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Dravet syndrome (Dravet) is a severe congenital developmental genetic epilepsy

caused by de novo mutations in the SCN1A gene. Nonsense mutations are found

in ∼20% of the patients, and the R613X mutation was identified in multiple

patients. Here we characterized the epileptic and non-epileptic phenotypes of

a novel preclinical Dravet mouse model harboring the R613X nonsense Scn1a

mutation. Scn1aWT/R613X mice, on a mixed C57BL/6J:129S1/SvImJ background,

exhibited spontaneous seizures, susceptibility to heat-induced seizures, and

premature mortality, recapitulating the core epileptic phenotypes of Dravet.

In addition, these mice, available as an open-access model, demonstrated

increased locomotor activity in the open-field test, modeling some non-

epileptic Dravet-associated phenotypes. Conversely, Scn1aWT/R613X mice, on

the pure 129S1/SvImJ background, had a normal life span and were easy to

breed. Homozygous Scn1aR613X/R613X mice (pure 129S1/SvImJ background) died

before P16. Our molecular analyses of hippocampal and cortical expression

demonstrated that the premature stop codon induced by the R613X mutation

reduced Scn1a mRNA and NaV1.1 protein levels to ∼50% in heterozygous

Scn1aWT/R613X mice (on either genetic background), with marginal expression

in homozygous Scn1aR613X/R613X mice. Together, we introduce a novel Dravet

model carrying the R613X Scn1a nonsense mutation that can be used to study

the molecular and neuronal basis of Dravet, as well as the development of new

therapies associated with SCN1A nonsense mutations in Dravet.
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Introduction

Dravet Syndrome (Dravet) is a severe childhood-onset
developmental and epileptic encephalopathy. Most cases are caused
by de novo mutations in the SCN1A gene, which encodes for
the voltage-gated sodium channel NaV1.1 (Claes et al., 2003).
Dravet patients develop normally in the first months of life.
The first symptom is often a febrile generalized tonic-clonic or
focal clonic seizure that can be prolonged. Seizures soon progress
to spontaneous afebrile seizures, which can evolve into status
epilepticus (SE). Drug treatment in Dravet includes valproate
and clobazam as initial therapy, with stiripentol, cannabidiol,
or fenfluramine as an adjunct therapy. However, even with
polytherapy, patients are rarely seizure-free, with a high risk for
sudden unexpected death in epilepsy (SUDEP). Additional non-
epileptic comorbidities in Dravet include developmental delay and
cognitive impairment (Dravet et al., 2011; Gataullina and Dulac,
2017; Cardenal-Muñoz et al., 2022; Strzelczyk and Schubert-Bast,
2022).

Over 1,000 different SCN1A pathological variants have been
identified in Dravet patients. Among these, ∼7% are large
deletions, ∼39% are missense mutations, and ∼41% are nonsense
or frameshift mutations (Claes et al., 2009; Meng et al., 2015;
Xu et al., 2015; Liu et al., 2021). Most of these mutations are
de novo, non-recurrent mutations. However, intriguingly, the
SCN1A R613X nonsense mutation has been reported to occur de
novo in ten different patients (Kearney et al., 2006; Margherita
Mancardi et al., 2006; Depienne et al., 2009; Rodda et al., 2012;
Wang et al., 2012; Gaily et al., 2013; Moehring et al., 2013; Lee
et al., 2015). Here we set out to comprehensively characterize
a novel open-access mouse model that harbors this nonsense
mutation.

Dravet mouse models (DS mice) recapitulate many aspects
of the human disease. To date, fifteen different models have
been developed based on various Scn1a mutations. Importantly,
all the DS mouse models recapture key pathophysiological
phenotypes of Dravet, exhibiting spontaneous seizures, premature
mortality, and the presentation of Dravet-associated non-epileptic
behavioral traits (Yu et al., 2006; Ogiwara et al., 2007, 2013;
Martin et al., 2010; Cheah et al., 2012; Miller et al., 2014;
Tsai et al., 2015; Kuo et al., 2019; Ricobaraza et al., 2019;
Dyment et al., 2020; Jansen et al., 2020; Uchino et al., 2021;
Voskobiynyk et al., 2021; Morey et al., 2022; Valassina et al., 2022;
Table 1).

Several DS models are available through international
repositories (Table 1), and two lines, developed by the Dravet
Syndrome Foundation Spain, are distributed through the Jackson
Laboratory for unrestricted use: (i) the conditional DS mice
that harbor the Scn1aA1783V missense mutation; and (ii) a new
Scn1aR613X line, described here. While the first model has been
validated and confirmed to recapitulate Dravet phenotypes
(Table 1), the phenotypic and molecular characterization of the
new Scn1aR613X model was yet partial (Almog et al., 2022). Here,
we show that DS mice carrying the Scn1aR613X nonsense mutation
on a mixed C57BL/6J:129S1/SvImJ background recapitulate key
phenotypes of Dravet, with heat-induced seizures that occur
within the range of physiological fever temperatures at multiple
developmental stages, spontaneous convulsive seizures, premature

death, and hyperactivity in the open field. Moreover, these mice
have reduced levels of Scn1a mRNA and NaV1.1 protein in
the hippocampus and the cortex. Together, these data confirm
that the Scn1aR613X model is a valid animal model for Dravet
research.

Materials and methods

Animals

All animal experiments were approved by the Animal Care and
Use Committee (IACUC) of Tel Aviv University. Mice used in this
study were housed in a standard animal facility at the Goldschleger
Eye Institute at a constant (22◦C) temperature, on a 12-h light/dark
cycle, with ad libitum access to food and water.

