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Neurology, Akershus University Hospital, Lørenskog, Norway, 5Institute of Clinical Medicine, University
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The phenotypes of B lineage cells that produce oligoclonal IgG in multiple

sclerosis have not been unequivocally determined. Here, we utilized single-

cell RNA-seq data of intrathecal B lineage cells in combination with mass

spectrometry of intrathecally synthesized IgG to identify its cellular source. We

found that the intrathecally produced IgG matched a larger fraction of clonally

expanded antibody-secreting cells compared to singletons. The IgG was traced

back to two clonally related clusters of antibody-secreting cells, one comprising

highly proliferating cells, and the other consisting of more differentiated cells

expressing genes associated with immunoglobulin synthesis. These findings

suggest some degree of heterogeneity among cells that produce oligoclonal IgG

in multiple sclerosis.

KEYWORDS

multiple sclerosis, B cells, plasmablasts, oligoclonal bands (OCB), IgG, cerebrospinal fluid

1. Introduction

Multiple sclerosis (MS) is characterized by a persistent synthesis of IgG within the central
nervous system (CNS). Accordingly, deposition of IgG and complement activation products
are generally found in all active demyelinating lesions (Breij et al., 2008). In the cerebrospinal
fluid (CSF), this locally produced IgG can be detected in more than 90% of the patients as
oligoclonal IgG bands (Stangel et al., 2013), which is a diagnostic criterion for the disease
(Thompson et al., 2018).

Although the role of oligoclonal IgG in MS is a subject of debate, increasing evidence
supports the idea that it may contribute to the disease pathogenesis. Accordingly, the
presence of oligoclonal IgG has been linked to higher levels of disease activity and disability,
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the conversion from a clinically isolated syndrome to definite MS,
greater brain atrophy, and increased disease activity (Caroscio
et al., 1986; Avasarala et al., 2001; Joseph et al., 2009; Ferreira
et al., 2014; Heussinger et al., 2015; Farina et al., 2017; Seraji-
Bozorgzad et al., 2017). Furthermore, a subset of recombinant
antibodies constructed from clonally expanded antibody-secreting
cells (ASCs) in MS CSF can cause complement-dependent
cytotoxicity and demyelination in spinal cord explants and
organotypic cerebellar slices (Blauth et al., 2015; Liu et al., 2017).
Studies investigating the specificity of intrathecal ASCs have,
however, revealed inconsistent results. Some studies have suggested
reactivity against myelin-associated antigens (O’Connor et al.,
2005; Kanter et al., 2006) and Epstein-Barr virus (Cepok et al., 2005;
Lanz et al., 2022), but these findings are not consistent with those of
independent studies (Owens et al., 2009; Sargsyan et al., 2010; Otto
et al., 2011). Furthermore, one study suggested that some CSF IgG
might be directed against intracellular autoantigens released during
tissue destruction (Brändle et al., 2016).

The phenotypes of the B lineage cells that constitute the
source of the oligoclonal IgG have not been settled, and to what
extent these cells are susceptible to current immunomodulating
strategies is controversial. Although a proportion of patients
have been reported to lose detectable oligoclonal IgG after
treatment with cladribine and natalizumab, most patients do
seem to have a perpetuating intrathecal IgG synthesis despite
highly effective immunomodulatory treatment (Cross et al.,
2006; Harrer et al., 2013; Rejdak et al., 2019). This could
indicate that the intrathecal IgG in these patients is synthesized
by more differentiated long-lived ASCs within CNS survival
niches (Eggers et al., 2017). Along the same line, it has been
suggested that the development of secondary progressive disease
in actively treated patients could be caused by therapy-resistant
B lineage cells within such niches and that the presence of
oligoclonal IgG might represent a useful endpoint for clinical trials
(von Büdingen et al., 2017).

We previously used single-cell full-length RNA-seq and B-cell
receptor reconstruction to analyze intrathecal B cells in MS
(Lindeman et al., 2022). Here, we revisit the phenotype of the
IgG-producing ASCs. To this end, we reanalyze the single-cell
RNA-seq data from ten MS patients and combine this with mass
spectrometry of intrathecally produced IgG.

