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The potential of fluoride (F) as a neurotoxicant in humans is still controversial in

the literature. However, recent studies have raised the debate by showing different

mechanism of F-induced neurotoxicity, as oxidative stress, energy metabolism

and inflammation in the central nervous system (CNS). In the present study,

we investigated the mechanistic action of two F concentration (0.095 and

0.22 µg/ml) on gene and protein profile network using a human glial cell in vitro

model over 10 days of exposure. A total of 823 genes and 2,084 genes were

modulated after exposure to 0.095 and 0.22 µg/ml F, respectively. Among them,

168 were found to be modulated by both concentrations. The number of changes

in protein expression induced by F were 20 and 10, respectively. Gene ontology

annotations showed that the main terms were related to cellular metabolism,

protein modification and cell death regulation pathways, such as the MAP kinase

(MAPK) cascade, in a concentration independent manner. Proteomics confirmed

the changes in energy metabolism and also provided evidence of F-induced

changes in cytoskeleton components of glial cells. Our results not only reveal

that F has the potential to modulate gene and protein profiles in human U87

glial-like cells overexposed to F, but also identify a possible role of this ion in

cytoskeleton disorganization.
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1. Introduction

Fluoride therapy is the main method against dental caries
(Centers for Disease Control Prevention, 2001; Iheozor-Ejiofor
et al., 2015), and the fluoridation of communities’ water systems
is widely used due to its efficiency and cost-effectiveness (Sampaio
and Levy, 2011). Since the end of the 1980s, studies report that
fluoride (F) controls caries acting in the oral cavity, in contact
with the teeth by favorably interfering in de- and remineralization
processes, rather than acting systemically (Buzalaf and Whitford,
2011; Pessan et al., 2011). This has led to a debate about the
necessity of compulsory F exposure through the water supply. This
is supported by the presence of F in different sources, such as
food, beverages (tea, wine and milk), infant formula, and oral care
products (Levy et al., 1998, 2001, 2003; Franzman et al., 2004; Ismail
and Hasson, 2008; Hujoel et al., 2009; Wong et al., 2010). The safe
F dosage for humans is around 0.7 to 3 mg/day for children and
adults, respectively, and the combination of different sources results
in overexposure that is related to health issues (Aoun et al., 2018;
Buzalaf, 2018).

Although the main side effects due to F overexposure are
dental and skeletal fluorosis (Ten Cate and Buzalaf, 2019), in the
last decade a few studies showed neurological damage, such as
cognitive decline and lower IQ scores (Choi et al., 2012, 2015;
Grandjean and Landrigan, 2014; Malin and Till, 2015). However,
such results remain controversial (Duan et al., 2018; Guth et al.,
2020; Seddek and Ghallab, 2020). Recently, Johnston and Strobel
(2020) suggested that a positive correlation between high F levels
and low IQ does not mean a causal association. In the same way,
our group reported in a systematic and meta-analysis review that F
exposure under therapeutical does not cause neurological damage,
while studies showing overexposure to high doses showed low
levels of evidence mainly due to inappropriate methodologies and
high bias (Miranda et al., 2021).

While studies with F-exposed humans seem to be controversial,
animal models studies suggested alterations of the central and
peripheral nervous system (Niu et al., 2009; Pereira et al., 2011;
Melo et al., 2017; Dionizio et al., 2018, 2020), with structural
damage in areas related to motor and sensory control, such as
the hippocampus, motor cortex and amygdala (Bhatnagar et al.,
2002; Pan et al., 2015). In vitro studies reported changes in central
nervous system (CNS) cells related to oxidative stress, cell death,
energy metabolism and DNA damage, both at neuronal and glial
cell lines in humans and rodents (Zhang et al., 2007, 2008; Shuhua
et al., 2012; Qian et al., 2013; Ghasemi et al., 2018; Puty et al., 2021).
These results highlight the need for further investigations aimed
to understand the mode of action of F in the CNS and to identify
possible molecular targets of toxicity.

Furthermore, in vitro and in vivo experiments with glial cells
points to it as a possible target for F toxicity with a central
role in impairments of neural development (Rasband, 2016; Jäkel
and Dimou, 2017) due to the involvement of these cells in CNS
homeostasis as well as in neuronal cross-talk (Aschner, 2000;
Aschner et al., 2003; Sidoryk-Wegrzynowicz et al., 2011; Jäkel and
Dimou, 2017). As it is well known when the CNS is a target of
xenobiotics, glial cells act as the primary line of cellular defense
to protect the neurons (Aschner et al., 2002; Shanker et al., 2003;
Noguchi et al., 2013; Sidoryk-Wegrzynowicz and Aschner, 2013;

Ishihara et al., 2019). In this scenario, glial cells could be used as
indicators of CNS drug-induced toxicity with molecular changes in
these cells being biomarkers to monitor CNS impairment.