Mice harboring the global Scn1aR613X mutation were generated
by crossing males or females carrying the A-to-T point mutation
in nucleotide 1837 (converting arginine 613 to a STOP codon)
in addition to a silent C-to-T mutation at position 1833
(129S1/SvImJ-Scn1aem1Dsf /J , The Jackson Laboratory, stock no.
034129) (Figure 1A), with wild-type (WT) mice, females or
males (129S1/SvImJ, The Jackson Laboratory, stock no. 002448).
Details about allele modification and genotyping are described
here: https://www.jax.org/strain/034129. This mouse line was
maintained on the pure 129S1/SvImJ genetic background. To
produce DS mice (on a mixed background 50:50 C57BL/6J:
129S1/SvImJ), male or female Scn1aWT/R613X mice on the pure
129S1/SvImJ were crossed with WT mice (males or females) on a
C57BL/6J background (The Jackson Laboratory, stock no. 000664),
generating F1 mice on a 50:50 genetic background. Both male and
female offspring were used for experiments. Homozygous mutant
mice (Scn1aR613X/R613X) were generated by crossing heterozygous
Scn1aWT/R613X mice on the pure 129S1/SvImJ background.

Genotyping

PCR was performed using the primers and protocol described
by the Jackson Laboratory (129S1/SvImJ-Scn1aem1Dsf /J , stock no.
034129). Following the amplification step, 7,000 units of TaqI
restriction enzyme (New England Biolabs, Ipswich, MA, USA) were
added to 6 µL of the PCR mixture, incubated at 65◦C for 15 min,
and analyzed on 3% agarose gel (Figure 1B).

Thermal induction of seizures

Thermal induction of seizures was performed as previously
described (Almog et al., 2021). Briefly, the baseline body core
temperature was recorded for at least 10 min, allowing the animals
to habituate to the recording chamber and rectal probe. Body
temperature was then increased by 0.5◦C every 2 min with a
heat lamp (TCAT-2DF, Physitemp Instruments Inc., Clifton, NJ,
USA) until a generalized tonic-clonic seizure was provoked; the
temperature was not increased above 42◦C. Mice used for thermal
induction of seizures were not included in the survival curve.
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TABLE 1 Mouse models for DS.

Scn1a microdeletions Scn1a nonsense mutations Scn1a missense mutations

DS-models 1 exon 26 (1) 1 exon 1 (2) 1 exon 1, 138
nt. (3)

1 exon 25 (4)
(cond.)

1 exon 8 (5)
(cond.)

1 exons 8-12
(6)

1 exon 7 (7)
(cond.)

R1407X (8) E1099X (9) Exon 6 stop
(10)

R613X H939R (11) R1648H with
sz induction
(12)

A1783V
(13, 14)
(cond.)

Exon 20N (15)

Genetic
background

C57BL/6J 50:50 C57BL/
6J:129S6/
SvEvTac

50:50 C57BL/
6J:129S6/
SvEvTa
cAusb

C57BL/6J C57BL/6J C57BL/6J C57BL/6J C57BL/6J 75% C57BL/
6Narl

C57BL/6J 50:50 C57BL/
6J:129S1/
SvImJ

C57BL/
6NCrl

50:50 C57BL/
6J:129P2/
OlaHsd

C57BL/6J C57BL/6J

Heat-induced
sz < P18

No sz
(16)

40-42 ◦C
(17–22)

NA NA NA NA NA NA NA NA 40± 0.27◦C
(Figure 2)

NA NA ∼38.5–41◦C
(13, 23)

NA

Heat-induced sz
P18–P28

38–41◦C
(16, 24)

38.5–42◦C
(19, 25–28)

NA ∼38◦C
(29, 30)

NA NA NA 40–41◦C
(26, 31, 32)

∼40◦C (9) NA 38.78± 0.1◦C
(Figure 2)

Increase # of
sz at 30◦C
(11)

∼41.5◦C (33) ∼37–39.5◦C
(23, 34)

NA

Heat-induced
sz > P30

38–39◦C
(16, 35)

40–42◦C
(36–38)

NA NA 38.5 when
crossed with
EIIA-Cre (5)

NA NA 40–42◦C
(27, 31, 39)

∼40◦C
(9, 40, 41)

∼40.5◦C
(10)

39.64± 0.46◦C
(Figure 2)

NA NA 38–40◦C
(14, 23, 42, 43)

NA

Hyperactivity
(open field)

+ (44) + (19, 28, 45) + (3) + (29) NA NA NA + (32, 39,
46)

NA + (10) + (Figure 3) NA + (33) + (14, 34, 42,
47, 48)

+ (15)

Increased
anxiety

+ (44) + (49, 50) No signs of
increased
anxiety (3)

+ (29) NA NA NA + (39, 46) NA No signs of
increased
anxiety (10)

No signs of
increased
anxiety
(Figure 3)

NA No signs of
increased
anxiety (33)

+ (14, 42, 47) NA

Motor deficits + (51) NA NA NA NA NA NA NA NA NA Normal
rotarod
(Figure 3)

NA NA + (14, 42, 47,
52)

NA

Cognitive
deficits

+ (44, 51) + (49, 50) NA + (29) NA NA NA + (32, 46) NA + (10) Normal Y maze
(Figure 3)

NA + (33) + (14, 42, 47,
52)

Not observed
(15)

Autistic features + (44, 51) + (19, 49, 50) NA + (29) NA NA NA + (32, 39,
46, 53)

NA + (10) NA NA + (33) + (34, 48, 52) Not observed
(15)

Distribution MMRRC/ JAX
Strain
#037107-JAX
Commercial
license
agreement for
for-profit.

