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Therapies with weak, non-ionizing electromagnetic fields comprise

FDA-approved treatments such as Tumor Treating Fields (TTFields) that are

used for adjuvant therapy of glioblastoma. In vitro data and animal models

suggest a variety of biological TTFields effects. In particular, effects ranging

from direct tumoricidal, radio- or chemotherapy-sensitizing, metastatic spread-

inhibiting, up to immunostimulation have been described. Diverse underlying

molecular mechanisms, such as dielectrophoresis of cellular compounds during

cytokinesis, disturbing the formation of the spindle apparatus during mitosis,

and perforating the plasma membrane have been proposed. Little attention,

however, has been paid to molecular structures that are predestinated to percept

electromagnetic fields—the voltage sensors of voltage-gated ion channels. The

present review article briefly summarizes the mode of action of voltage sensing

by ion channels. Moreover, it introduces into the perception of ultra-weak

electric fields by specific organs of fishes with voltage-gated ion channels as key

functional units therein. Finally, this article provides an overview of the published

data on modulation of ion channel function by diverse external electromagnetic

field protocols. Combined, these data strongly point to a function of voltage-

gated ion channels as transducers between electricity and biology and, hence,

to voltage-gated ion channels as primary targets of electrotherapy.

KEYWORDS

alternating electric fields, EMF, electrolocation, ampullae of Lorenzini, tuberous organs,
voltage sensor

1. Introduction

Tumor cells express an ion channel toolkit that differs from that of the non-transformed
parental cells. Few ion channel types are upregulated by several tumor entities of different
origin (carcinomas, leukemias, gliomas). These so-called “oncochannels” have been ascribed
specific functions in tumor biology. For instance, glioblastoma, a primary brain tumor with
poor patient prognosis, over-expresses TRPM8 (member 8 of the melastatin sub-family of
transient receptor potential) unselective cation channels, intermediate conductance IKCa
(KCNN4) and high conductance BKCa (KCNMA1) K+ channels. These channels reportedly
contribute to glioblastoma stem cell properties, program and execute cell migration and
brain invasion, regulate cell cycle, or confer therapy resistance (for review see Huber,
2013; Roth and Huber, 2022). Unexpectedly, ionizing radiation in a clinical relevant dose
may induce hypermigration of human glioblastoma cells in vitro (Steinle et al., 2011)
and brain invasion in an orthotopic glioma xenograft mouse model (Edalat et al., 2016).
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Notably, radiation-induced BKCa K+ channel activation has been
identified as a key event herein (Steinle et al., 2011; Edalat et al.,
2016). This example illustrates that modulation of oncochannel
function by direct therapeutical targeting or as an off-target effect
might exert beyond intended but also unintended, detrimental
effects, due to the versatile functions of oncochannels (Huber,
2013). In this context, some electrotherapies applying weak external
electromagnetic fields (EMF) have been proposed to affect ion
channel function (e.g., Li et al., 2020a). The present review article,
therefore, aims to summarize our current knowledge on ion channel
modulation by EMF with a particular focus on tumor treating fields
(TTFields), an adjuvant electrotherapy in glioblastoma.

In vitro (e.g., Rozek et al., 1987; García-Sancho et al., 1994;
Morgado-Valle et al., 1998; Aldinucci et al., 2000; Djamgoz et al.,
2001; Verdugo-Díiaz et al., 2002; Rosen, 2003; Grassi et al., 2004;
Giladi et al., 2014a, 2017; Bertagna et al., 2022; Toda et al., 2022)
and preclinical in vivo studies (e.g., Kirson et al., 2007, 2009a;
Giladi et al., 2014a,b; Buckner et al., 2015; Castellví et al., 2015; Li
et al., 2016; Voloshin et al., 2016, Jo et al., 2018; Kim et al., 2018;
Voloshin et al., 2020a; Barati et al., 2021; Wu et al., 2021; Davidi
et al., 2022; Huegel et al., 2022), as well as randomized controlled
clinical trials (e.g., Mooney, 1990; Linovitz et al., 2002; Foley
et al., 2008; Stupp et al., 2017), have accumulated some evidence
for a responsiveness of physiological processes to weak external
EMF. As a consequence, the US Food and Drug Administration
(FDA) has approved electrotherapies in the low frequency to
radiofrequency band and the non-hyperthermia-inducing, non-
electroporating, non-ionizing energy spectrum. Among those are
TTFields, repetitive transcranial magnetic stimulation (rTMS),
deep brain stimulation (DBS), or pulsed electromagnetic fields
(PEMFs). The latter are applied to improve the healing of bone
fractures. PEMF and further EMF therapies used for orthopedic
applications have been hypothesized to mimic the endogenous
environmental electromagnetic fields occurring during mechanical
stress of joints/bones. By doing so, they might exert pro-anabolic
effects resulting in an increase of the structural integrity of
bone and cartilage extracellular matrix (Cadossi et al., 2020). A
Cochrane review of electromagnetic stimulation, in contrast, found
only inconclusive evidence regarding its efficacy on bone fracture
healing (Griffin et al., 2011). Similarly, early results of DBS in
patients with treatment-resistant depression were highly promising
(Mayberg et al., 2005), whereas a subsequent large sham-controlled
randomized trial, could not delineate significant antidepressant
effects of DBS (Holtzheimer et al., 2017). In a renewed attempt to
utilize DBS for treating depressive symptoms, individualizing types
of electrical stimulation is increasingly tested in new trials (Drew,
2022; Sheth et al., 2022).

Due to their limited (or even un-proven) stand-alone
effects, weak EMF electrotherapies could not replace conventional
therapies but have been implemented in the clinical routine
as modalities adjuvant or complementary to the conventional
treatments (for review see Mattsson and Simkó, 2019). For the
different established electrotherapies, a huge spectrum of biological
responses has been reported in preclinical studies. This is not
surprising considering the diversity in frequency (ranging from
static magnetic or electric fields, i.e., 0 Hz, to, e.g., 100 kHz of
TTFields), pulse form (sinus, square, etc.), application (pulsed
or continuous), or intensity of the individual EMF treatments.

Since these therapies often operate with very low intensities, the
molecular mode of action is mostly ill-defined and the physics
underlying the electrobiological interaction difficult to deduce (for
review see Mattsson and Simkó, 2019). As an example, weak
magnetic fields with low frequency have been reported in several
in vitro studies to exert maximal biological effects when their
frequencies match the “cyclotron resonance” of certain ions, such
as Ca2+, Mg2+, or K+ (for review see Liboff, 2018). At the cyclotron
resonance frequency, the ratio of the applied alternating magnetic
field frequency to the static magnetic field (e.g., the geomagnetism)
equals the ratio between the mass and the charge of the respective
ion. However, as the authors of the aforementioned review article
discuss, it has been hypothesized that EMF in cyclotron resonance
frequency alter the physiological activity of the targeted ion. From
a physics point of view, however, increasing the kinetic energy
of a magnetic field-experiencing ion by its cyclotron frequency
can only occur in vacuum or low-pressure gases. In biological
microenvironments, by sharp contrast, EMF-induced acceleration
of the ion is prevented by damping. Moreover, the restricted
dimension of the cellular subcompartment is several thousand
orders of magnitude lower than the radius of cyclotron resonance-
accelerated ions in vacuum. In addition, the cyclotron frequency
refers to dehydrated ion masses (for review see Liboff, 2018). In
biological systems, free ions carry a hydration envelope most of the
time that may be only shortly shed, e.g., by the selective filter of
an ion channel pore during transmembrane transport. Hence, as
shown by this example, the molecular basis of the electrobiological
energy transfer of weak EMF therapy often remains obscure. In
contrast, a more mechanistic understanding has been postulated for
the TTFields electrotherapy of cancer as introduced in the second
section of this article.