Recently, our group established a single-cultured F
overexposure model using two cell lines, human glial-like (U87)
and neuronal-like (IMR-32) cells. Once F toxicity is dose- and
time-dependent, we simulated a continuous exposure for 10 days
using a low and high F concentration (0.095 and 0.22 mg/ml)
based on what it is usually found in plasma samples from people
living in areas of endemic fluorosis. Our results showed that only
exposure to 0.22 µg/ml induced signs of toxicity in U87 glial-like
cells, due to lower cell viability, changes in cell energy metabolism,
decreased reduced glutathione/oxidized glutathione (GSH/GSSG)
ratio, and DNA damage (Puty et al., 2021). In the present study
we aimed to show the molecular targets via gene and protein
modulation in the human glial-like (U87) cells using the same
F concentrations described above to provide molecular insight
about F toxicity on glial-like cells. For that, we examined molecular
changes underlying F-exposed U87 glial cells using the global gene
and protein expression profiles. The biological targets provided by
gene ontology and molecular pathways were also examined to give
a general overview of cell responsiveness to F toxicity.

2. Materials and methods

2.1. Cell culture and fluoride exposure

U87 glial cells (ATCC) were grown in T75 flasks containing
20 ml of Dulbecco’s Modified Eagle’s Medium supplemented with
10% of fetal bovine serum (FBS), penicillin (50 U/ml), streptomycin
(25 µg/ml), gentamycin (25 µg/ml) and amphotericin B
(2.5 µg/ml) at 37◦C in a controlled 5% CO2 atmosphere.
Medium was changed every 2–3 days. During experiments, cells
were seeded onto 24-well plates (10,000 cells/well) and exposed to
NaF (0.095 or 0.22 F µg/ml) or not, for 10 days. Throughout the
10-day exposure period, the medium from control and exposed
group were replaced for a fresh one (with F or not) every 2 days.
After that, the medium was completely withdrawn and the cells
were detached with a solution containing 0.25% trypsin/EDTA,
followed by centrifugation (3 min at 448 g). The medium was
withdrawn from the pellet using a pipette, and pellet samples
from three independently experiments (n = 3) were used in the
subsequent assays.

2.2. Gene expression

2.2.1. Total mRNA extraction
Total mRNA extraction was performed using the SV total RNA

isolation system from Promega, according to the manufacturer’s
instructions. mRNA was diluted in 15 µL of nuclease-free H2O.
RNA quantification was performed using a Qubit 2.0 and RNA
integrity was assessed by a Tapestation with High Sensitivity
RNA ScreenTape (Agilent Technologies, Santa Clara, CA, USA).
Only samples with RNA integrity (RIN) > 7 were used for
downstream analysis.
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2.2.2. One-color microarray expression
The microarray gene expression assay was performed with a

one-color microarrays-based gene expression analysis kit (Agilent
Technologies, USA), according to the manufacturer’s instructions.
In brief, total RNA from exposed and non-exposed cells were
used as the template to drive cDNA synthesis with T7 RNA
polymerase followed by cRNA synthesis. The cRNA was labeled
with Cy3 using a Low Input Quick Amp Labeling kit (Agilent
Technologies) according to manufacturer’s instructions. Labeled
cRNA purification was performed using a RNeasy mini-spin kit.
cRNA was quantified by spectrophotometry (ng/µL) and analyzed
by the A260/280 parameter. Hybridization was performed with
300 ng of Cy3 labeled cRNA, 5 µL of 10xGene expression blocking
agent and 1 µL of 25x fragmentation buffer for 17 h at 65◦C and
10 rpm on a SurePrint G3 Human Gene Expression 8 × 60K
microarray chip (G4851A, Agilent, USA). A microarray scanner
(G4900DA, Agilent) was used with the following set-up: scan area
(61 × 21.6 mm); 5 µm of resolution; green channel. Microarray
scan images were obtained by Feature Extraction v10.10.

2.2.3. Microarray bioinformatics analysis
Quality control and quantile normalization were performed

using the limma package. Differentially expressed genes were
identified based on an absolute log2 fold change level > 1 and
the p-value adjusted by false discovery rate (FDR) p < 0.05.
The over-representation analysis for differently expressed genes

of gene ontology (GO) terms and pathways were also done
with the limma package. Over-represented p-values were adjusted
by the Bonferroni method and only adjusted p-values < 0.05
were considered.

2.3. Proteomics analysis

2.3.1. Protein extraction, digestion and
purification

Total protein was obtained according to a protocol published
by our group (Bittencourt et al., 2017, 2019; Corrêa et al., 2020)
with modifications to the cell culture samples. In brief, samples
were centrifuged (3 min at 448 g, 4◦C) followed by lysis buffer
[7 M urea, 2 M thiourea and 40 mM dithiothreitol (DTT);
diluted in ammonium bicarbonate (AmBic, 50 mM) solution]
incubation with constant shaking at 4◦C. Samples were then
centrifuged (20,817 rpm for 30 min at 4◦C) and the supernatant
was collected for protein quantification by the Bradford method
(Bradford, 1976). A total of 50 µg of protein was collected and
the corresponding volume was completed with AmBic to reach
a final volume of 50 µL (1 µg/µL). To each sample were added
10 µL of 50 mM AmBic and 25 µL of 0.2% RapiGESTTM

(Waters Co., Manchester, UK) followed by 30 min incubation
at 37◦C. Then, 5 mM DTT was added and incubated at 37◦C
for 1 h, followed by incubation with 10 mM iodoacetamide for