MMRRC
041829-UCD
Non-profit
institutions
only.

RBRC
MGI:5523787
MTA is
required

RBRC
RBRC09420
MTA is
required

JAX
Strain #:034129

JAX
Strain
#:026133

cond., conditional; sz, seizures.
(1) Yu et al., 2006, (2) Miller et al., 2014, (3) Morey et al., 2022, (4) Cheah et al., 2012, (5) Jansen et al., 2020, (6) Uchino et al., 2021, (7) Ogiwara et al., 2013, (8) Ogiwara et al., 2007, (9) Tsai et al., 2015, (10) Valassina et al., 2022, (11) Dyment et al., 2020, (12) Martin et al.,
2010, (13) Kuo et al., 2019, (14) Ricobaraza et al., 2019, (15) Voskobiynyk et al., 2021, (16) Oakley et al., 2009, (17) Hawkins et al., 2016, (18) Hawkins et al., 2017, (19) Gerbatin et al., 2022a, (20) Gerbatin et al., 2022b, (21) Satpute Janve et al., 2021, (22) Anderson et al.,
2022, (23) Almog et al., 2021, (24) Rubinstein et al., 2015, (25) Nomura et al., 2019, (26) Tanenhaus et al., 2022, (27) Hawkins et al., 2021a, (28) Niibori et al., 2020, (29) Williams et al., 2019, (30) Chuang et al., 2021, (31) Cao et al., 2012, (32) Gheyara et al., 2014, (33)
Salgueiro-Pereira et al., 2019, (34) Miljanovic et al., 2021, (35) Cheah et al., 2021, (36) Tran et al., 2020, (37) Mattis et al., 2022, (38) Kaneko et al., 2022, (39) Yamagata et al., 2020, (40) Ho et al., 2021, (41) Hsiao et al., 2016, (42) Mora-Jimenez et al., 2021, (43) Pernici
et al., 2021, (44) Han et al., 2012, (45) Hawkins et al., 2021a, (46) Ito et al., 2013, (47) Fadila et al., 2020, (48) Satta et al., 2021, (49) Bahceci et al., 2020, (50) Patra et al., 2020, (51) Beretta et al., 2022, (52) Alonso et al., 2022, and (53) Shao et al., 2022.
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Electrocorticography (ECoG) recordings

Electrode implantation was done at P21-P25, as previously
described (Fadila et al., 2020). Briefly, the mice were anesthetized
with ketamine/xylazine (191/4.25 mg/kg), Carprofen (5 mg/kg) was
used as analgesia. A midline incision was made above the skull and
five fine silver wire electrodes (130 µm diameter bare; 180 µm
diameter coated) were placed at visually identified locations,
bilaterally above the somatosensory cortex; a reference electrode
was placed on the cerebellum; a ground electrode was placed
subcutaneously behind the neck, toward the left shoulder, and an
EMG electrode was placed in the neck muscles. The electrodes
were connected to a micro-connector system, secured with dental
cement, and the skin closed with sutures. Mice were allowed to
recover for at least 48 h before recording. For the video-ECoG
recordings, the mice were connected to a tethered T8 Headstage
(Triangle BioSystems, Durham, NC, USA), and PowerLab 8/35
acquisition hardware with LabChart 8 software (ADInstruments,
Sydney, NSW, Australia). Each recording lasted 3–4 h, between 8
am and 6 pm. The electrical signals were recorded and digitized
at a sampling rate of 1 KHz with a notch filter at 50 Hz. Seizures
were detected by visual inspection of the signal as high amplitude
repeated spike-wave events (Figures 1C, 2A).

Behavioral experiments

Behavioral tests were done as described previously (Fadila et al.,
2020). For the open-field test, the mice were placed in the center of
a square (50× 50 cm) plexiglas apparatus and their movement was
recorded for 10 min. Live tracking was achieved via a monochrome
camera (Basler acA1300-60 gm, Basler AG, Ahren, Germany)
connected with EthoVision XT 13 software (Noldus Technology,
Wageningen, Netherlands). To analyze anxiety-like behavior, the
open field arena was digitally divided into 10 × 10 cm squares (25
in total), dividing the arena into “outer” and “inner” zones.

To examine motor functions, the mice were placed on an
accelerating rotating rod (acceleration from 3 to 32 RMP, Med
Associates, Inc., Fairfax, VT, USA), and the time at which each
mouse fell was recorded. The test was repeated five times for each
mouse, and the three longest trials were averaged.

To test spatial working memory, a symmetrical Y-maze
comprised of three arms (each 35 cm L × 7.6 cm W × 20 cm H)
was used. The mouse was placed into one of the Y-maze arms and
allowed free exploration for 10 min. Live tracking was achieved via
a monochrome camera (Basler acA1300-60 gm, Basler AG, Ahren,
Germany) connected with EthoVision XT 13 software (Noldus
Technology, Wageningen, Netherlands). Different cohorts of mice
were tested at each time point to ensure a reaction to a novel arena.
The percentage of spontaneous alternation was calculated as the
number of triads divided by the number of possible triads.

qPCR

Total RNA was isolated using PurelinkTM RNA mini kit
according to the manufacturer’s instructions (Thermo Fisher
Scientific, Life Technologies, Carlsbad, CA, USA). cDNA was

synthesized from 500 ng RNA using Maxima H Minus cDNA
synthesis kit (Thermo Fisher Scientific, Life Technologies,
Carlsbad, CA, USA). Real-time PCR (qPCR) reactions were
performed in triplicates in a final volume of 10 µL with 5 ng of RNA
as template using the TaqMan Scn1a (Mm00450580_m1) gene
expression assay (Applied Biosystems, Thermo Fisher Scientific,
Life Technologies, Carlsbad, CA, USA). Two endogenous controls
were used: Gusb (Mm00446953_m1) and Tfrc (Mm00441941_m1).
Efficiency of 100%, dynamic range, and lack of genomic DNA
amplification were verified for all assays.

