this case (Thawkar and Kaur, 2019). Intriguingly, Anakinra,
an IL-1 receptor antagonist (Mahboubi Mehrabani et al., 2022),
reaches CNS easily and inhibits the activity of IL-1β by binding to
its receptor and mitigate pyroptosis in neurons (Figure 3, Table 2;
Wang et al., 2019).

As mentioned in the former section, since the
NLRP3 inflammasome plays a significant role in the enhancement
of neurotoxicity, inhibition of NLRP3 and its subsequent pathways
might be an effective method to decrease neuroinflammation-
induced cell death. MCC950 is a small-molecule NLRP3 inhibitor
that has inhibited inflammasome activation in rodent PD models
leading to substantial neuroprotection, mitigation in motor
deficits, and accumulation of α-synuclein aggregates (Figure 3,
Table 2; Gordon et al., 2018). Noteworthy, the neurotransmitter
dopamine can bind to the dopamine D1 receptor, which results
in ubiquitination and degradation of NLRP3 via the binding of
cAMP with NLRP3, leading to the restriction of NLRP3 activation
(Figure 3, Table 2; Yan et al., 2015). Some experiments revealed
attenuation of NLRP3-mediated neuroinflammation in PD
mouse models using peroxisome proliferator-activated receptor
beta/delta (PPAR-β/δ) agonist GW501516 (Figure 3, Table 2).
There were some limitations with this drug, such as the resistance
of the BBB to pass the drug to reach the brain parenchyma.
Hence, this compound cannot be considered a candidate for PD
treatment until the problem is not solved (Chen et al., 2019).
A flavonoid derived from the roots of Scutellaria baicalensis
Georgi, termed “Baicalein”, indicated anti-inflammatory and
anti-pyroptosis properties in animal models of PD. Experiments
suggest that Baicalein may play a role in preventing the loss of DA
neurons by reducing the production of various pro-inflammatory
cytokines. It can also inhibit NLRP3 and caspase-1 activation, and
simultaneously suppress pyroptosis by targeting Gasdermin D in
1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP) Induced
Mice Model of PD (Figure 3, Table 2; Rui et al., 2020). Benzyl
isothiocyanate (BITC) and dihydromyricetin (DHM) are other
plant-derived compounds with anti-inflammation properties
(Lee et al., 2016; Feng et al., 2018). BITC seems to have the
neuroprotective effects by inhibition of IL-1β release and
NLRP3 inflammasome inhibition in the BV2 microglial cells
(Lee et al., 2016). Treatment of APP/PS1 transgenic mice with
DHM improved neuroinflammation and memory function, as a

result of decreased NLRP3 inflammasome activation (Figure 3,
Table 2; Feng et al., 2018). Taken together, the detrimental effects
of neuroinflammation in induced neuronal cell death must not
be underestimated, and more research is required to provide a
better understanding of mechanisms and underlying therapeutic
strategies.

Conclusion

As described elaborately, neuronal cell death plays a key
role in demonstrating neurodegenerative disease manifestations.
Understanding the exact mechanisms and pathways leading to
cell death would provide the opportunity for researchers to
recommend high-efficiency neuroprotective agents. Until now,
many pre-clinical studies have been done in an attempt to cure
neurodegenerative diseases, targeting crucial agents involved in
well-known pathways leading to neuronal cell death. The field
of targeting ER stress and UPR as a therapeutic approach to
treat neurodegeneration is growing and has revealed considerable
results. On the other hand, ROS damage to mitochondria and
homeostasis of the neuron is prominent in neurodegenerative
diseases. Hence, this has led to therapeutic approaches using agents
with antioxidant properties or inducing the antioxidant activity
of the neuron, resulting in inhibition of ROS-mediated neuronal
injury. Activation of neuroglia and initiation of neuroinflammation
could also lead to a neurotoxic microenvironment for neurons.
Unfortunately, the exact mechanism of neuroinflammation-
induced cell death is still under debate. Thus, there are not
sufficient experimental results of targeting key components of
neuroinflammation to decrease neuronal loss in neurodegenerative
diseases directly. However, there is strong evidence implicating
the role of inhibiting neuroinflammation in attenuating ROS-
and ER stress-induced neuronal cell death. Nowadays, the focus
on the neuroprotective effects of phytochemicals has significantly
increased; nevertheless, there is still much to research and discover
to approve phytochemicals as a promising therapeutic agent. Taken
together, despite advances in the field of targeting cell death to treat
neurodegenerative diseases, there is not an approved compound
to directly inhibit cell death yet, so it needs intensive research to
find a novel therapeutic strategy for treatment of neurodegenerative
diseases.
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Glossary