FIGURE 1

Fluoride-induced transcriptome changes in U87 glial-like cells after 10 days of exposure. Differentially expressed genes are shown as the number of
genes up and down-regulated after 0.095 and 0.22 µg/ml F (A). Venn’s diagram shows the overlapped gene expression when comparing 0.095 and
0.22 µg/ml (B). The expression of all genes are displayed in the form of a two-dimensional PCA diagram showing sample clustering (each point
represents one experiment, n = 3) (C). Comparisons between 0.095 µg/ml and 0.22 µg/ml are shown by a volcano plot (D) and an MA plot (E). Data
are from the control group (untreated cells), 0.095 µg/ml F group and 0.22 µg/ml F group. Each dot represents a single gene. The log2 (fold change)
is a measure of gene expression and the –log10 (corrected P-value) represents the t-test considering p < 0.05.
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30 min at room temperature. Protein digestion was performed
with 10 µL of trypsin for 14 h at 37◦C followed by 10 µL of
5% trifluoroacetic acid for 90 min at 37◦C. After that, samples
were centrifuged (20,817 rpm for 30 min at 6◦C) the supernatants
were collected and purified using C18 Spin columns (PierceTM).
After purification, all samples were concentrated to an approximate
concentration of 1 µg/µL and then resuspended in 12 µL of ADH
(1 pmol/µL) + 108 µL of 3% acetonitrile and 0.1% formic acid for
mass spectrometry analysis.

2.3.2. Mass spectrometry and bioinformatic
analysis

The mass spectrometry system used for the proteomic
approach was a nanoAcquity UPLC-Xevo QTof MS system
(Waters, Manchester, UK), using the Protein Lynx Global Server
(PLGS) software, after downloading the Uniprot database. The
difference in expression between the groups was analyzed by t-test
(p < 0.05), using the PLGS software. After protein identification
and categorization, Cytoscape 3.6.1 (Java R©) software was used
for bioinformatics analyses with the ClusterMarker plugin for
protein-protein interaction networks and the ClueGO plugin for
the determination of biological process groups (Bindea et al., 2009).

3. Results

3.1. Exploratory U87 transcriptomic
changes under F exposure

Supplementary Table 1 shows all differentially expressed
genes (DEGs) in the comparisons 0.095 µg/ml vs. control and
0.22 µg/ml vs. control. Our results show 392 down-regulated
genes and 431 up-regulated genes for 0.095 µg/ml, while 903
were down-regulated and 1,181 were up-regulated for 0.22 µg/ml
(Figure 1A). Among them, 59 were down-regulated both at
0.095 µg/ml and 0.22 µg/ml while 74 genes were up-regulated
at both concentrations. On the other hand, 16 genes had their
expression down-regulated by 0.095 µg/ml while were up-regulated
by 0.22 µg/ml and 19 genes were up-regulated by 0.095 and
down-regulated by 0.22 µg/ml. A full list of overlapped genes is
provided on a separate sheet in the Supplementary Table 1 and
illustrated in Figure 1B. Our results also show how individual
sample analysis between concentrations clustered closely using
principal component analysis (PCA) (Figure 1C), which suggests
no differences in gene expression between 0.095 and 0.22 µg/ml F.
These results were confirmed by volcano plot (Figure 1D) and MA
plot which show no DEGs in the comparison 0.095 vs. 0.22 µg/ml
(Figure 1E). No significant pathways were found to be regulated by
overlapped genes at both concentrations.

A overview of the DEGs for 0.095 and 0.22 µg/ml against
control is shown in Figures 2A–D, 3A–D, respectively. Figures 2A,
3A show the range of log2 fold change versus average log
expression, while Figures 2B, 3B show the –log10 (adjusted
p-value).

Figures 2C, 3C show the unsupervised hierarchical clustering
in the comparison 0.095 µg/ml vs. control and 0.22 µg/ml vs.
control, respectively, providing an overview of F-induced DEGs in
U87 glial cells. The top 50 DEGs in the comparisons 0.095 µg/ml

vs. control and 0.22 µg/ml vs. control are seen in Figures 2D, 3D,
respectively.

3.2. Functional classification of
F-induced DEGs by gene ontology

All GO pathways in the 0.095 µg/ml vs. control and 0.22 µg/ml
vs. control comparisons are shown in Supplementary Table 2.
The top 5 enriched pathways for each concentration are shown
in Figures 4A–D. DEGs down-regulated by 0.095 µg/ml F
led to major changes in various metabolic process pathways,
the endomembrane system, the cellular response to chemical
stimuli and the regulation of protein modification processes
(Figure 4A), while up-regulated DEGs led to major changes in
the regulation of responses to stimuli and regulation of cell death
(Figure 4B). For the 0.22 µg/ml vs. control, the results indicate
that down-regulated DEGs led to changes in the endomembrane
system, the cellular protein modification process, the endoplasmic
reticulum and response to chemical (Figure 4C), while up-
regulated DEGs led to major changes in programmed cell death,
sequence-specific DNA binding and MAP kinase (MAPK) cascade
(Figure 4D).