Western blot

The hippocampi were extracted and homogenized as previously
described (Nissenkorn et al., 2019). Briefly, 0.45–0.7 mg of tissue
was homogenized in 0.32 M sucrose supplemented with protease
inhibitors (Sigma-Aldrich, St. Louis, MO, USA), 1 mM EDTA
and 1 mM PMSF, pH 7.4. Crude membrane preparation was
produced by centrifugation at 27,000 × g for 75 min. The pellet
was solubilized in 150 mM NaCl, 2% Triton X-100, 25 mM Tris,
supplemented with protease inhibitors, 1 mM EDTA and 1 mM
PMSF, pH 7.4. 50 µg aliquots of total protein were separated
on Tris-acetate gel (6%) and transferred onto PVDF membrane.
After overnight blocking in 5% non-fat dry milk in Tris-buffered
saline (TBS), the membrane was incubated overnight with anti-
NaV1.1 antibody (1:200, Alomone Labs, Jerusalem, Israel; Catalog#
ASC-001) or anti-calnexin (1:2,000, Stressgen Biotechnologies, San
Diego, CA, USA), followed by 2 h incubation with HRP-conjugated
goat anti-rabbit antibody (1:10,000, Sigma-Aldrich, St. Louis, MO,
USA). The signal was visualized by chemiluminescent detection
using ECL.

dPCR for allele specific quantification of
WT and R613X mRNA

Allele-specific digital PCR (dPCR) assays were performed at
Tevard Biosciences (Cambridge, MA, USA) on neocortical tissue
isolated from WT and Scn1aWT/R613X mice on a mixed 50:50
C57BL/6J:129S1/SvImJ background, generated using a similar
breeding strategy as described above. After confirming anesthesia,
neocortical tissue was carefully extracted, flash-frozen in liquid
nitrogen, and stored at −70◦C until processing. Total RNA
was extracted from tissues using AllPrep R© DNA/RNA/miRNA
Universal kit (Qiagen, Hilden, Germany; Catalog# 80224)
and reverse transcribed with SuperScriptTM IV First-Strand
Synthesis System (Thermo Fisher, Waltham, MA, USA; Catalog#
18091050). For allele-specific detection of Scn1a transcripts
(WT vs. R613X mRNA), custom-designed Affinity PlusTM

qPCR Probes (IDT, Coralville, IA, USA) were used to enable
greater SNP target specificity. The primer sequences and probes
are as follows (the + sign before a nucleotide indicates locked
nucleotides): Forward primer: CACAGCACCTTTGAGGATAAT;
Reverse primer: GGTCTGGCTCAGGTTACT; WT probe:
TCC + C + CG + A + A + GAC; R613X probe:
TCC + T + CG + A + T + GAC + AC. Mouse Gapdh TaqMan probe
(Thermo Fisher; Mm99999915_g1) was used as a reference gene.
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FIGURE 1

Spontaneous convulsive seizures and premature mortality in DS Scn1aWT/R613X mice. (A) CRISPR/Cas9-generated mutations were introduced to
exon 12 of the mouse Scn1a gene: A > T point mutation at nucleotide 1837 (converting Arg613 into a STOP codon) and a silent C > T mutation at
position 1833. (B) Genotyping of Scn1aR613X allele using PCR followed by TaqI digestion. (C) A spontaneous seizure captured during an ECoG
recording in a Scn1aWT/R613X mouse on a mixed background. (D) Scn1aWT/R613X on a mixed background exhibited premature mortality, in contrast
to Scn1aWT/R613X mice on the pure 129S1/SvImJ. Homozygous Scn1aR613X/R613X died prematurely between P14-16. 129 background: WT, n = 24;
Scn1aWT/R613X, n = 51; Scn1aR613X/R613X, n = 15. Mixed background: WT, n = 30; Scn1aWT/R613X, n = 102. (E) The growth of Scn1aWT/R613X mice on
the mixed background was similar to their WT littermates. WT, n = 10; Scn1aWT/R613X, n = 6.

dPCR for absolute quantification of gene targets was performed
using naica

R©

System dPCR from Stilla Technologies (Villejuif,
France).

