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Editorial on the Research Topic

Kinase/phosphatase signaling and axonal function in health and disease

Axons represent the main cellular specialization supporting the output of information

from neurons. These long cytoplasm extensions provide a physical conduit for electrical

signals to propagate from the somato-dendritic compartment of neurons to their target

cell(s) and for the bidirectional exchange of trophic information between these cells.

Depending on the specific neuronal subtype, human axons extend over distances that range

from a few microns to over a meter in length. Accordingly, axons contain proportions of

the neuronal cytoplasm that far surpass that of the somato-dendritic domain by thousands

of orders of magnitude. Remarkably, nearly all cellular components contained in axons

must be actively transported from their main site of synthesis at the neuronal soma. This

daunting cellular process, collectively referred to as axonal transport (AT) (Black, 2016), is

further complicated because depending on their length and degree of arborization, axons

can feature thousands of discrete subcompartments of unique biochemical compositions

(Matsuda et al., 2009). The large size and complex subcellular architecture of axons are

typically underrepresented in most schematic drawings of neurons, including the ones

depicted in Figure 1.

The axonal initial segment (AIS), nodes of Ranvier, and presynaptic terminals are

primary examples of discrete axonal subcompartments sustaining neuronal connectivity.

Their specialized functions require a continuous, highly localized supply and turnover of

unique complements of membrane-bounded organelles (MBOs), cytoskeletal and soluble

protein components. For example, the rapid propagation of action potentials in myelinated

neurons depends on acute voltage-sensitive portions of the axonal plasma membrane at the

AIS and nodes of Ranvier. This is achieved by the local insertion of vesicles containing

specific subsets of voltage-gated sodium and potassium channels at the AIS axolemma,

as well as the insertion of vesicles containing a different subset of channels to the nodes

of Ranvier’s axolemma (Huang and Rasband, 2018). Similarly, proteins involved in the

release and recycling of synaptic vesicles are selectively delivered at the presynaptic terminal’s

plasma membrane (Watson et al., 2023). These observations have long-implied mechanisms

for the spatial regulation of cellular processes within axons, including the delivery of selected

MBOs to their correct destinations (Morfini et al., 2001).
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FIGURE 1

Roles of specific protein kinases, phosphatases and phosphorylation-based mechanisms on axonal function and pathology. Schematic

representation of mature motor neurons bearing a healthy (top) and a degenerating axon (bottom). Circles 1 to 7 provide a succinct summary of

kinases, phosphatases (both indicated by text in blue), and phosphorylation-based mechanism addressed by each manuscript in this Research Topic

[1: see Baculis et al.; 2: see Heo et al.; 3: see Altas et al.; 4: see Berth et al.; 5: see Waller and Collins; 6: see Baltissen et al.; 7: see Richards and

Jaesnich]. Small arrows pointing up and down indicate heightened and reduced kinase/phosphatase activities, respectively. Inhibitory e�ects are

indicated by blunt arrows. Within each circle, dashed lines indicate that specific e�ects might be indirect.

The correct functionality of specialized axonal

subcompartments requires the coordination of diverse cellular

processes including AT, assembled and localized remodeling of

the cytoskeleton, spatial restriction of signaling pathways, and

recycling of oldmaterials and defectiveMBOs, amongmany others.

From various mechanisms that regulate proteins involved in the

execution of these cellular processes, phosphorylation represents

the most widespread and better-documented mechanism.

By extension, research addressing the roles of kinases and

phosphatases in the axonal compartment is essential for a complete

understanding of neuronal function.

In this Research Topic, data from two manuscripts support

the notion that kinases and phosphatases regulate the motility and

delivery of selected MBOs at specific axonal subcompartments.

Using pharmacological experiments in cultured hippocampal

neurons, a report by Baculis et al. suggests a potential mechanism

linking neuronal activity to ERK1/2 kinases and levels of potassium

Kv7.3 channels inserted at the AIS (Figure 1.1). In addition, a

research article by Heo et al. reveals PP2A as a protein phosphatase

involved in the regulation of mitochondrial transport (Figure 1.2).

This finding, which involved the use of an innovative, high-

throughput screening system based on high-content imaging, is

consistent with prior works revealing phosphorylation-dependent

regulation of motor proteins powering AT (Gibbs et al., 2015;

Morfini et al., 2016).

Two manuscripts discuss both hypothesized and established

roles of specific protein kinases in the regulation of cellular

processes sustaining axonal health. Altas et al. propose a model

where the protein kinase mTOR, a well-established hub for

various signaling pathways, accumulates in local axonal foci

termed “mTOR outposts”. Such outposts would work as spatial

gatekeepers of mTOR-activating stimuli (e.g., nutrients and

trophic factors) to collectively modulate neuron-wide responses,

including transduction of signals to the distant neuronal

nuclei and the control of protein synthesis (Figure 1.3). In

addition, a mini-review by Berth et al. discusses published
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work on the roles played by several protein kinases on specific

molecular events supporting macroautophagy, a cellular process

involving sequestration, packaging, and delivery of old and

defective cellular components to lysosomes for degradation

(Figure 1.4).

Consistent with a critical role of kinases and phosphatases on

axonal function, a large body of genetic and experimental evidence

has linked alterations in their activities to axonal pathology, an

early pathological signature common to most neurodegenerative

disorders. Specifically, work from various experimental systems

revealed that specific neuropathogenic proteins promote abnormal

activation of selected axonal kinases and phosphatases, alterations

in AT, and axonopathy (Brady and Morfini, 2017). Three

manuscripts in this Research Topic relate to this important issue.

A mini-review by Waller and Collins focuses on SARM1, an

enzyme that acts as a sensor of metabolic stress and a critical

component of pathways leading to axonal degeneration. These

authors discuss findings supporting bi-directional regulation of

axonal SARM1 and JNK kinases, as well as SARM1’s ability

to inhibit regeneration of injured axons through activation of

the MAPK kinase ASK1 and its downstream effector kinase

p38 (Figure 1.5). In addition, a research article by Baltissen

et al. reports that a soluble fragment derived from proteolytic

cleavage of the Alzheimer’s disease-related protein APP ameliorates

neuropathological features in a mouse model of a human

tauopathy. Interestingly, this beneficial effect was associated with

the inhibition of the kinase GSK3, which is aberrantly activated

in this model and has been shown to inhibit anterograde AT

(Morfini et al., 2002, 2004; Figure 1.6). Finally, an opinion article

by Richards and Jaesnich hypothesizes a potential mechanism

underlying axonal pathology and neurological complications

associated with SARS-CoV-2 infection. This hypothesis is based

on independent lines of experimental evidence showing that

SARS-CoV-2 promotes the secretion of glial cytokines known

to activate the kinases p38 and CK2, and reports show

that active forms of these kinases inhibit AT by directly

phosphorylating motor proteins (Morfini et al., 2013; Leo et al.,

2017; Figure 1.7).

The focus of this Research Topic is unique because it specifically

features research on kinases, phosphatases, and phosphorylation-

dephosphorylation-based mechanisms relevant to axonal function

and pathology. Considering the rapid advance of methodologies

for the study of kinases and phosphatases (White and Wolf-Yadlin,

2016), the development of various approaches for the identification

of their substrates (Allen et al., 2007), and the availability of

experimental models that facilitate the study of molecular events

in axons (Kang et al., 2016; Song et al., 2016; Wang et al., 2020), we

anticipate the publication of more Special Editions with a similar

focus in the near future.
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