2. Tumor treating fields (TTFields), a
superweapon against glioblastoma?

TTFields, which have been developed by the company
Novocure in Haifa, Israel, are alternating electric fields with
intermediate frequency and low intensity. Besides glioblastoma,
TTFields therapy is FDA-approved for mesothelioma. In a
randomized controlled (but not sham-controlled) clinical trial in
newly diagnosed glioblastoma patients (Stupp et al., 2017), patients
benefitted from TTFields irrespective of MGMT methylation status
of patients. In this trial, TTFields were applied concurrently
to temozolomide maintenance therapy (following surgery and
adjuvant concurrent temozolomide/fractionated radiation therapy)
and compared to temozolomide maintenance therapy alone.

For glioblastoma, alternating electric fields with a frequency of
200 kHz are applied capacitively via ceramic electrode arrays placed
onto the shaved scalp of the patient. Modeling the field intensity
with due consideration of pre-specified conductivity and relative
permittivity of skin, skull and brain tissues has predicted electric
field strengths in the range of 1–3 V/cm in the brain tumor (Lok
et al., 2019). Table 1 gives an overview of all completed clinical
trials of TTFields applications in different cancer entities as of
December 12th, 2022. Notably, only two trials had active control
arms, and among these only NCT00916409 (Stupp et al., 2017)
could establish prolonged survival for patients in the TTFields
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TABLE 1 Overview of clinical efficacy of TTFields in cancer patients.

NCTID Indication Intervention Control group N End-point Intervention Control Adverse events
related to TTFields

Reference

NCT00749346 NSCLC NovoTTF-100L +
Pemetrexed

- 42 IFP 28 weeks - mild-moderate dermatitis
(14, 33%)

Pless et al. (2013)

SP 22 weeks -

PR 6 (14.6%) -

SD 20 (48.8%) -

OS 13.8 months -

NCT01894061 GBM* NovoTTF-100A +
Bevacizumab

- 25 PFS 4.1 months - hypertension, cerebral
infarct.

[Fallah et al. (2020);
abstract#]

OS 10.5 months

NCT02397928 malignant pleural
mesothelioma

NovoTTF-100L +
Pemetrexed +
Cisplatin/Carboplatin

- 80 OS 18.2 months - skin reactions
- grade 1/2: 53 (66%)
- grade 3: 4 (5%)

Ceresoli et al.
(2019)

PFS 7.6 months

PR 29 (40%)

SD 41 (57%)

NCT02893137 GBM TTFields +
craniectomy

- 15 toxicity - - skin reactions grade 1/2
(55%)

Korshoej et al.
(2016)

PFS 4.6 months

OS 15.5 months

NCT00916409 GBM (newly
diagnosed)

TTFields + TMZ TMZ 695 PFS 6.7 months 4.0 months mild-moderate skin toxicity
(52%)

Stupp et al. (2017)

OS 20.9 months 16.0 months

NCT00379470 GBM (re-current) NovoTTF-100A SoC 236 OS 6.6 months 6 months mild-moderate skin toxicity
(14% and 2% respectively)

Stupp et al. (2012)

PFS (at 6 months) 21.4% 15.1%

QoL favored TTFields

Only completed trials with published results were retrieved from clinicaltrials.gov and subsequently analyzed. GBM, glioblastoma; IFP, “in field” progression; mo., months; N, patient number; NSCLC, non-small cell lung cancer; OS, overall survival;
PFS, progression free survival; PR, partial response; QoL, quality of life; SD, stable disease; SoC, standard of care (chemotherapy); SP, systemic progression; TMZ, temozolomide; *, adult giant cell GBM; adult GBM, adult gliosarcoma; recurrent adult
brain tumor; # , only an abstract was available. Endpoints portrayed in bold are primary endpoints of the study.
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group. Hence, most completed trials so far are not well-versed to
inform about the efficacy of TTFields therapy. Further trials should
compare TTFields to the current standard of care (SoC) to establish
efficacy in other cancer entities as well, which several of the ongoing
trials are doing (e.g., NCT03940196 or NCT02973789).

On the other hand, most studies published so far report
few TTFields-specific adverse events, with the exception of mild
to moderate skin reactions. Whether this is due to specific
electrotherapy effects or due to other effects due to the application
itself (frequent scalp shaving, electrode gel, frequent sweating
underneath the electrodes) is hard to differentiate without
running sham-controlled trials. Last, several trials currently
underway analyze TTFields’ efficacy in other tumor entities, such
as brain metastases (NCT04967027), gastric- (NCT04281576),
pancreatic- (NCT03377491; Rivera et al., 2019), and ovarian cancer
(NCT02244502; Vergote et al., 2018).

Preclinical in vitro studies have suggested multiple modes of
action for the interference of TTFields with tumor biology. TTFields
reportedly impair the formation of the spindle apparatus, mitosis
and cytokinesis of cancer cells (Kirson et al., 2004, Kirson et al.,
2009b; Gera et al., 2015; Giladi et al., 2015). Moreover, TTFields
have been demonstrated to delay DNA repair (Giladi et al., 2017;
Karanam et al., 2017), to inhibit tumor cell motility (Voloshin
et al., 2020b) and to permeabilize the plasma membrane of cancer
cells (Chang et al., 2018; Aguilar et al., 2021) and the blood brain
barrier (Salvador et al., 2023). Furthermore, TTFields reportedly
do not impair ex vivo viability and function of peripheral blood
or glioblastoma-infiltrating T cells and of CAR T-cells (Simchony
et al., 2019; Diamant et al., 2021). The tumor preference of
these effects has been explained by the proliferation rate that
differs between transformed and parental cells. The most effective
frequency of the alternating electric fields has been proposed to
be determined by the tumor cell geometry (Kirson et al., 2004).
TTFields have also been applied to animal tumor models. These
preclinical in vivo studies confirm TTFields-mediated inhibition of
tumor growth (e.g., Grassi et al., 2004), chemotherapy-sensitizing
effects (e.g., Giladi et al., 2017), and permeabilization of the
blood-brain barrier (Salvador et al., 2022). In addition, TTFields
reportedly delay formation of tumor metastases (Giladi et al.,
2014a), support the anti-tumor immune response (Voloshin et al.,
2020a; Chen D. et al., 2022), and mitigate tumor angiogenesis (Jo
et al., 2018).