MSD-ECL assay

Meso scale discovery-electrochemiluminescence assays were
performed at Tevard Biosciences (Cambridge, MA, USA). Total
protein was isolated from combined neocortex (parietal, temporal,
occipital lobes), or dissected cortical lobes (frontal, parietal,
temporal, occipital, respectively) and liver. The tissue was
homogenized in lysis buffer (1× TBS, 1% TX-100, 0.5%
Nonidet P-40, 0.25% Na deoxylate, 1 mM EDTA) supplemented
with protease/phosphatase inhibitors (HALT Protease/Phosphatase
inhibitor cocktail, Thermo Fisher Catalog # 78440) using beaded

tubes (MP Biomedicals, Irvine, CA, USA Catalog # 116913050-
CF) and a benchtop homogenizer (MP Biomedicals FastPrep-24
5G) at 4.0 m/s for 5 s. Samples were incubated at 4◦C for 15 min
with rotation, spun down at 16,000 × g at 4◦C for 15 min,
and the supernatant containing total protein was collected. Multi-
Array 96 Small Spot Plates (Meso Scale Diagnostics, Rockville,
MD, USA, Catalog # L45MA) were blocked for 1 h at room
temperature with shaking using Blocker B (Meso Scale Diagnostics,
Catalog # R93BB). Plates were washed 3 times with TBST, then
coated with 5 µg/mL capture antibody for NaV1.1 (UC Davis,
Antibodies Inc. Catalog # 75-023) at room temperature for 1 h with
shaking. Plates were washed as previously described, and 25 µL of
4 mg/mL standard or protein samples were added to individual
wells and incubated overnight at 4◦C with shaking. Plates were
washed, and the detection antibody for NaV1.1 (Alomone Labs,
Catalog # ASC-001-SO) was added at 2.4 µg/mL and incubated
at RT for 1 h with shaking. Plates were washed, and secondary
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FIGURE 2

Scn1aWT/R613X are susceptible to heat-induced seizures. (A) An ECoG trace from a Scn1aWT/R613X mouse on a mixed 50:50 background depicting
epileptic activity at a temperature of 39.5◦C. (B,C) Scn1aWT/R613X mice on a mixed background (50:50), at the indicated ages (P14-16; P21-P25;
P34-P35), remaining free of thermally induced seizures (B), and the temperature of seizures (C). P14-16: n = 6; P21-P25: n = 9; P34-P35: n = 7.
(D,E) Scn1aWT/R613X mice on the 129S1/SvImJ background, at the indicated ages (P14-16; P21-P25; P34-P35), remaining free of thermally induced
seizures (D), and the temperature of seizures (E). P14-16: n = 5; P21-P25: n = 8; P34–P35: n = 6. WT mice did not experience seizures within this
temperature range (n = 4–7 at each age group, not shown). (F) At P21-P25, Scn1aWT/R613X mice on a mixed background (50:50) have heat-induced
seizures at lower temperatures compared to Scn1aWT/R613X mice on a pure 129 background (129). These are the same data depicted in panels (C,E).
These data did not follow a normal distribution. Statistical comparison in panel (C) utilized non-parametric One-Way ANOVA followed by Dunn’s
test. Statistical comparison in panel (E) utilized the Mann–Whitney test. ∗p < 0.05.

detection antibody (SULFO-TAG anti-rabbit antibody; Meso Scale
Diagnostics Catalog# R32AB) was added at 2 µg/mL and incubated
for 1 h at room temperature with shaking. Plates were washed and
read using MSD GOLD Read Buffer B (Meso Scale Diagnostics
Catalog # R60AM, 150 µL) on the MSD QuickPlex SQ120
Instrument.

Results

DS Scn1aR613X mice on the mixed
background demonstrated premature
mortality and spontaneous seizures

The DS Scn1aR613X mice were generated by the Dravet
Syndrome Foundation Spain and deposited for unrestricted
distribution by the Jackson Laboratory (stock no. 034129).

The Scn1aR613X mutation was generated on the 129S1/SvImJ
background (Figures 1A, B). Previous studies demonstrated that
mice with Scn1a mutations on the 129 backgrounds have mild
epileptic phenotypes, with rare spontaneous seizures and normal
lifespan (Yu et al., 2006; Miller et al., 2014; Mistry et al.,
2014; Rubinstein et al., 2015; Kang et al., 2018). In agreement,
heterozygous Scn1aWT/R613X mice on the pure 129S1/SvImJ
background were not witnessed to have spontaneous convulsive
seizures or seizures during routine handling, and only one mouse
died prematurely (Figure 1D). Conversely, crossing Scn1a mutant
mice onto the C57BL/6J background aggravated their epileptic
phenotypes with the presentation of spontaneous seizures and
premature death (Yu et al., 2006; Miller et al., 2014; Mistry et al.,
2014; Rubinstein et al., 2015; Kang et al., 2018). Scn1aWT/R613X

on a mixed background (50:50 C57BL/6J:129S1/SvImJ) exhibited
spontaneous convulsive seizures, which were often observed
unprovoked in their home cage or during routine handling
(Figures 1C, D; Supplementary Video 1). Moreover, these mice
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FIGURE 3

Hyperactivity in Scn1aWT/R613X mice on the mixed background. (A–D) Open field in WT and DS mice at their fourth week of life (P21-P25).
(A) Representative examples of exploring the behavior of WT and DS mice during the 10-min test period. (B) Distance moved. (C) Average velocity.
(D) Percentage of time spent in the central portion of the arena. WT, n = 20; Scn1aWT/R613X, n = 14. (E) The latency to fall in the rotarod test in WT
and DS mice (P34-P42). WT, n = 14; Scn1aWT/R613X, n = 9. (F–I) The Y-maze test in P21-P25 mice (F,G) and in another cohort of older (P36-P43)
mice (H,I). The dotted line in panels (F,H) signifies the chance level expected from random alternation. Panels (G,I) depict the total distance moved
in the Y-maze arena during exploration. P21-P25: WT, n = 14; Scn1aWT/R613X, n = 11; P36-P43: WT, n = 10; Scn1aWT/R613X, n = 8. In addition to the
average and SE, the individual data points from males (triangles) and females (circles) are depicted. As these data were distributed normally, statistical
comparison utilized the unpaired t-test. ∗∗p < 0.01.