3.3. Protein modulation by F exposure

All differentially expressed proteins (DEPs) in the 0.095 and
0.22 µg/ml groups are shown in Table 1.

Our results show that 17 proteins were down-regulated and
3 were up-regulated after exposure to 0.095 µg/ml F, while for
0.22 µg/ml F only 10 proteins were down-regulated. Comparisons
between 0.22 and 0.095 µg/ml F showed that 12 proteins were
up-regulated and 1 was down-regulated. Furthermore, we also
identified 39 proteins with unique expression (PUE) in control
when cells were exposed to 0.095 µg/ml F and 35 when cells were
exposed to 0.22 µg/ml F (Table 2).

When we compared protein expression in U87 glial-like cells in
both F-exposed groups (0.22 × 0.095 µg/ml), the results showed 4
proteins that were only expressed after exposure to 0.22 µg/ml F
(Table 3).

3.4. Functional classification by
proteomics analysis

The functional analysis based on biological processes suggested
that 12 functional categories were regulated by 0.095 µg/ml F, in
the following categories: structural constituents of the cytoskeleton
(30%), nucleosome assembly (16%), glycolytic processes (11%),
NADH regeneration (9%), gluconeogenesis (7%), structural
constituents of the postsynaptic actin cytoskeleton (7%) and
intermediate filament cytoskeleton organization (6%) (Figure 5A).
In 0.22 µg/ml F exposed cells, the results showed regulation of
10 categories of biological processes in the following pathways:
structural constituents of the cytoskeleton (26%), nucleosome
assembly (20%), glycolytic processes (12%), NADH regeneration
(9%), intermediate filament cytoskeleton organization (8%) and

Frontiers in Cellular Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fncel.2023.1153198
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1153198 June 7, 2023 Time: 8:23 # 5

Puty et al. 10.3389/fncel.2023.1153198

FIGURE 2

Differentially expressed genes over 10 days of 0.095 µg/ml F versus control. MA plot (A) and volcano plot (B) showing the distribution of gene
expression after Benjamini-Hochberg normalization. Each dot represents a single gene. The log2 (fold change) is a measure of gene expression and
the –log10 (correctedPvalue) represents the t-test considering p < 0.05. Red dots are genes that were up-regulated and blue dots genes that were
down-regulated by 0.095 µg/ml F. A general overview of the differentially expressed genes is shown in the heatmap (C). The top 50 genes regulated
by 0.095 µg/ml F are presented (D). Each square represents a single gene that is identified by a gene symbol on the right of the panel. The heatmap
color code indicates up-regulation of genes compared to control (red) and down-regulation of genes compared to control (blue). The
corresponding values of the heatmap are the Z-score obtained by normalizing gene expression.

gluconeogenesis (8%) (Figure 5B). The comparison between
0.095 and 0.22 µg/ml F suggested alterations in the following
four categories: structural constituents of the cytoskeleton (50%),
structural constituents of the postsynaptic actin cytoskeleton (23%),
mesenchymal migration (18%) and netrin receptor binding (9%)
(Figure 5C).

The protein-protein interaction network (PPI) highlights, in
both F exposure groups, structural proteins related to cellular
cytoarchitecture. Tubulin beta-2A chain (Q13885) and tubulin
beta-3 chain (Q13509) were up-regulated upon 0.095 µg/ml F

exposure (Figure 6A), while tubulin alpha-1A chain (Q71U36)
and tubulin alpha-1B chain (P68363) appeared only in the control
group when compared to the group exposed to 0.22 µg/ml
F (Figure 6B). In the 0.095 vs. 0.22 µg/ml comparison, our
results showed the up-regulation of actin, alpha cardiac muscle 1
(P68032) and beta-actin-like protein 2 (Q562R1) with the higher
concentration (Figure 6C). In this way, our proteomic analysis
suggests an altered stability on the microtubule network of U87
glial-like cells under F exposure.
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FIGURE 3

Differentially expressed genes over 10 days of 0.22 µg/ml F versus control. MA plot (A) and volcano plot (B) showing the distribution of gene
expression after Benjamini-Hochberg normalization. Each dot represents a single gene. The log2 (fold change) is a measure of gene expression and
the –log10 (correctedPvalue) represents the t-test considering p < 0.05. Red dots are genes that were up-regulated and blue dots genes that were
down-regulated by 0.22 µg/ml F. A general overview of the differentially expressed genes is showed by the heatmap (C). The top 50 genes regulated
by 0.22 µg/ml F are presented (D). Each square represents a single gene that is identified by a gene symbol on the right of the panel. The heatmap
color code indicates up-regulation of genes compared to control (red) and down-regulation of genes compared to control (blue). The
corresponding values of the heatmap are the Z-score obtained by normalizing gene expression.

4. Discussion

Recent studies raised the debate about F-induced toxicity in the
human CNS (Li et al., 2010; Flores-Méndez et al., 2014). Despite
the lack of evidence supporting F as a potentially neurotoxic
compound, studies suggested that F may be able to damage
neurons, microglia, and glia (Zhang et al., 2007; Chen et al., 2017;
Puty et al., 2021). Several mechanisms were pointed out as the F
mode of action that results in neurotoxicity. The oxidative stress
plays a role due to increasing levels of reactive oxygen species,
and decreased levels of enzymatic and non-enzymatic antioxidants.