Mechanistically, TTFields have been proposed to restrict
molecular motility of macromolecular dipoles such as tubulin
dimers (Kirson et al., 2007, Kirson et al., 2009a) and septins
(Gera et al., 2015) inhibiting mitotic spindle assembly and
correct positioning of the cytokinetic cleavage furrow, respectively.
Moreover, condensation of the electric field lines at the cytokinetic
furrow and associated dielectrophoresis (i.e., migration of dipoles
or charged particles towards higher fields intensities) has been
postulated to inhibit symmetric segregation of cellular material to
the daughter cells during cytokinesis (Kirson et al., 2004, 2007).
As a consequence of these modes of action, TTFields efficacy is
dependent on the relative orientation of the cleavage axis of dividing
cells to the applied electrical field. Likewise, interference with actin
and microtubule dynamics has been suggested to underlie the
anti-migratory action of TTFields in tumor cells (Voloshin et al.,
2020b) and inhibition of ciliogenesis (Shi et al., 2022). Beyond

that, further cell biological effects such as TTFields-triggered
replication stress (Karanam et al., 2020) or AMPK-mediated ER
stress and autophagy (Shteingauz et al., 2018), have been reported
more recently. Combined, these studies point to a highly complex
interference of TTFields with several cellular processes.

Notably, the plethora of cellular effects described by in vitro
experiments might be overestimated due to a misfeature of the
inovitroTM system provided by Novocure to study TTFields effects
in vitro. This device uses ceramic dishes with integrated electrodes
for the capacitive injection of the TTFields. The electric fields
are delivered parallelly to the cell layer interchangeably from
two perpendicular directions in order to increase the number of
dividing cells with matching directions of electric field and mitotic
cleavage axis. Applying TTFields by the inovitroTM system heats
cells and cell culture medium. Field strength, therefore, has to
be regulated indirectly: Decreasing the ambient temperature of
the incubator below 37◦C results by feed-back in an increase in
generator power output and TTFields intensity until the cell culture
medium and the ceramic dish reach 37◦C as controlled by two
temperature probes. This indirect control of field intensity, however,
harbors the problem that the water vapor pressure in the air
atmosphere of the TTFields-heated, 37◦C-adjusted ceramic dish (in
the better situation sealed with parafilm, in the worst case loosely
covered by a plastic lid) exceeds that of the incubator air with
lower temperature, resulting in continuous evaporation of water
from the culture medium (Figure 1). Drying-out of the cells is
prevented by replenishing the lost water volume by adding culture
medium. Water evaporation increases and volume replenishment
with medium eventually lead to an increase in the osmolarity of
the cell culture medium. Since controls are run in 37◦C incubators

FIGURE 1

TTFields applied by the Novocure inovitroTM system increase the
osmolarity of the medium. Thermal discharge of the inovitroTM

system is counter-regulated by decreasing the ambient temperature
of the incubator. The field strength is regulated indirectly
by adjusting the ambient incubator temperature. Thereby, the
temperature of the culture dish is continuously measured and the
field strength increased until the dish temperature is equilibrated at
37◦C. Different temperatures in incubator and culture dish, however,
causes a lower water vapor pressure in the incubator than in the
dish, resulting in continuous evaporation from the culture medium.
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with iso-osmotic cell culture medium, the inovitroTM system in
our opinion cannot distinguish between hyperosmotic stress- (Burg
et al., 2007; Zhou et al., 2016) and TTFields-mediated cellular
effects and hence, the conclusions drawn from the data are limited
(discussed also in Slangen et al., 2022). Unfortunately, the majority
of the TTFields in vitro data were obtained with the inovitroTM

system and published without mentioning the system-inherent
weakness of the experimental setup (e.g., Voloshin et al., 2016,
Chang et al., 2018; Voloshin et al., 2020b; Chen D. et al., 2022).

Further complicating the picture, a recent theoretical study
by Li et al. (2020a) questioned the proposed mechanisms of
electrobiological TTFields interactions. The authors concluded
that the torsional moment induced by TTFields on dipoles such
as tubulin dimers is several orders of magnitude lower than
the Brownian energy of the molecules suggesting that TTFields
are probably not able to disrupt mitotic spindle assembly. In
addition, they estimated for the velocity of particles undergoing
dielectrophoresis towards the cytokinetic furrow a value (0.003
µm/s) that is too slow to become biologically relevant during
normally ongoing telophase. The same group (Li et al., 2020b)
calculated the field distribution for spherical and spindle-shaped
cell geometries. These geometries were then used to simulate
the TTFields (2 V/cm)-associated temperature distributions for
cell models resulting in a negligible TTFields-caused temperature
rise. Please note, that this notion is in sharp contrast to
the large heat production by the electronically elaborated,
high-capacitively field-coupling inovitroTM system. This lack of
a significant computed TTFields-mediated temperature rise was
directly confirmed experimentally (Li et al., 2020b) suggesting that
TTFields effects may not be conferred by hyperthermia.

Consistently, direct temperature measurements of TTFields-
treated skin in a melanoma mouse model did not observe TTFields-
elicited temperature effects (Li et al., 2016). Vice versa, TTFields
effect on tumor growth in an ectopic mouse model of pancreatic
carcinoma could not be mimicked by 41◦C hyperthermia (Castellví

et al., 2015). Instead, Li et al. (2020a) proposed a new mechanism
for the electrobiological TTFields interaction. Their mathematical
modeling predicts a significant TTFields-induced change of
membrane potential and the authors hypothesized that this
alteration in membrane potential modifies the activity of ion
channels. Taken together, the mechanism of electrobiological
TTFields transduction still seems to be elusive and modulation
of voltage-gated ion channels might be an attractive alternative
mechanism. The next paragraph introduces into the biochemistry
of voltage sensors, the centerpiece of voltage-gating.

3. Molecular bases of voltage-sensing

Voltage-gated ion channels such as the shaker Kv K+- or
the L type Cav Ca2+ channel activate upon depolarization of the
membrane potential. The general construction principle of these
channels is composed of four times six lipophilic transmembrane
alpha helices (S1–S6) either realized by tetramers of four alpha
subunits (Kv; Jiang et al., 2003) or a single alpha subunit with
24 transmembrane domains (Cav; Catterall et al., 2005). The four
S5 and S6 helices together with the inter-connecting P loops form
the ion-conducting pore and determine the ion specificity while the
four S1-S4 helices around the S5–S6 helix bundle create the voltage
sensor. The S4 helix contains several (typically four) positively
charged amino acid residues (mostly arginine) separated from
each other by two uncharged residues. These positively charged
residues that are referred to as gating charges, are located within
the membrane and become electrostatically stabilized, e.g., by
negatively charged amino acids (i.e., countercharges) in the other
(S1–S3) helixes of the voltage sensor (for review see Catacuzzeno
and Franciolini, 2022; Figure 2A).