2. Method

2.1. Patient inclusion and sample
collection

The ten patients included in the study (Table 1) are part of
a previously published cohort recruited at the Departments of
Neurology at Akershus University Hospital and Oslo University
Hospital, and details of sample acquisition and preparation
are provided elsewhere (Lindeman et al., 2022). From this
cohort, we chose patients who had a higher number of sorted
and processed cells. MS9 and MS10 had previously been
treated for 3 days with methylprednisolone; none of the other
patients had received any type of immunomodulatory treatment
at inclusion.

2.2. Sample preparation and mass
spectrometry

From each patient, we purified IgG from 1 ml of CSF and an
equivalent amount of IgG from serum using Protein G Dynabeads
(Thermo Fisher Scientific, Waltham, MA, USA). After elution in
20 mM hydrogen chloride, the buffer was exchanged to 50 mM
ammonium bicarbonate. After reduction and alkylation (Høglund
et al., 2019), 10 µg IgG in 12.5 µl buffer from each sample was
transferred to new microcentrifuge tubes and 40 ng of trypsin
(Promega, Madison, WI, USA) was added. After 45 min at
57◦C in an orbital shaker, another 100 ng of trypsin was added,
and the samples were further incubated for 90 min. The liquid
chromatography mass-spectrometry analyses were performed in
duplicates on a Q Exactive Orbitrap mass spectrometer equipped
with an Easy nLC-1000 system (all from Thermo Fisher Scientific,
Waltham, MA, USA) as previously described (Høglund et al., 2019).

2.3. Single-cell RNA-sequencing and
processing of raw sequence data

The generation of the single-cell RNA-sequencing data set
has been described before (Lindeman et al., 2022). In brief, we
performed flow cytometry index sorting of CSF B lineage cells
into 96-well plates (Bio-Rad, Hercules, CA, USA). Sequencing
libraries were generated using an in-house modified Smart-Seq2
protocol and sequenced on an Illumina NextSeq500 platform
(Picelli et al., 2014). After demultiplexing, the sequences were
trimmed and filtered, and gene expression was quantified with
Salmon version 0.11.3 (Patro et al., 2017). Quality control was
done in R (R Core Team, 2022)/RStudio (Posit Team, 2022)
with the scater package (McCarthy et al., 2017). BraCeR was
used to reconstruct the full-length paired heavy- and light-
immunoglobulin chains for each cell (Lindeman et al., 2018). Once
the paired immunoglobulin sequences have been assigned to each
cell, BraCeR groups productive immunoglobulin sequences for
each locus in the cell population into clonal clusters using the
“bygroup” subcommand of the Change-O toolkit’s “DefineClones”
function (Gupta et al., 2015). Clonal grouping is based on the
identification of common V- and J-gene sets among the sequences,
equivalent CDR3 length, and CDR3 nucleotide distances < 0.2 as
calculated using a human 5-mer targeting model (Yaari et al., 2013).

2.4. Analysis of mass spectrometry data

Mass spectrometry data was processed using MaxQuant v.
2.1.4.0 with the Andromeda search engine (Cox et al., 2014).
Parameters of the search included label-free quantification and
iBAQ values. The protein false discovery rate remained at 0.01, and
methionine oxidation and acetylation of N-terminal amino acids
were set as variable modifications. While running, multiplicates
of the same sample match between runs feature was used, with
minimum unique peptides set to 1. The library of sequences
was constructed separately for each patient based on the amino
acid translations of single cell RNA-seq full-length recombined
V region of heavy- and light-chain immunoglobulin transcripts
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with an extension of 24 nucleotides into the constant region. The
MaxQuant output was filtered for intrathecally produced IgG based
on heavy/light-chain pairs with iBAQCSF-iBAQserum > 50 k and
iBAQCSF/iBAQserum > 1.2, and single heavy chains meeting the
same criteria with an additional requirement of at least three unique
peptides identified.