Neuroinflammation, due to increasing levels of transcription
factors and pro-inflammatory substances, and disorders in energy
metabolism and mitochondrial dysfunction (Zhang et al., 2007,
2015; Chen et al., 2017; Yang et al., 2018). However, it is important
to note that those studies often used high F concentrations which
do not mimic human exposure.

We performed a large transcriptomic and proteomic analysis
on a human glial-like cell model (U87) using a concentration that
is similar to F plasma levels from individuals living in endemic areas
for fluorosis. To our knowledge, this is the first study to investigate
the effects of F in glial-like cells using omics analysis. Our results
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FIGURE 4

Gene ontology (GO) functional annotations for DEGs of U87 glial-like cells exposed to 0.095 µg/ml F (A,B) and 0.22 µg/ml F (C,D). The main terms
of each category affected by fluoride are represented by the number of differently expressed genes (DEGs) on each term down-regulated (A,C) and
up-regulated (B,D). The X-axis represents the number of DEGs and the Y-axis shows the GO terms of each category considering a fold change ≥ 2
and p < 0.05.

point to deep changes in the transcriptomic and proteomic profiles
in a non-concentration-dependent manner, suggesting a major
F effect on cell metabolism, death control, and cytoarchitecture.
Several metabolic pathways, such as phosphate, macromolecule,
and protein metabolic regulation were impaired, as well as proteins
related to cytoarchitectures such as those belonging to tubulin
and actin families.

We used F concentrations (0.095 and 0.22 µg/ml) that were
close to those found in plasma samples of people living in areas
of endemic fluorosis. Even when considering that the literature
showed wide variation in human plasma F levels (0.017 to
1.43 µg/ml), depending on factors such as geographical region,
cultural habits, and health status (Sener et al., 2007; Rafique et al.,
2012; Fernando et al., 2020), it is important to highlight that the
concentration of 0.095 µg/ml F is most likely to be observed in
human plasma samples based on an animal model of F toxicity

(Pereira et al., 2016; Dionizio et al., 2018; Miranda et al., 2018).
In fact, our group has previously shown that plasma levels around
0.095 and 0.22 µg/ml, in animal models, are related to changes in
the central nervous system. In this study, animals were exposed
to 50 µg/ml F for 15 days and presented plasma F levels close to
the concentration of 0.095 µg/ml triggering oxidative stress and
proteomic modulation of the hippocampus (Ferreira et al., 2021).
In previous work, we showed the F harm potential on U87 glial cells
after 3, 5, and 10 days of exposure using 0.095 and 0.22 µg/ml. Signs
of F toxicity were seen only after exposure to 0.22 µg/ml regarding
a small decrease in cell viability, changes in energy metabolism, and
cell cytoarchitecture (see Puty et al., 2021).

In the global microarray and protein profile analysis performed
here, our results revealed that both 0.095 and 0.22 µg/ml F
were able to modulate gene and protein networks of U87 glial-
like cells. The functional classification of differentially expressed
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TABLE 1 Differentially expressed proteins on U87 glial-like cells after
fluoride exposure.

aAccession
ID

Protein description PLGS
score

Fold change

0.095 µg/ml F vs. Control

Q13885 Tubulin beta-2A chain 836.04 1.45

Q13509 Tubulin beta-3 chain 859.69 1.40

Q9BVA1 Tubulin beta-2B chain 836.04 1.46

A5A3E0 POTE ankyrin domain family
member F

1,733.36 −0.18

P63267 Actin_ gamma-enteric smooth
muscle

4,979.13 −0.18

P04075 Fructose-bisphosphate aldolase A 210.05 −0.24

P08670 Vimentin 2,784.19 −0.28

P0CG39 POTE ankyrin domain family
member J

706.02 −0.30

Q9BYX7 Putative beta-actin-like protein 3 158.76 −0.39

Q562R1 Beta-actin-like protein 2 158.76 −0.41

P68133 Actin_ alpha skeletal muscle 4,979.13 −0.44

P68032 Actin_ alpha cardiac muscle 1 4,979.13 −0.44

P62736 Actin_ aortic smooth muscle 4,979.13 −0.45

P63261 Actin_ cytoplasmic 2 5,305.6 −0.47

P60709 Actin_ cytoplasmic 1 5,305.6 −0.47

Q6S8J3 POTE ankyrin domain family
member E

1,736.97 −0.48

P0CG38 POTE ankyrin domain family
member I

1,574.6 −0.49

Q16352 Alpha-internexin 152.62 −0.64

P07197 Neurofilament medium
polypeptide

152.62 −0.68

P17661 Desmin 152.62 −0.68

0.22 µg/ml F vs. Control

P07437 Tubulin beta chain 836.04 −0.12

P04350 Tubulin beta-4A chain 476.51 −0.14

P60709 Actin_ cytoplasmic 1 5,305.6 −0.63

P08670 Vimentin 2,784.19 −0.65

P17661 Desmin 152.62 −0.65

Q16352 Alpha-internexin 152.62 −0.66

P07197 Neurofilament medium
polypeptide

152.62 −0.67

P63261 Actin_ cytoplasmic 2 5,305.6 −0.67

P68133 Actin_ alpha skeletal muscle 4,979.13 −0.68

P04406 Glyceraldehyde-3-phosphate
dehydrogenase

143.63 −0.73

0.22 vs. 0.095 µg/ml F

P0CG39 POTE ankyrin domain family
member J

467.46 3.39

Q9BYX7 Putative beta-actin-like protein 3 56.42 2.80

Q562R1 Beta-actin-like protein 2 56.42 2.72

(Continued)