The voltage sensor (S1–S4) can be envisaged as a gating channel
with the S4 helix inside this channel. According to the sliding helix
model of the voltage sensor action (Yarov-Yarovoy et al., 2012;

A B

FIGURE 2

Voltage-sensing at a molecular level. (A) Membrane topology of a Shaker voltage-gated (Kv) K+ channel. Drawn is a Kv channel alpha subunit with the
pore-forming domain (S5, S6, P-loop), the voltage sensor domain with the S4 helix containing basic amino acid residues, and the S2 and S3 helixes
with acidic amino acid residues that serve in the voltage sensor as stabilizing counter ions. (B) Intramolecular relative movement of voltage sensor
during gating. According to the “gating charge transfer center (GCTC) hypothesis”, the aromatic phenylalanine (F290) and the two negative residues
E293 and D316 (not shown) of the S2 helix form a GCTC that binds transiently the positive charged residues (blue) of the S4 voltage sensor when
consecutively crossing the channel pore area of trans-membrane voltage decline during gating. Scheme shows the deep channel close state at high
negative potential (left), and the depolarization of membrane potential-caused successive upward “stepping” of the voltage sensor (middle and right).
Transmembrane alpha helixes in (A,B) are shown in green, positively charged basic-, negatively charged acidic-, and aromatic (phenylalanine F290)
amino acid residues in blue, red, and orange, respectively (redrawn and modified from Catacuzzeno and Franciolini, 2022).
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Catterall et al., 2017), the S4 helix is pulled in towards
the cytoplasmic membrane face at negative resting membrane
potential. Membrane depolarization decreases this electrostatic
force and the S4 helix is dragged out by a few Å towards the
external membrane face thereby initiating structural changes in the
S5–S6 helix bundle eventually leading to ion channel activation.
Structurally, the gating channel has been proposed to be shaped
as an hourglass-like pore with two crevices reaching from in- and
outside, respectively, deeply in the membrane. A hydrophobic, by a
phenylalanine residue-built, central plug (hydrophobic constriction
site) isolates the two crevices electrically from each other. As a
result, the whole membrane voltage drops across the central plug
along a few Å membrane distance (for review see Catacuzzeno and
Franciolini, 2022).

Multiexponential fitting and noise analysis of gating currents,
structural information obtained by, e.g., X-ray crystallography or
cryo-electron microscopy, simulation of molecular dynamics and
other approaches suggest that the voltage-dependent sliding of
the S4 helix sequentially proceeds by intermediate steps “between
free energy basins separated by rate-limiting free energy barriers”
(Delemotte et al., 2017). The former result from ion pair or
hydrogen-bridge bonds of the gating charges with their respective
countercharges or polar phospholipid head groups and other ionic
or lipophilic interactions within the three-dimensional molecular
environment of the voltage sensor. By consecutively passing the
central plug, the gating charges stride through the voltage gradient
thereby generating a gating current (12–14 qe elementary charges)
that can be directly analyzed electrophysiologically (when the
subsequently gated ion currents through the four S5-S6 helix
bundle-built ion channel pore are prevented experimentally; for
review see Catacuzzeno and Franciolini, 2022). A slightly modified
model of voltage gating, the gating charge transfer center (GCTC)
hypothesis, is described in Figure 2B in more detail.

Notably, cryo-electron microscopy and molecular dynamic
simulation have revealed structural-functional differences between
the four voltage sensors of the rabbit L-type Cav 1.1 Ca2+ channel.
While, for instance, the S4 helix of the voltage sensor domain-I
sequentially proceeds through three macrostates (resting 1–2 and
activated state) with long transition times in the high µs to low
ms timescale, that of the voltage sensor domain-IV steps through
four macrostates (resting 1–3 and activated state) with transition
times in the sub-µs to low µs timescale (Fernández-Quintero
et al., 2021). Combined, these data suggest complex transitions
between conformational macrostates of the Cav1.1 voltage sensor
domains that exhibit differing kinetics and energy barriers. As a
consequence thereof, one might assume that: (i) channel activation
can not only be triggered by intrinsic membrane depolarization
(due to, e.g., inactivation of K+-permeable- or activation of Na+-
permeable ion channels) but also by external low intensity EMFs,
and (ii) because of the multi-kinetics process of gating, transfer of
activation energy from external EMFs may occur at several EMF
frequencies (see also section 6 “Are 200 kHz TTFields too high-
frequency for ion channel modulation in glioblastoma cells?” for
a more detailed discussion on this issue). As a matter of fact,
simulation of molecular dynamics unraveled that voltage sensors
of voltage gated ion channels are prone to be directly affected
by external electromagnetic fields. In particular, very short pulsed
electric fields have been forecasted to activate voltage-gated ion

channels while longer pulses, as used for electroporation of the
plasma membrane, are predicted to convert the gating channels
of the voltage sensor domain into a transient or a more complex
phospholipid headgroup-stabilized long-living pore (Rems et al.,
2020). Strong evidence for such a high susceptibility of voltage-
gated ion channels to low intensity EMFs can be found in several
fish species, which are capable of sensing very low electric fields
with voltage-gated ion channels as signal transducers, as illustrated
in the next paragraphs.

4. Biological voltmeters

Passive or active electrolocation is realized in species of
cartilaginous and bony fishes. In passive electrolocation, fishes
perceive weak electric fields that are generated by the neuronal,
muscle, or gills ion pump activity of other animals and that are
conductively coupled to specialized organs such as the ampullae
of Lorenzini in elasmobranch fishes (Figure 3). The elephantfish
(Mormyridae), an example of a species that is capable of active
electrolocation, generates weak alternating electric fields with its
electroorgan in the tail and analyzes distortions of the field
that is coupled capacitively to tuberous organs (knollenorgans)
in the skin (Figure 3). The ampullae of Lorenzini consist of
electrosensory receptor- and auxiliary supporting cells lining a
cavity beneath the skin that is conductively connected to the
skin surface by canals. These canals are filled with seawater-
containing jelly, have electrically resistant luminal cell surfaces and
cell-cell connections, and thus, act as electrical wires that conduct
the electric fields to the apical membrane of the electrosensory
receptor cells. The epithelium of the cavity may contain thousands
of these receptor cells that are surrounded by supporting cells.
Epithelial conductivity of supporting cells, as well as paracellular
shunts between supporting cells or supporting and receptor cells,
seems to be lower than that of the receptor cells. The latter
are cone-shaped with a large basal cell pole and a very small
apical membrane area that projects a central kinocilium into the
cavity lumen. In receptor cells, the apical membrane exhibits a
severalfold higher electrical resistance than the basal membrane
leading to a steeper potential drop of transepithelial voltage
across the apical than basal membrane (Clusin and Bennett,
1977a,b). Electric fields have been shown to activate voltage-
gated Ca2+ channels in the apical membrane which lead to
Ca2+-influx-mediated membrane depolarization and subsequent
activation of adjacent Ca2+- (skate) or voltage-activated (catshark)
K+ channels in the apical membrane (Leitch and Julius, 2019;
Figure 4).