FIGURE 4

No behavioral deficits in Scn1aWT/R613X mice on the 129S1/SvImJ background. (A) Representative examples of the exploring behavior of WT and
Scn1aWT/R613X mice during the 10-min test period. (B) Distance moved in the open field. (C) Percentage of time spent in the central portion of the
arena. WT, n = 19; Scn1aWT/R613X, n = 14. (D) The latency to fall in the rotarod test. WT, n = 8; Scn1aWT/R613X, n = 14.

demonstrated profound premature mortality, with only ∼40% of
the mice surviving to P60, and most of the deaths occurring during
their fourth week of life (P21-P28, Figure 1D). Scn1aWT/R613X

were often found in their cage, with outstretched limbs, suggestive
of death during a seizure. Nevertheless, as these deaths were not
observed, we cannot exclude the possibility of additional cardiac
or respiratory comorbidities (Auerbach et al., 2013; Kalume et al.,
2013; Kim et al., 2018; Kuo et al., 2019). Despite poor survival,
the growth rate of Scn1aWT/R613X mice on the mixed background
was similar to their WT littermates, with no significant differences
in body weight (Figure 1E). Homozygous Scn1aR613X/R613X

died prematurely between P14-16 (Figure 1D). Together, the

Scn1aWT/R613X Dravet mice on a mixed background demonstrated
spontaneous seizures and premature mortality, recapitulating
Dravet epilepsy and Dravet-associated premature death.

Scn1aR613X mice exhibit heat-induced
seizures and hyperactivity in the open
field

Heat-induced seizures are a hallmark phenotype of SCN1A
mutations. We tested the susceptibility of Scn1aWT/R613X mice,
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FIGURE 5

Reduced Scn1a mRNA and NaV1.1 protein expression in the hippocampus of Scn1aWT/R613X mice. (A) Sequencing of hippocampal mRNA confirmed
the expression of the Scn1aR613X allele. (B,C) qPCR analysis of Scn1a mRNA expression levels showed a significant reduction to approximately 50% in
heterozygous Scn1aWT/R613X on the mixed background (B), and on the pure 129S1/SvImJ background (C). Marginal background expression was
found in homozygous Scn1aR613X/R613X mice. Mixed background: WT, n = 4; Scn1aWT/R613X T, n = 4; Scn1aR613X/R613X, n = 2. 129S1/SvImJ
background: WT, n = 4; Scn1aWT/R613X, n = 4. (D) Western blot analysis of NaV1.1 protein extracted from the hippocampi of three different mice from
each genotype. Kilodaltons = kDa. (E) Quantification of NaV1.1 protein level was based on multiple bands as indicated by the black arrow in
panel (D). Only two of the three Scn1aR613X/R613X were included in the quantification due to the dark spot in the middle lane that precluded the
inclusion of this sample. Statistical comparison in panels (C,E) utilized One-Way ANOVA followed by Tukey’s multiple comparisons test. Statistical
comparison in panel (C) utilized t-test. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

on either background, to heat-induced seizures at different
ages: the pre-epileptic stage (P14-P16), the severe stage of
epilepsy during the fourth week of life (P21-P25), and the
stabilization or chronic stage after the fifth week of life (P34-
P35) (Fadila et al., 2020; Gerbatin et al., 2022a). All the Scn1a
mutant mice exhibited thermally induced seizures below 42◦C
(Figure 2). The highest susceptibility, demonstrated by the
lowest temperature threshold, was observed in Scn1aWT/R613X

on the mixed background at their fourth week of life (P21-
P25, Figures 2B, C, F). Together, these data confirm that
Scn1aWT/R613X mice show a high susceptibility to heat-induced
seizures, from the pre-epileptic stage to adulthood, similar to
Dravet patients.

To test the presence of non-epileptic phenotypes, in
Scn1aWT/R613X mice on the mixed background, we examined
hyperactivity in a novel arena, motor functions using the rotarod
test, and working memory using the Y-maze spontaneous
alternation test. In the open field test, which examines the
exploration of a novel arena, heterozygous Scn1aWT/R613X mice
displayed increased ambulation and traveled longer distances
and at higher velocities compared to their WT littermates
(Figures 3A–C). Nevertheless, the time in the center of the arena

was similar between Scn1aWT/R613X and WT mice (Figure 3D),
indicating that these mice do not exhibit increased anxiety.
Next, motor functions were assessed using the rotarod test. As
shown in Figure 3E, the latency to fall was comparable between
WT and heterozygous Scn1aWT/R613X mice, suggesting normal
balance and coordination. Moreover, their performance in
the spontaneous alternation Y-maze test, during their fourth
week of life, corresponding to the severe stage of Dravet
(P21-P25), as well as in a different cohort of mice at their
sixth week of life (P36-P43), indicated that these mice do not
have a deficit in spatial working memory (Figures 3F, H).
Nevertheless, increased locomotor activity was also observed in
the Y-maze, further corroborating the hyperactivity observed in
the open field. Thus, in addition to susceptibility to thermally
induced seizures, spontaneous seizures, and premature death,
Scn1aWT/R613X mice on the mixed background also demonstrate
hyperactivity.