TABLE 1 (Continued)

aAccession
ID

Protein description PLGS
score

Fold change

P62736 Actin_ aortic smooth muscle 772.96 2.66

A5A3E0 POTE ankyrin domain family
member F

772.96 2.64

P63267 Actin_ gamma-enteric smooth
muscle

772.96 2.59

P68133 Actin_ alpha skeletal muscle 772.96 2.56

P68032 Actin_ alpha cardiac muscle 1 772.96 2.56

P60709 Actin_ cytoplasmic 1 772.96 2.56

P63261 Actin_ cytoplasmic 2 772.96 2.46

Q6S8J3 POTE ankyrin domain family
member E

772.96 2.34

P08670 Vimentin 1,375.87 1.82

Q13509 Tubulin beta-3 chain 733.94 −0.62

aAccession ID based on uniprot.org database. Values of fold change (FC) ≥ 1
represent proteins up-regulated, while FC < 1, down-regulated. Data shown proteins
up- and down-regulated on 0.095 µg/ml × control, 0.22 µg/ml × control and
0.22 µg/ml × 0.095µg/ml, respectively.

genes modulated by F exposure revealed similarities in the 0.095
and 0.22 µg/ml concentrations, suggesting molecular toxicity via
regulation of several pathways related to cell death and metabolism
control. The down-regulation of the endomembrane system was
the top functional classification, according to GO annotation,
modulated by F in a concentration-independent manner. The
endomembrane system is a system derived from the endoplasmic
reticulum that allows cell compartmentalization and a high degree
of cell specialization and it is suggested to be modulated by F
in different models of F toxicity (Arensdorf et al., 2013; Tabuchi
et al., 2014; Søreng et al., 2018). Our data also showed that both
F concentrations were able to modulate the MAPK, ERK1, and
ERK2 cascades. These metabolic pathways are related to cellular
proliferation/protection response, as well as cell death induction.
In addition, the functional classification also identified pathways
related to the cellular response to chemical stimuli, suggesting an
adaptation mechanism to control F-induced stress over 10 days of
F exposure.

MAPK plays an important role in F toxicity in different models,
such as silkworm and ameloblast cells (Suzuki et al., 2015; Liu et al.,
2021). MAPK up-regulation is strongly associated with different
kinds of stress responses, and both MAPK and ERK are activated
during the endoplasmic reticulum (ER) stress response (Hung et al.,
2004; Li and Holbrook, 2004; Darling and Cook, 2014). The cell
death initiated by ER stress after F exposure was demonstrated
for different organisms (Kubota et al., 2005; Sharma et al., 2008;
Wei et al., 2013; Zhou et al., 2013; Tabuchi et al., 2014) and may
be induced by the activating transcription factor (ATF) family
(Edagawa et al., 2014). Our data point to a significative modulation
of different genes in the ATF4 pathway, as well as genes that are
considered to be ATF4 targets. In this way, since ATF4 is involved
in several classes of biological function, such as the biosynthesis,
folding, and assembly of proteins, metabolism, oxidative stress,
and apoptosis, we conclude that there is an important role of the
ATF4 in the F exposure mode of action. The ATF4-target genes
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TABLE 2 Proteins with unique expression on control group when compared to 0.095 and 0.22 µg/ml.