Electrophysiological and receptor cell transcriptome analyses in
skate receptor cells have demonstrated high expression of orthologs
of the mammalian L-type Cav1.3 (KACNA1D) voltage-gated Ca2+

channel and the BKCa Ca2+-activated K+ channel in the apical
membrane and kinocilium of the electrosensory receptor cells
[Bellono et al., 2017; and in preprint (Chen A. L. et al., 2022)].
Cav1.3 of skate receptor cells reportedly exhibits a lower threshold
(i.e., the activation occurs at more negative voltages), a steeper
activity/voltage relationship (i.e., during membrane depolarization
maximal activity is immediately reached after passing the threshold
of activation), and a slower inactivation kinetic as compared to its
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FIGURE 3

Perception of electric fields by fishes conductively and capacitively coupled to the electrosensory receptor cells (pink) in an Ampulla of Lorenzini and
a Tuberous organ, respectively [redrawn and modified from Helfman et al. (2009) and Baker (2019)].

mammalian counterpart. Moreover, Cav1.3-mediated Ca2+ entry
and subsequent activation of adjacent Ca2+-activated BKCa K+

channels do not result in strong membrane hyperpolarization (and
complete deactivation of Cav1.3) of receptor cells since receptor
cells express high amounts of Ca2+ buffering parvalbumin-8 protein
and Ca2+-ATPase that, both, instantaneously decrease cytosolic
free Ca2+ concentration, and thus, dampen BKCa channel activity
(Figure 4). As a consequence, apical membrane potential of
receptor cells is maintained around the activation threshold of
Cav1.3 generating an extremely sensitive system that transduces
external electric fields in Ca2+ action potentials (Bellono et al.,
2017). Apical membrane depolarizations are conducted to the basal
membranes of these secondary sensory receptor cells that form
ribbon synapses with afferent fibers. Ca2+-activated Cl- channels
and consecutive Cl- efflux probably amplify the depolarizing
signals at the basal membrane (Lu and Fishman, 1995) triggering
activation of basal L-type voltage-gated Ca2+ channels such as
basally located Cav1.3 channels (Chen A. L. et al., 2022) followed

by activation of basal K+ channels including BKCa channels (Clusin
et al., 2019; Chen A. L. et al., 2022). Ca2+ is extruded across the
basal membrane by Ca-ATPase and Na/Ca-antiporter. The latter
is powered by the inwardly directed electrochemical gradient of
Na+ as maintained by the Na/K-ATPase (Figure 4). The interplay
of these channels/transporters/pumps results in oscillation of the
basal membrane voltage and accompanying oscillation of the
cytosolic free Ca2+ concentration (Clusin et al., 2019). Under
resting conditions, these oscillations are thought to trigger basal
transmitter release and afferent neural activity in a synchronized
manner (Bellono et al., 2017). Convergent connectivity of the
afferent neurons further adds sensitivity to the system (Peters et al.,
1997).

Reportedly, electric field strengths as low as 1 nV/cm can
be perceived. The ampullae of Lorenzini have been proposed to
detect slow changes (frequencies between 0.1 and 50 Hz) in electric
field strength (for review see Crampton, 2019) with probably
highest sensitivity at the resonator frequency of the receptor cell
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FIGURE 4

Hypothetical model of a receptor cell (pink) in the epithelium of the
skate ampullae of Lorenzini. Tight junctions of the encompassing
supporting cells (blue) with the receptor cells electrically isolate
the high-resistance apical membrane of the receptor cells from the
basolateral interstitial space. Low intensity electric fields modify the
activity of Cav1.3 L-type voltage-gated Ca2+ channel in the apical
membrane and central cilium resulting in membrane depolarization
of the apical membrane and apical Ca2+ entry. Depolarization
is conducted to the basal membrane followed by activation of
probably basal Cav1.3 Ca2+ channels, basal Ca2+ entry, amplification
of the membrane depolarization and Cav1.3 activity by Ca2+-
activated Cl- channels, and transmitter release from the ribbon
synapses. Apically entered Ca2+ is buffered by the Ca2+-binding
protein parvalbumin-8, limiting the activity of apical Ca2+-activated
BK K+ channels, which repolarize the basal membrane and maintain
it close to the activation voltage threshold of the Cav1.3 channels.
Alternating activity of Cav1.3 and basolateral BK- or/and voltage-
activated Kv K+ channels programs oscillation of basal membrane
potential and free cytosolic Ca2+ concentration with synchronized
transmitter release. Ca2+ is extruded across the basal membrane by
Ca-ATPase and Na/Ca-antiporter (from Clusin and Bennett, 1977a,b,
1979a,b; Lu and Fishman, 1995; Graydon et al., 2011; Bellono et al.,
2017; Baker, 2019; Clusin et al., 2019, modified).

(see also section 6 “Are 200 kHz TTFields too high-frequency
for ion channel modulation in glioblastoma cells?”). In addition
to Cav1.3 and BKCa, high expression of the orthologs of the
mammalian Kv1.1 and Kv1.5 voltage-gated K+ channels in the
receptor cells has been deduced from skate transcriptome data
(Clusin et al., 2019), suggesting a more complex interplay of
voltage-dependent ion channels in the voltage/Ca2+ transduction
process (Figure 4).

Likewise, the orthologs of mammalian Kv1.x-like voltage-gated
K+ channels are reportedly expressed by tuberous organs that are
used for active electrolocation of, e.g., elephantfish (Smith et al.,
2006). These tuberous electroreceptors are electrically isolated from
the environmental fresh water. External electric fields, therefore,
are capacitively coupled to the receptor cells that respond to
AC electric organ discharges in the stimulus range of 20 Hz-18

kHz (25 kHz; for review see Kramer, 2009; Crampton, 2019;
Figure 3). To the best of our knowledge, the molecular mechanism
of electroreception in tuberous organ cells has not been defined,
yet. Although tuberous organ and ampullae of Lorenzini evolved
in a non-homologous manner in phylogenesis, it is tempting
to speculate that tuberous organs also employ voltage-gated ion
channels for electro/biochemical transduction.

In summary, specialized organs are capable of detecting electric
field strengths that are several orders of magnitude lower than
the fields applied in, e.g., anti-cancer electrotherapy. Moreover,
voltage-gated ion channels have been identified at least in the
ampulla of Lorenzini to act as signal transducers. Given the
tight voltage reliance of voltage gated-ion channels, which has
been phylogenetically tuned up to an ultra-high voltage sensitivity
in electroreceptors of, e.g., fishes as compared to the very
high field strengths applied in electrotherapy, it is intriguing to
speculate that externally applied electromagnetic fields, such as
in electrotherapies, indeed directly modify the conformational
transitions of the voltage sensor domains in voltage-gated ion
channels resulting in modified ion channel activity. Actually,
several studies reported ion channel modulation by external
electromagnetic fields as summarized in the next paragraphs.