2.5. Gene expression analyses and
statistics

As outlined in our previous publication (Lindeman et al., 2022),
we excluded immunoglobulin genes from the gene expression
analysis prior to normalization. To minimize patient-to-patient
variability and eliminate batch effects, we regressed out the number
of detected genes and reads, percentage of mitochondrial genes, and
patient-specific variation, while preserving the variability attributed
to cell type. The gene expression analyses were performed in
scanpy v.1.9.1 (Wolf et al., 2018), with the aid of scikit-learn v.1.0.2
for scaling the expression matrix (Pedregosa et al., 2011). For
visualization, we used UMAP for dimension reduction (McInnes
et al., 2018). The pathway enrichment analyses were performed
in R/Rstudio using gprofiler2 v.0.2.1 (Kolberg et al., 2020), and
visualized in Cytoscape v.3.9.1 (Shannon et al., 2003) using
EnrichmentMap v.3.3 (Merico et al., 2010), ClusterMaker2 v.2.3.4
(Morris et al., 2011), and AutoAnnotate v.1.4 (Kucera et al.,
2016). Additional figures were made in R/Rstudio with ggplot2 v.2
(Wickham, 2016), ggbreak v.0.1.1 (Xu et al., 2021), and ggpubr v.0.5
(Kassambara, 2023). We used two-sided non-parametric statistical
tests with a significance level of 0.05.

3. Result

We analyzed IgG from CSF and serum from ten treatment-
naive MS patients (Table 1) using mass spectrometry and combined
this with single-cell RNA-seq data of sorted B lineage cells from
the CSF (Lindeman et al., 2022). To determine the intrathecally
synthesized IgG fraction and its cellular source, we performed

label-free quantification of IgG in normalized CSF and serum
samples matched to paired immunoglobulin heavy- and light-
chain transcripts (Cox et al., 2014). We found that a median of
13.5% (range 3.6–32%) of all CSF B lineage cells (collapsed on
a clonal level) matched intrathecally produced IgG. Reassuringly,
we found that almost all these matches were found among ASCs
(Figure 1A), whereas the number of hits were low among memory
B cells and negligible in the naive B cell pool. The hits within the
memory B cell population may be explained by the high degree
of clonal relatedness between this population and the ASCs, as
we have previously shown (Lindeman et al., 2022). The single-cell
analysis data of B lineage cells allowed us to identify clonally
expanded populations. A clonally expanded B lineage cell is here
defined as a cell that has at least one other B lineage cell from
the same patient with identical or related immunoglobulin heavy-
chain sequences and identical or related light-chain sequences.
The criteria for clonal grouping are outlined in the materials and
methods. A singleton, on the other hand, is a cell that is not related
in this way to any other sorted B lineage cell. Intrathecally produced
IgG matched such clonally expanded populations more frequently
than singletons (Figure 1B). Taken together, these results show that
a proportion of clonally expanded ASCs sampled from the CSF
faithfully represent ASCs that are producing oligoclonal IgG.

The ASCs in the RNA-seq dataset are defined based on
high surface expression of CD27 and CD38, and a proportion
of immunoglobulin reads above 10% of the total transcriptome
(Lindeman et al., 2022). We visualized the transcriptomes of
the ASCs from the ten patients using UMAP and identified
two distinct clusters (Figure 2A; Supplementary Figure 1).
We identified the most differentially expressed genes between
the clusters (Figure 2B) and performed a gene ontology (GO)
enrichment analysis (Figure 2C). Whereas ASCs in the first cluster
upregulated pathways involved in mitotic division and cytoskeleton
organization, the ASCs in the other cluster upregulated pathways
concerned with immunoglobulin synthesis and protein production
(Figure 2C). Accordingly, the proliferation-associated gene MKI67
was expressed by most cells in cluster 1, but to a much lesser
extent in cluster 2 (Figure 2D). Further, the proportion of
immunoglobulin transcripts per cell was larger in cluster 2

TABLE 1 Patient characteristics.