Accession IDa Protein description Comparison

0.095 µg/ml × C PLGS score 0.22 µg/ml × C PLGS score

P06733 Alpha-enolase + 309.84 + 309.84

P23528 Cofilin-1 + 795.63 + 795.63

Q9Y281 Cofilin-2 + 209.23 + 209.23

P14625 Endoplasmin + 53.44 + 53.44

P04406 Glyceraldehyde-3-phosphate dehydrogenase + 143.63 – –

Q96A08 Histone H2B type 1-A + 398.54 + 398.54

P33778 Histone H2B type 1-B + 489.46 + 489.46

P62807 Histone H2B type 1-C/E/F/G/I + 489.46 + 489.46

P58876 Histone H2B type 1-D + 489.46 + 489.46

Q93079 Histone H2B type 1-H + 489.46 + 489.46

P06899 Histone H2B type 1-J + 489.46 + 489.46

O60814 Histone H2B type 1-K + 489.46 + 489.46

Q99880 Histone H2B type 1-L + 489.46 + 489.46

Q99879 Histone H2B type 1-M + 489.46 + 489.46

Q99877 Histone H2B type 1-N + 489.46 + 489.46

P23527 Histone H2B type 1-O + 489.46 + 489.46

Q16778 Histone H2B type 2-E + 489.46 + 489.46

Q5QNW6 Histone H2B type 2-F + 489.46 + 489.46

Q8N257 Histone H2B type 3-B + 458,83 + 458.83

P57053 Histone H2B type F-S + 489.46 + 489.46

P00338 L-lactate dehydrogenase A chain + 412.77 + 412.77

P41219 Peripherin + 15.8 + 15.8

P00558 Phosphoglycerate kinase 1 + 122.95 + 122.95

P07205 Phosphoglycerate kinase 2 + 78.25 + 78.25

P07737 Profilin-1 + 209.83 + 209.83

P30613 Pyruvate kinase PKLR + 113.4 + 113.4

P14618 Pyruvate kinase PKM + 210.6 + 210.6

P60174 Triosephosphate isomerase + 539.49 + 539.49

Q71U36 Tubulin alpha-1A chain + 493.84 + 493.84

P68363 Tubulin alpha-1B chain + 493.84 + 493.84

Q9BQE3 Tubulin alpha-1C chain + 493.84 + 493.84

P0DPH7 Tubulin alpha-3C chain + 670.62 + 670.62

P0DPH8 Tubulin alpha-3D chain + 670.62 + 670.62

Q6PEY2 Tubulin alpha-3E chain + 360.81 + 360.81

P68366 Tubulin alpha-4A chain + 618.04 + 618.04

P04350 Tubulin beta-4A chain + 476.51 – –

P68371 Tubulin beta-4B chain + 476.51 – –

Q9BUF5 Tubulin beta-6 chain + 39.13 + 39.13

Q3ZCM7 Tubulin beta-8 chain + 376.95 – –

aAccession ID based on uniprot.org database. Values of fold change (FC) ≥ 1 represent proteins up-regulated, while FC < 1, down-regulated.

DDIT3, IL-8, IGFBP-1, ATF-3, and CEBPB were up-regulated after
F exposure. The DDIT3 gene was modulated under F exposure on
epithelial rat cells (ROE2) as an indicator of cell damage and is

considered to be a key regulator of cell death mediated by ER stress
(Tabuchi et al., 2014). Studies found that ROE2 cells exposed to F
were modulated for EGR1, FOS, and IL6, which were up-regulated
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in the present study (Zinszner et al., 1998; Tabuchi et al., 2014). The
regulation of those genes may be related to pro-cell death pathways,
suggesting that concentrations such as the ones used in our study
may be potentially harmful to U87 cells.

Another important result of the modulation of the ATF4
pathway was the up-regulation of TRIB1, CHAC1, and SESN2. The
over-expression of CHAC1 and SESN2 is associated with human
GSH depletion and changes in cell metabolism (Crawford et al.,
2015; Garaeva et al., 2016). As we showed in a previous study, F
leads to a decrease in ATP levels and cell death without activation
of pro-apoptotic death as caspase3/7 (see Puty et al., 2021). We then
conjecture that even the F concentrations used here may lead to ER
disturbances mediated by the ATF4 pathway, causing physiological
stress mediated by decreased levels of ATP and GSH/GSSG, and cell
death.

The activation of the TRIB1 gene was associated with a
reduction in protein synthesis (Jiang and Wek, 2005; Soubeyrand
et al., 2016). Interestingly, our functional analysis revealed a
wide modulation of mechanisms for protein synthesis/modification
related to the extracellular matrix (see Figure 4). In order to
better understand the changes in the protein profile we performed
a global proteomic analysis. We identified only 17 up-regulated
and 4 down-regulated proteins in 0.095 µg/ml vs. control and
only 10 down-regulated proteins in 0.22 µg/ml vs. control. This
poor correlation of transcriptomic and proteomic data may be
attributed to posttranslational changes in the control of gene
expression and the reduction of protein synthesis mediated by
ATF4. However, we point out the importance of combining
these two methods to investigate the effect of gene/protein
changes in cellular and molecular processes after xenobiotics
exposure (Udayan and Harihara, 2005). Although the regulation
of some proteins was found to be different at both concentrations
vs. control, the cellular behavior after F exposure seemed to
be similar. We showed two main processes impaired by F
exposure on the proteomic analysis: (1) cellular metabolism, via
glycolytic processes, NADH regeneration, and gluconeogenesis,
and (2) cellular cytoarchitecture, via structural constituents, and
the organization of the cytoskeleton and nucleosome assembly.
Despite the lack of an exact correlation between genes and
protein modulation, the biological functional domains and their
corresponding modulated pathways were the same.

Impaired energy metabolism induced by F was reported in
a rodent model (Barbier et al., 2010; Pereira et al., 2018; Zuo
et al., 2018). Recently, Araujo et al. (2019) showed changes
in proteins related to glycolysis and gluconeogenesis in the
mitochondria of rats exposed to F concentrations similar to the
ones we used [50 µg/ml–since rats metabolize F 5–10 times

TABLE 3 Proteins with unique expression on 0.22 µg/ml when compared
to 0.095 µg/ml.