5. Ion channels as targets of low
frequency (<1 kHz) electrotherapy

Many carcinoma entities (Brackenbury, 2012; Djamgoz et al.,
2019), as well as gliomas (Xing et al., 2014), upregulate voltage-
gated Na+ (NaV) channels that are required for the function
of excitable cells in normal tissue, such as neurons or muscle
cells. In carcinoma resection specimens, Nav channel abundance
reportedly is associated with formation of distant metastases and
poorer patient survival. Proposed cellular mechanisms comprise
Nav activity-regulated H+ extrusion via allosterically coupling to
Na/H exchangers (NHE) at the lamellipodium of tissue-invading
cancer cells. Local extracellular acidification, in turn, increases
activity of cathepsins and metalloproteinases and promotes tissue
invasion (Luo et al., 2020). Static (direct current, 0 Hz) electric
fields (DC-EF, 0.1–4 V/cm) have been shown in vitro to direct
migration of highly migratory (but not of weakly migratory)
prostate cancer cells towards the cathode. This “galvanotaxis” was
blocked by the Nav blocker tetrodotoxin suggesting a function of
Nav channels in the electrobiological transduction. The epithelia
of the prostate gland generate a transepithelial voltage of about
-10 mV measured at the luminal as compared to the earthed
basolateral side. The Nav-dependent “galvanotaxis” alongside this
physiological transepithelial voltage gradient that corresponds to an
electric field intensity of 5 V/cm has been hypothesized to promote
invasion of prostate cancer cells into the gland ducts and metastasis
(Djamgoz et al., 2001). Moreover, DC-EF (1–3 V/cm for 15 min)
reportedly stimulates Ca2+ entry, firing rate, and insulin secretion
in mouse insulinoma (bTC-6) β cells (Liebman et al., 2021). This
DC-EF effect was sensitive to verapamil, a blocker of L- and T-type
voltage-gated Ca2+ Cav channels (Bergson et al., 2011) suggesting
an involvement of Cav channels in the transduction of the static
electric field into Ca2+ signaling.
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Pulsed EMF (PEMF) have been demonstrated in vitro to
stimulate osteogenesis (Petecchia et al., 2015; Benya et al., 2021;
Kar et al., 2021; He et al., 2022). Polycystin-2 (TRPP2, PKD-
2), a voltage-dependent Ca2+-permeable cation channel of the
polycystic subfamily of the transient receptor proteins (TRP),
harbors a voltage sensor domain similar to other voltage-gated ion
channels (Shen et al., 2016) and is expressed in rat osteoblasts.
In these cells, TRPP2 is located on the primary cilium where
it reportedly transduces PEMFs (0.6 mT, 50 Hz) into biological
signaling that promotes osteogenic differentiation as evident
from TRPP2 knock-down and pharmacological targeting (He
et al., 2022). Consistent with a pivotal role of Ca2+ signaling
in PEMF-stimulated osteogenesis, early osteogenic differentiation
of human bone marrow stroma-derived mesenchymal stem cells
by PEMF (2 mT, 1.3 ms pulses at 75 Hz for 10 min/day and
several weeks) was paralleled by a continuously increasing steady
state free cytosolic Ca2+ concentration and upregulation of L-type
Cav channel expression (Petecchia et al., 2015). Similarly, PEMF
(1 mT, 50 Hz)-induced neuronal differentiation of cultured dorsal
root ganglion neurons has been shown to depend on L-type Cav
channel-triggered Ca2+ signaling (Li et al., 2014). Along those lines,
ELF-EMF (100 Hz for 120 h) co-administered with temozolomide
has been demonstrated, beyond increasing Ca2+, to stimulate
downregulation of stem cell and upregulation of differentiation
markers in human glioblastoma U87 cells (Ahmadi-Zeidabadi
et al., 2019). An increase in steady state free cytosolic Ca2+

concentration following PEMF (3 mT, 50 Hz) treatment has also
been demonstrated in a human astrocyte cell line (Aldinucci et al.,
2000). Finally, nano- to picoseconds-pulsed PEMF using electric
fields of high (kV/cm) voltage have been demonstrated in vitro
to activate Cav and other channels in various cell types (Craviso
et al., 2010; Semenov et al., 2015; Burke et al., 2017; Azarov et al.,
2019). In two of these studies, Cav channel activation secondarily to
electroporation-mediated membrane depolarization was the most
likely mechanism (Azarov et al., 2019) and could not be excluded
(Craviso et al., 2010), respectively.

Extremely low-frequency electromagnetic fields (ELF-EMF,
8 Hz for 48 h) reportedly stimulate Ca2+ influx in B16-F10
melanoma cells that is blunted by L- and T-type Cav channel
blockers (Wang et al., 2021). Functionally, ELF-EMF (1 mT, 100 Hz
1.3 ms, 2 h/day for 5 days) have been demonstrated to induce
cell death in MC4-L2 breast cancer cells in a verapamil-sensitive
manner (Barati et al., 2021). Likewise, a growth-impairing action
of ELF-EMF (5–10 µT, frequency-modulated in a 25–6 Hz and
6–25 Hz frequency pattern, 1 h/day for 3–5 days) has been
demonstrated in HeLa (cervix carcinoma), MDA-MB-231, and
MCF-7 (both breast carcinoma), as well as B16-BL6 (mouse
melanoma) cells but not in three non-malignant cell lines (Buckner
et al., 2015). In this study, ELF-EMF (>15 min) induced in HeLa,
MDA-MB-231, MCF-7, and B16-BL6 an increase in cytosolic
free Ca2+ that was prevented by preincubating the cells with the
Cav blockers bepridil or mibefradil. In the only cell line tested
(B16-BL6), T-type Cav channel inhibition abolished the ELF-
EMF-induced impairment of proliferation (Buckner et al., 2015).
In sharp contrast, pro-proliferative and anti-apoptotic actions of
ELF-EMF (50 Hz, 1 mT) have been shown in human neuroblastoma
IMR32 and rat pituitary GH3 cells, which were sensitive to
the L-type Cav blocker nifedipine. Here, ELF-EMF induced Cav

expression but not activity (Grassi et al., 2004) suggesting that
Cav channels are ineligible for electrobiological signal transduction.
Besides growth modulation, ELF-EMF (0.7 mT, 60 Hz, 2 × 2 h/day
for 7 days) reportedly promote neurite outgrowth of cultured rat
chromaffin cells that is blocked by nifedipine (Verdugo-Díiaz et al.,
2002).

Beyond Ca2+ channels, ELF-EMF (268 µT and 902 µT, 20 Hz)
have been demonstrated to stimulate voltage-gated Kv1.3 (KCNA3)
K+ currents of Kv1.3-expressing Chinese hamster ovary (CHO)
cells in patch-clamp-whole-cell recording. Here, Kv1.3 activation
occurs few seconds after switching-on ELF-EMF exposure and
lasted several minutes after field removal (Cecchetto et al., 2020).
Combined, these data strongly suggest that external low intensity,
low frequency EMFs exert at least part of their biological in vitro
effects by modulation of voltage-gated ion channels. That similar
mechanisms are also applying for external low intensity EMF
therapies in the intermediate and high frequency range (such as
TTFields application in glioblastoma), in contrast, is much harder
to imagine. The obvious reason for that is the kinetics of biological
excitability which seems to be not fast enough to respond to
intermediate/high EMF frequencies. As introduced in the next
paragraphs, auditory hair cells are well suited to estimate the
kinetics and frequency limitations of biological sensory responses
and to get some insights into possible mechanisms of TTFields
effects in glioblastoma.