As Scn1aWT/R613X mice on the pure 129S1/SvImJ background
did not exhibit premature mortality (Figure 1) but were susceptible
to heat-induced seizures (Figure 2), we wondered if these
mice exhibited behavioral deficits. While we did find vast
differences in the innate tendency to explore the novel arena
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FIGURE 6

Reduced Scn1a mRNA and NaV1.1 protein expression in the cortex of Scn1aWT/R613X mice. (A–C) Allele-specific quantification of Scn1a transcripts
via dPCR. The R613X and WT Scn1a alleles were quantified with Affinity Plus probes on dPCR and normalized to mouse Gapdh levels. (A) Cortical
tissue from WT mice showed no detectable levels of the R613X allele transcript, demonstrating the specificity of allelic discrimination using this
assay. (B) In cortical tissue from Scn1aWT/R613X mice, the WT Scn1a allele is at 48.8% compared to WT cortical tissue. (C) Shown as the ratio of R613X
to WT alleles, the mean steady-state level of the Scn1a R613X allele is at 8.9 ± 0.9% of the WT allele in Scn1aWT/R613X animals. WT, n = 6;
Scn1aWT/R613X, n = 6. (D–F) Cortical levels of NaV1.1 proteins were quantified using the Meso Scale Discovery Electrochemiluminescence
(MSD-ECL) assay. (D) The standard curve was generated by mixing P60 WT cortical and liver proteins at different ratios. The resulting 2nd order
polynomial fit, depicted as a solid line (R2 = 0.9924) was used to calculate protein levels relative to P60 WT cortex in panels (E,F). (E) NaV1.1 protein
expression in the whole cortex. (F) NaV1.1 protein expression in the parietal, temporal, frontal, and occipital lobes of the neocortex of WT and
Scn1aWT/R613X mice. (G) The same data from panel (F), but normalized to NaV1.1 expression in WT mice. WT, n = 4; Scn1aWT/R613X, n = 4. Statistical
comparison using mixed model ANOVA followed by Holm–Sidak, to account for analyses of different neocortical sections from each mouse.
∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

(compare Figures 3, 4), the activity of Scn1aWT/R613X mice on
the 129S1/SvImJ background was similar to that of their WT
littermate in both the open field test and the rotarod test,
suggesting that genetic background can also modify Dravet-
associated hyperactivity.

Reduced Scn1a mRNA and protein
expression

To test the effect of the R613X premature termination at
the transcriptional level, we extracted and analyzed mRNA from
the hippocampus of P21-P24 WT and Scn1a mutant mice. First,
we confirmed that the R613X mutation is also expressed in
the hippocampus and translated into mRNA (Figure 5A). Next,
quantitative real-time PCR analysis of Scn1a mRNA, using an
assay that targets the boundary junction between exons 18–19,
demonstrated ∼50% reduction in the expression of the full-length
Scn1a mRNA in heterozygous Scn1aWT/R613X mice on either
genetic background, and a marginal background expression in
homozygous Scn1aR613X/R613X mice (Figures 5B, C).

Next, we determine the impact of the R613X mutation on
NaV1.1 protein expression levels. In accordance with the decrease

observed in Scn1a mRNA, western blot analysis of extracted
hippocampi showed that the level of NaV1.1 protein in the
hippocampus of heterozygous Scn1aWT/R613X was decreased to
∼50% compared to WT control, with a minimal signal seen in
homozygous Scn1aR613X/R613X mice (Figures 5D, E).

To quantitatively assess the level of the R613X transcript in
the cortex, we performed an allele-specific dPCR assay, using
probes that specifically bind WT Scn1a and R613X sequences
(Figure 1A). The R613X allele was not detected in cortical tissue
from WT mice, confirming the specificity of the assay (Figure 6A).
Conversely, the WT allele was detected at about half the levels
in Scn1aWT/R613X tissue compared to WT cortex, as expected for
heterozygous animals (Figure 6B). Interestingly, when expressed as
the percentage of the WT allele, the steady-state level of the mutant
R613X transcript was 8.9 ± 0.9% (Figure 6C), much lower than
the expected 50% level, suggesting that transcripts of the mutant
allele undergo strong nonsense-mediated decay (NMD) (Jaffrey
and Wilkinson, 2018) in neocortical tissue.

For quantitative analysis of NaV1.1 protein levels, we
performed the Meso Scale Discovery Electrochemiluminescence
(MSD-ECL) assay. MSD-ECL is a highly sensitive ELISA-based
assay that enables the detection of small changes in protein
levels. Here, we quantified NaV1.1 protein levels in four different
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cortical lobes (parietal, temporal, occipital, and frontal) on MSD-
ECL utilizing two distinct anti-NaV1.1 antibodies (Figures 6D–F).
Overall, in the cortex of Scn1aWT/R613X , the level of NaV1.1 was
reduced to about 50% compared to WT mice (Figure 6E). However,
we found variation in the level of NaV1.1 across the cortex, with
the highest NaV1.1 expression in the parietal lobe, and lower levels
in other regions (Figure 6F). NaV1.1 expression was reduced to
approximately 50% in the parietal, temporal and frontal, but similar
to that of WT mice in the occipital lobe (Figure 6G). Together, these
data confirm reduced Scn1a mRNA and NaV1.1 protein expression
in Scn1aWT/R613X mice, in both the hippocampus and the cortex.

Discussion

Dravet is a severe form of developmental and epileptic
encephalopathy with limited treatment options and poor
prognosis. To date, 15 different models have been generated
based on microdeletions, nonsense, or missense mutations in
the Scn1a gene (Table 1). The novel Scn1aWT/R613X model
described here demonstrated core Dravet-associated phenotypes,
including spontaneous convulsive seizures, high susceptibility
to heat-induced seizures, premature mortality, and several non-
epileptic behavioral phenotypes. Thus, this model, which is
open-access and publicly available, can be used by the Dravet
community for preclinical studies of Dravet mechanisms and
therapies.