Accession IDa Protein description PLGS score

P04406 Glyceraldehyde-3-phosphate
dehydrogenase

153.64

P04350 Tubulin beta-4A chain 588.68

Q3ZCM7 Tubulin beta-8 chain 423.75

P68371 Tubulin beta-4B chain 588.68

aAccession ID based on uniprot.org database.

faster than humans (Dunipace et al., 1995)]. The proposed
mechanism of mitochondria impairment follows the decreased
expression of fructose-biphosphate aldolase A and glyceraldehyde-
3-phosphate dehydrogenase, both down-regulated in the present
study, Table 1 (P0475- fructose-biphosphate aldolase A and
P04406- glyceraldehyde-3-phosphate dehydrogenase).

We demonstrated alterations in the main cytoskeleton
constituents that did not depend on F concentration. Despite the
evidence in literature has suggested that the cytoskeleton alterations
after F exposure occur in an indirect way via oxidative stress and
metabolic changes (Wilson and González-Billault, 2015; Zepeta-
Flores et al., 2018), our results point to a direct effect. In a previous
study of our group, we showed that at the lower concentration
used in the present study (0.095 µg/ml), there was no change
in the oxidative stress parameters such as GSH, ROS, lipidic
peroxidation and DNA integrity, and levels of cellular ATP (Puty
et al., 2021).

The tubulin family is composed of α-, β- and γ-tubulins, and
assembly and disassembly changes may have an impact on the
morphological organization, cell migration, vesicle trafficking, cell
compartmentalization, and lead cells to death (Lepekhin et al.,
2001; Hohmann and Dehghani, 2019). The actin isoforms were
modulated at 0.095 and 0.22 µg/ml F. Both concentrations led
to the downregulation in the following actin isoforms: alpha
isoforms (P68133; P68032; P62736), cytoplasmic-2 (P63261) and
cytoplasmic 1 (P60709), beta isoforms (Q562R1; Q9BYX7) and
gamma isoforms (P63267). However, regarding tubulin, our results
pointed to strong differences in the impact of F exposure.
While β-tubulins, 2A, 2B, and 3 (Q13885, Q9BVA1, Q13509,
respectively) were up-regulated by 0.095 µg/ml, we observed
a down-regulation on tubulin beta chain (P07437) and tubulin
beta-4A chain (P04350) after 0.22 µg/ml. We also observed
different classes of tubulin being expressed only in the control
group compared to 0.095 µg/ml, such as tubulin alpha-1B chain
(P68363), tubulin alpha-4A chain (P68366), tubulin alpha-3C
chain (P0DPH7) and others (see Table 2). The tubulin beta
chains 4A, 4B and 8 (P04350, P68371, Q3ZCM7, respectively)
for 0.22 vs. 0.095 µg/ml were only expressed at the higher
concentration (dramatically reduced at the lower concentration),
and the tubulin beta 3 chain (Q13509) was down-regulated at
0.22 µg/ml. There is evidence showing a relationship between
increasing beta tubulin levels and subsequent cell death (Weinstein
and Solomon, 1992; Alvarez et al., 1998), which could be
minimized by the co-overexpression of alpha-tubulin (Weinstein
and Solomon, 1992; Alvarez et al., 1998). Besides the widely
known effects of microtubule damage on the cell cycle and
morphology, our findings suggest that the fluctuation of actin
and tubulin expression under F exposure may trigger cell death
by microtubule disassembly because the higher F concentration
is, the lower the regulation of alpha subunits and higher beta
subunits. Those results are in agreement with our previous work
where we verified significant spreading and cell density changes
for 0.22 µg/ml F followed by increased DNA fragmentation (see
Puty et al., 2021). The dynamics can be observed in Figures 5, 6,
where interactions in tubulin subunits were observed in two
PPI.

In conclusion, our study provides valuable insights about the
mode of action of F in U87 glial-like cells covering potential
molecular alterations, corroborating the hypothesis of the F
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FIGURE 5

Functional distribution of proteins identified with differential expression in U87 glial-like cells exposed to fluoride. Group comparisons are shown as
0.095 µg/ml F vs. control (A), 0.22 µg/ml F vs. control (B), and 0.22 µg/ml F vs. 0.095 µg/ml F (C). Categories of proteins are based on the gene
ontology (GO) annotation of biological processes. Significant terms (kappa Score = 0.4) and the distribution according to the percentage of genes.
Protein access numbers were provided by Uniprot. GO was evaluated according to the ClueGo R© plugin of Cytoscape R© software version 3.7.1.

FIGURE 6

Subnetworks clustered by ClusterMarker app to determinate the interaction among identified proteins of U87 cells with differently expression on
0.095 µg/ml F vs. control (A), 0.22 µg/ml F vs. control group (B) and 0.22 µg/ml F vs. 0.095 µg/ml F (C). The node colors indicate the different status
of expression of the respective protein, named by its accession ID from Uniprot.

impact on cellular energy metabolism. We also showed F-mediated
modulation of actin filament constituents, such as cytoskeleton and
tubulin, suggesting an emerging target of F toxicity. Since our data
were collected after a chronic model of F exposure it is important
to point out that the overall gene and protein expression alteration

may represent both F induced gene/proteins expression as well
as adaptive changes after exposure. Finally, our results indicate
that fluoride-induced damage on glial cells may happen only at
overexposure to high levels of fluoride while there is no evidence
of safety issues related to the optimal fluoride levels.
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