6. Are 200 kHz TTFields too
high-frequency for ion channel
modulation in glioblastoma cells?

In frogs, turtles, lizards or birds, hair cells may exhibit electrical
auditory tuning that contributes to the spectrum analysis of the
acoustic frequency band. Thereby, individual hair cells differ
in their electrical resonance frequency, i.e., in the acoustic (or
experimentally applied electrical stimulus) frequency where they
are responding best with synchronous oscillation of the membrane
potential and transmitter release. Mechanistically, the acoustic
activation of transducer channels in the apical membrane of
the hair cell induces a membrane depolarization that stimulates
in the basolateral membrane voltage-gated Cav Ca2+ channels.
This results in further membrane depolarization, Ca2+ entry, and
subsequent activation of adjacent BKCa Ca2+-activated and/or
voltage-gated Kv channels very similar to the situation in the
receptor cells of the ampullae of Lorenzini (see section 4 “Biological
voltmeters”). Activation of K+ channels re(hyper)polarizes the
membrane potential leading to deactivation of the Cav Ca2+

and Kv K+ channels, to a decrease of the cytosolic free Ca2+

concentration, and consequently to deactivation of the BKCa K+

channels. The transducer channel-triggered consecutive activation
and deactivation of Ca2+ and K+ channels oscillate the membrane
potential in an acoustic frequency-synchronous manner (for review
see Fettiplace and Fuchs, 1999).

In electrically tuned hair cells, this frequency is constrained
to a narrow resonance frequency band which is determined by
the size and interconnected membrane capacitance of the hair cell
and the number and kinetics of basolateral Ca2+ and K+ channels.
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Especially the kinetics of the expressed BKCa splice variants and
auxiliary beta sub-units limit the maximal frequency a hair cell
is electrically tuned at. In poikilothermic animals, this frequency
range, as measured at room temperature or below, is reportedly
limited to 1 kHz [with a minimal documented value of 250 Hz
for the bull-frog Rana catesbeiana (Hudspeth and Lewis, 1988)]. In
birds, the maximal resonance frequency increases with a Q10 = 2 at
higher temperatures suggesting a maximal frequency of membrane
potential oscillation up to 4 kHz in electrically tuned avian hair cells
(for review see Fettiplace and Fuchs, 1999). Likewise, mammalian
auditory inner hair cells, which do not show electrical tuning,
may generate membrane oscillations synchronous to the acoustic
stimulus with frequencies up to 2–3 kHz as demonstrated among
others in guinea pig (Palmer and Russell, 1986).

As already mentioned, acoustically elicited oscillation of
membrane potential encompasses several serially occurring
time-dependent processes. These comprise beyond serial
activation/deactivation of the involved channel variants, cyclic
re-charging of the apical and basolateral membrane according to
intrinsic capacitance-determined time- and resistance-dependent
length constants. As a consequence thereof, the actual time
constants of the subsequently occurring sub-processes, such as
activation of the Cav Ca2+ channels in the basolateral membrane,
must be profoundly shorter than an entire oscillation period of
the membrane potential. As a matter of fact, in a patch-clamp
study on auditory hair cells of chicken, activation of L-type
voltage-gated Cav Ca2+ channel-generated Ba2+ currents occurred
with a (voltage step-dependent) time constant down to τ = 100
µs (Zidanic and Fuchs, 1995). One has to bear in mind that this
experimentally deduced time constant reflects also “non-biological”
time-consuming processes. The latter includes patch-clamp
amplifier-intrinsic, patch-pipette resistance-, as well as pipette and
membrane capacitance-caused time delays of voltage clamping
(Zidanic and Fuchs, 1995). Thus, the “real” activation kinetics of the
studied Cav Ca2+ channel might be even faster. Along those lines,
ion channels involved in fish electric organ discharge frequencies
in the 20 kHz range (Kramer, 2009; Crampton, 2019, see section 4
“Biological voltmeters”) must operate with faster activation time
constants than 100 µs. Notwithstanding, the presumed kinetics of
voltage-gated ion channels in those very fast biological systems
(auditory hair cells, electric organs, etc.) still seems to be too slow
to be “in resonance” with the 200 kHz EMF of TTFields applied in
glioblastoma therapy.

RT-PCR data of two human glioblastoma cell lines (T98G
and U251; Neuhaus et al., 2019) as well as transcriptome data of
glioblastoma resection specimens deposited in the TCGA database
(Vatter et al., 2020) suggest high expression of Cav1.2 (CACNA1C)
and Cav1.3 (CACNA1D) L-type voltage-gated Ca2+ channels.
Moreover, patch-clamp recordings in human glioblastoma cell lines
T98G (Steinle et al., 2011; Stegen et al., 2015), U-87MG (Edalat
et al., 2016), U251 (Stegen et al., 2016) and RT-PCR data from
primary cultures of mesenchymal glioblastoma stem cells suggest
high (functional surface) expression of BKCa K+ channels (Ganser
et al., 2022). In this way, glioblastoma cells resemble strikingly
auditory hair cells or receptor cells in the Ampullae of Lorenzini.
It is, therefore, intriguing to speculate that glioblastoma cells might
show a certain degree of electrical “excitability” and resultant
vulnerability to external EMFs. Along those lines, glioblastoma cells

have been demonstrated to neuro-mimic neurogenesis programs
(Venkataramani et al., 2022) and to integrate into neuro-glial
networks by synaptogenesis (Venkatesh et al., 2019). In addition,
they have been proposed to pursue oscillation of cytosolic Ca2+

and membrane potential to execute programs of brain invasion
(Catacuzzeno and Franciolini, 2018).

Our previous study on single glioblastoma cells (human T98G
and U251 cell lines, Neuhaus et al., 2019) demonstrated that
TTFields (200 kHz, 0.25–2.5 Vpp/cm) induce a field strength-
dependent increase in cytosolic free Ca2+ concentration in Fura-2
Ca2+ imaging experiments. Notably, this increase was not due
to simple membrane electroporation since Cav Ca2+ channel
blockers abolished TTFields-stimulated increase in cytosolic free
Ca2+ reversibly. Moreover, the knock-down of Cav1.2 blunted this
effect (Neuhaus et al., 2019). Furthermore, in cell-attached patch-
clamp experiments with 2.5 Vpp/cm TTFields, this Ca2+ increase
was paralleled by activation of BKCa K+ channels. Both, TTFields-
stimulated BKCa and Cav channel activities were long-lasting and
outlasted withdrawal of TTFields application by several minutes
(Neuhaus et al., 2019). Notably, an identical time course has
been observed for ELF-EMF-stimulated activation of voltage-gated
Kv1.3 K+ currents in CHO cells (Cecchetto et al., 2020), as already
mentioned above in Section 5 “Ion channels as targets of low
frequency (<1 kHz) electrotherapy.”