The genetic background was shown to dramatically modulate
the effect of Scn1a mutations (Yu et al., 2006; Miller et al.,
2014; Mistry et al., 2014; Rubinstein et al., 2015; Kang et al.,
2018). DS mice on the pure C57BL/6J background demonstrate
the most severe phenotypes, with high mortality of 60–80%
and frequent spontaneous seizures. Conversely, mice with the
same Scn1a mutation on the pure 129×1/SvJ or 129S6/SvEvTac
background rarely experience spontaneous seizures or premature
death. This genetic background effect was attributed to several
modifier genes, including Gabra2, Hlf, and Cacna1g (Hawkins
and Kearney, 2016; Calhoun et al., 2017; Hawkins et al., 2021b).
In accordance, Scn1aWT/R613X mice on the pure 129S1/SvImJ
background have a normal life span (Figure 1) and unaltered
behavior in the open field test (Figure 4). Despite that, we
did observe susceptibility to heat-induced seizures (Figure 2), as
well as reduced expression of Scn1a mRNA in the hippocampus
(Figure 5).

Multiple studies have used DS mice models to examine
the therapeutic potential of current and novel drug treatments
(Hawkins et al., 2017; Han et al., 2020; Isom and Knupp, 2021;
Pernici et al., 2021; Tanenhaus et al., 2022). Our characterization
highlights several readouts that may be useful in future studies
to examine the therapeutic benefit while using Scn1aWT/R613X

mice on a mixed C57BL/6J:129S1/SvImJ background. Key Dravet-
associated phenotypes in these mice include: (i) spontaneous
convulsive seizures (Figure 1C; Supplementary Video 1); (ii)
profound premature mortality (Figure 1D) with overall survival
of less than 50%; (iii) high susceptibility to thermally-induced
seizures (Figure 2) with heat-induced seizures at multiple
developmental stages occurring within the range of physiological
fever temperatures. Heat-induced seizures at relatively low

temperatures provide an advantage with a wide measurement
range to quantify the effect of current and novel treatments,
with the highest sensitivity around P21 (Figure 2C); (iv)
developmental changes in the severity of the epileptic phenotypes.
Specifically, the pre-epileptic stage in Scn1aWT/R613X DS mice
was characterized by susceptibility to heat-induced seizures that
preceded the onset of premature mortality (P14-P16); profound
mortality during the fourth week of life, with 78% of the
deaths occurring between P21 and P28, corresponding to the
severe or worsening stage of Dravet, and some stabilization
with a reduced rate of premature death in mice that survive
beyond P30 (Figure 1D). Thus, relatively restricted age groups
should be considered for analysis; (v) the presentation of non-
epileptic phenotypes demonstrated here as motor hyperactivity
when introduced to a novel arena (Figure 3), modeling Dravet-
associated hyperactivity. Of note, we also observed hyperactivity
in the Y-maze test (Figure 3), indicating that this is a robust
and reliable behavioral readout; (vi) reduced Scn1a mRNA
and NaV1.1 protein levels (Figures 5, 6); (vii) impaired firing
of inhibitory neurons, a typical neuronal deficit in DS mice,
was also observed previously in Scn1aWT/R613X mice (Almog
et al., 2022). Importantly, these robust phenotypes highlight this
model as an open-access pre-clinical platform to study Dravet
therapies.

Nevertheless, some of the non-epileptic phenotypes observed
in other DS models were not detected here (Table 1), possibly due
to the effect of genetic background on the presentation of Dravet-
associated behavioral non-epileptic phenotypes. Specifically, while
Scn1aWT/R613X mice demonstrated motor hyperactivity when
introduced to a novel arena (Figures 3A–C), no motor deficits
or altered spatial working memory were observed (Figure 3).
However, these data are in accordance with other DS models
that were reported to have normal rotarod performance, including
models with deletions in the Scn1a gene (Niibori et al.,
2020; Patra et al., 2020; Valassina et al., 2022) or mice
harboring the Scn1a R1407X nonsense mutation (Ito et al.,
2013). Similarly, normal spontaneous alternations were reported
in DS mice with deletion of the 1st exon or mice with
knock-in of Scn1a poison exon (Voskobiynyk et al., 2021;
Gerbatin et al., 2022a). Conversely, impaired rotarod activity
and spontaneous alternations were reported in DS mice with
deletion of the last Scn1a exon, as well as in DS mice carrying
the Scn1a A1783V missense mutations; both on the pure
C57BL/6J background (Fadila et al., 2020; Beretta et al., 2022;
Table 1).

In conclusion, the Scn1aWT/R613X DS model, harboring the
recurrent nonsense Scn1a mutation and available in open access
distribution, including to for-profit organizations through The
Jackson Laboratory (Strain no. 034129), demonstrates multiple
Dravet-associated phenotypes with robust and specific deficits that
can be used as a preclinical model for drug development. Thus, as
current treatment options in Dravet are limited and considerable
efforts are being made to produce novel and more effective anti-
seizure small molecule drugs, as well as disease-modifying genetic
treatments (Isom and Knupp, 2021), including those specifically
targeting nonsense mutations, we propose that this model can
provide a useful and powerful pre-clinical platform for the Dravet
research scientific community.
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