4-PBA 4-phenyl butyric acid
6-OHDA 6-hydroxydopamine
8-OHdG 8-hydroxydeoxyguanosine
A1AT alpha1-antitrypsin
ABAD amyloid beta-binding alcohol dehydrogenase
AD Alzheimer’s disease
AIF apoptosis-inducing factor
ALS amyotrophic lateral sclerosis
APP amyloid precursor protein
ASC apoptosis-associated speck-like protein containing a caspase activation and recruitment domain
ASK1 apoptotic signaling kinase 1
ATF4 activating transcription factor 4
ATF6 activating transcription factor 6
AU aucubin
Aβ amyloid-beta
BACE1 beta secretase 1
BAX bcl2-associated X protein
BBB blood-brain barrier
BFA brefeldin A
BID BH3 interacting domain death agonist
BiP immunoglobulin binding protein
BITC benzyl isothiocyanate
BPA bisphenol A
CCL2 monocyte chemoattractant protein-1
Cd cadmium
CHOP C/EBP homologous protein
CL cardiolipin
CNS central nervous system
COX cyclooxygenase
CSF cerebrospinal fluid
Cyt C cytochrome c
DA dopaminergic
DAMP damage-associated molecular pattern
DBM dibenzoylmethane
DHCR24 3-beta-hydroxysteroid delta-24-reductase
DHM dihydromyricetin
DL-NAT N-acetyl-DL-tryptophan
DR5 Death Receptor 5
EGCG Epigallocatechin-3-gallate
eIF2α eukaryotic translation initiation factor 2 α

ER endoplasmic reticulum
ERAD ER-associated degradation
ERO1 ER Oxidase 1
GLP-1R glucagon-like peptide-1 receptor
GRP78 78kDa glucose-regulated protein
GSH glutathione
GSK-3β glycogen synthase kinase-3beta
GSK3 glycogen synthase kinase 3
H2O2 hydrogen peroxide
HD Huntington’s disease
HN humanin
HNE 4-hydroxy-2-nonenal
HO• hydroxyl radical
IL interleukin
IMM inner mitochondrial membrane
IP3R inositol triphosphate receptor
IRE1α inositol-requiring transmembrane kinase/endoribonuclease 1 α

JAK-STAT janus kinase-signal transducer and activator of transcription
JNK c-Jun N-terminal kinase
KIRA6 kinase-inhibiting RNase attenuator 6
L-NAT N-acetyl-L-tryptophan
LPO lipid peroxidation
LPS lipopolysaccharide
MDA malondialdehyde
MDM2 mouse double minute 2
mHTT mutant huntingtin protein
MPP+ 1-methyl-4-phenyl-pyridinium
MPTP 1-methyl-4phenyl1, 2, 3, 6-tetrahydropyridine
mPTP mitochondrial permeability transition pore
mSOD1 mutant superoxide dismutase 1
mtDNA mitochondrial DNA
NAS N-acetyl serotonin
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NFT neurofibrillary tangle
NLRP3 NLR family pyrin domain containing 3
NO nitric oxide
NOX NADPH oxidase
Nrf2 nuclear factor erythroid 2-related factor 2
O2- superoxide anion
OMM outer mitochondrial membrane
p38 MAPK p38 mitogen-activated protein kinase
PAMP pathogen-associated molecular pattern
PARK7 parkinsonism associated deglycase
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PD Parkinson’s disease
PERK PKR-like ER kinase
PINK1 PTEN-induced putative kinase 1
PPAR peroxisome proliferator-activated receptor
PUFA polyunsaturated fatty acid
PUMA p53-upregulated modulator of apoptosis
RA rosmarinic acid
rAAV recombinant adeno-associated virus
REST repressor element 1-silencing transcription factor
RIDD regulated IRE1α-dependent decay
RNS reactive nitrogen species
ROS reactive oxygen species
RY ryanodine
RYR ryanodine receptor
Sald salidroside
SN substantia nigra
SNpc substantia nigra pars compacta
SOD1 superoxide dismutase
TNF tumor necrosis factor
TRAF2 TNF receptor-associated factor 2
Trib3 tribbles pseudokinase 3
TRPM2 transient receptor potential melastatin-2
UPR unfolded protein response
VAPB vesicle-associated membrane protein-associated protein B
XBP1 X-box binding protein 1
XIAP x-linked inhibitor of apoptosis
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