Furthermore, we found that TTFields (200 kHz, 1 Vpp/cm)
induced slight perturbations of cell cycle progression and
dissipation of inner mitochondrial membrane potential. This
resulted in small but significant cell death and a decrease in
clonogenic survival in one (T98G) of the two glioblastoma cell
lines tested (Neuhaus et al., 2019). Unexpectedly, inhibiting Cav
channels by benidipine was unable to revert these TTFields effects
suggesting that Cav channel activity did not contribute to the
apparent tumoricidal action of the EMF in T98G cells. Rather,
benidipine exerted effects slightly additive to those of the TTFields
(Neuhaus et al., 2019). This might suggest that the TTFields-
stimulated Cav channel activity and subsequent rise in cytosolic
free Ca2+ concentration not necessarily must have detrimental
consequences for the affected tumor cell.

Combined, the data described in sections 5 “Ion channels
as targets of low frequency (<1 kHz) electrotherapy” and 6
“Are 200 kHz TTFields too high-frequency for ion channel
modulation in glioblastoma cells?” demonstrate that low intensity
EMF may interfere with cellular Ca2+ signaling in a wide range
of frequencies including the 200 kHz frequency of the TTFields
therapy. In the case of TTFields, one might speculate that the
putative discrepancy between the reported kinetics of voltage-gated
channels and the 200 kHz of TTFields might be reconciled by
considering the multistep nature of voltage gating as described
in section 3 “Molecular bases of voltage-sensing”: TTFields
might interfere with sub-stepping between conformational macro
states of the activating/deactivating channels that occur with
much faster kinetics than the complete activation/deactivation
process. Following the “ion channel hypothesis”, the reported
tumor specificity of TTFields therapy (Kirson et al., 2007;
Chang et al., 2018) must then arise from a tumor-specific
expression/upregulation of TTFields-vulnerable types or variants
of voltage-gated channels. As an example, glioblastoma cells have
been demonstrated to express a specific splice variant (gliomaBKCa)
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of BKCa channel that exhibited highest Ca2+ sensitivity among the
(at that time) known BKCa variants (Liu et al., 2002).

Another conclusion of the above-described studies is that the
reported cellular EMF responses are cell type-specific and may span
anti-proliferative and pro-apoptotic, pro-proliferative and anti-
apoptotic, or phenotype-(de)differentiating effects. Moreover, the
majority of the above-mentioned studies have identified voltage-
gated ion channels and, in particular, Cav channels as primary EMF
targets, strongly suggesting these channels as biological antennas of
weak external electromagnetic fields.

Concluding remarks

In accordance with the tenor of the present review article,
several authors have proposed voltage-gated (dependent) ion
channels as molecular transducers of weak external EMF fields
into biological signals (e.g., Pall, 2013, 2015, 2016; Li et al., 2020a;
Georgiou and Margaritis, 2021; Panagopoulos et al., 2021; Wust
et al., 2021). Identification of voltage-gated ion channels as central
functional units in electrolocation of fishes (see section 4 “Biological
voltmeters” of this article) may further support this “ion channel
hypothesis” of external EMF perception. The wide range of EMF
frequencies that comprise static fields (0 Hz) as well as radio
frequency (MHz) and that reportedly all evoke activity changes
of ion channels might be explained by the multi-step kinetics of
ion channel gating with several “resonance” frequencies in this
process (see section 3 “Molecular bases of voltage-sensing” of
this article).

Although biological effects of weak external EMF have been
demonstrated under controllable in vitro and preclinical in vivo

conditions, their clinical relevance remains still highly debatable.
Biological organisms are electrically active and life evolved in
an ever-changing electromagnetic microenvironment due to the
switch-on/switch-off activity of muscles or neurons in higher
animals or locomotion-caused re-orientation within the terrestrial
magnetic field. Bearing that in mind, one can assume that
cells are well adapted to weak external EMF. This point is
underlined since artificial EMF emitted by our electric devices
of daily use (e.g., 50–60 Hz power supply, WiFi, cell phone,
radio, TV, microwave, etc.), when used according to the guidelines
and within the administrative limits of field strengths, seem
not to elicit gross biological responses (Vijayalaxmi and Scarfi,
2014). Hence, strong effects of EMF in electrotherapies should
not be expected. Nevertheless, electrotherapies have raised large
hopes, especially in cancer entities with bad prognoses, such as
glioblastoma. In this case, the hope is fueled by case reports
on TTFields-associated complete tumor remission (Kessler et al.,
2020; Stein et al., 2020) and one randomized controlled clinical
trial (Stupp et al., 2017). As described above, more randomized
controlled trials with proper control arms are underway to
prove the replicability and generalizability of TTField’s effects
against cancer.

Neoplastic transformation and malignant progression have
been shown to rely on a remodeling of the ion channel toolkit of
the tumor cell (Huber, 2013). In particular, many tumor entities
upregulate voltage-gated channels like Nav (Martin et al., 2015), Kv
(Pardo and Sühmer, 2008; Lastraioli et al., 2015), or Cav (Morrone
et al., 2016) channels. Since these “oncochannels” reportedly play
pivotal roles in tumor biology, electrotherapy may also entail risks
when altering activities of these channels. Human glioblastoma cell
lines, for example, have been shown to respond to weak DC-EFs

FIGURE 5

Speculative scenario of a primary voltage-gated ion channel targeting by glioblastoma electrotherapy. Beyond tumoricidal or therapy-sensitizing
effects, electrotherapy-elicited modulation of ion channel activities might also boost malignant progression of glioblastoma cells by inducing
transition in cancer stem cell phenotypes, cell proliferation, therapy resistance, and/or cell migration, glioblastoma spreading, and brain invasion.
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with voltage-gated channel-dependent electrotaxis (Tsai et al., 2020)
which might hint at the possibility that EF stimulates glioblastoma
brain spreading. Moreover, EF reportedly induce a Cav-dependent
proliferation and neuronal differentiation of neural stem cells
(Wang et al., 2023) indicative of potential beneficial effects of EF
therapies on neural tissue. EMF may also induce resistance against
apoptosis in brain tumor cells (Grassi et al., 2004). Along those
lines, in our previous work, TTFields-induced activation of L-type
voltage-gated Cav1.2 Ca2+ channels in one human glioblastoma
cell line exerted rather pro-survival (Neuhaus et al., 2019) than
tumoricidal effects (Figure 5).

Therefore, a better understanding of the functional significance
of potential electrobiological transducer channels in tumor biology
and therapy resistance (for reviews see Huber, 2013; Klumpp et al.,
2016; Roth and Huber, 2022) is inevitable for the development of
further strategies in cancer electrotherapy. Such future strategies
might aim to augment electrotherapy-induced cellular stress or to
suppress cellular resistance mechanisms by concomitant targeting
of potential resistance-mediating transducer channels. Moreover,
once the electrobiological transduction process and the involved
channel subtypes/splice variants are disclosed, electrotherapy
protocols (waveform/frequency/intensity/duration/pulsed vs.
continuous application) might become easily optimized in e.g.,
heterologous expression systems. Finally, the identification of
potential electrotherapy transducer channels in a certain tumor
entity may be utilized for personalization of electrotherapy,
e.g., by stratification of patients according to the abundance
of the transducer channels in the tumor resection specimens.
However, to ultimately achieve this, much more joint efforts of
electrotherapy developers, oncologists, physiologists and physicists
are required.
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