ID Sex Age Diagnosis CSF cell counta OCBb Albumin ratio IgG index

MS1 M 36 SP-MS 36 + 12 1.7

MS2 F 26 RR-MS 4 + 3.8 1.1

MS3 M 20 RR-MS 19 + 6.2 0.81

MS4 F 46 RR-MS 19 + 3.1 0.72

MS5 F 31 RR-MS 33 + 3.2 2.1

MS6 M 52 RR-MS 6 + 5.0 1.1

MS7 F 44 RR-MS 18 + 6.4 1.1

MS8 M 21 RR-MS 21 + 6.4 0.95

MS9 F 48 RR-MS 17 + 4.3 1.3

MS10 M 35 RR-MS 5 + 3.3 0.75

aNumber of mononuclear cells per microliter of CSF.
bMore than two CSF-restricted oligoclonal bands on isoelectric focusing.
M, male; F, female; SP-MS, secondary progressive multiple sclerosis; RR-MS, relapsing-remitting multiple sclerosis.
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FIGURE 1

Intrathecally produced IgG matches clonally expanded
antibody-secreting cells (ASCs) from the cerebrospinal fluid of MS
patients. (A) The fraction of matches to intrathecal IgG for ASCs
(642 cells), memory B cells (150 cells) and naive B cells (84 cells)
was calculated for each patient, and each symbol indicates a
patient. Clonally related cells were collapsed and treated as a single
unit. Naïve and memory B cell populations were present in 9/10
patients. The outlier marked in red represents MS10, in whom we
only analyzed a single sorted naïve B cell that also matched
intrathecally produced IgG (excluded from statistical analysis). The
horizontal lines depict the median values. Two-tailed Wilcoxon
signed-rank test, **p < 0.01. (B) The proportion of clonally
expanded ASCs vs. singletons matching intrathecally produced IgG.
Each symbol indicates a patient (n = 10). Clonally related cells were
collapsed and treated as a single unit. Two-tailed Wilcoxon
signed-rank test, *p = 0.0371.

(Figure 2D), in which the cells also expressed somewhat higher
levels of some plasma cell/plasmablast-related genes, including
XBP1 and CD27 (Figure 2E). We observed strong clonal
relatedness between the two clusters (Figure 2F; Supplementary

Figure 2), which indicates a common origin and/or that they are in
different stages of a maturation pathway. Oligoclonal IgG matched
a comparable proportion of ASCs in each cluster (Figure 2G),
and the majority of the IgG matched to ASCs that were clonally
expanded across the clusters (Figure 2G, lower Venn diagram).
Taken together, these data provide evidence of transcriptional
heterogeneity of clonally related ASCs producing oligoclonal IgG
in MS.

4. Discussion

In the present study, we used single-cell RNA-seq data and
combined it with mass spectrometry to trace the oligoclonal IgG-
producing cells. The results show that oligoclonal IgG matches with
the transcriptome of both heavily proliferating ASCs and more
differentiated ASCs that are mainly occupied with immunoglobulin
production. The clonal relatedness between these populations with
slightly different transcriptional profiles indicates a shared ancestry
and/or that they are part of a developmental progression from
newly generated plasmablasts to more differentiated phenotypes.

In a previous study, it was demonstrated that intrathecally
produced IgG match B cell transcripts from the CSF, suggesting
that oligoclonal IgG is secreted by ASCs that are present in the
CSF (Obermeier et al., 2008). Nonetheless, several observations
indicate that only a proportion of intrathecal ASCs are involved in
the production of the main fractions of oligoclonal IgG. First, as
demonstrated previously by us and others (Colombo et al., 2003;
Greenfield et al., 2019; Tomescu-Baciu et al., 2019), there is a
limited clonal overlap in CSF cell samples collected at different
time points whereas the pattern of oligoclonal IgG is remarkably
stable over time (Walsh and Tourtellotte, 1986; Axelsson et al.,
2013; Tomescu-Baciu et al., 2019). This underscores that a finite
sample of CSF cells only represents a small proportion of all
ASCs in the CNS, and that any random sample will miss relevant
oligoclonal IgG-secreting cells and include irrelevant B cell clones.
Second, it is well-known that patients with MS have an intrathecal
synthesis of IgG against disease-irrelevant pathogens, including
measles, rubella and varicella zoster virus, which are not part of
the major fractions of oligoclonal IgG (Vartdal et al., 1980; Feki
et al., 2018). Therefore, pinpointing the disease-relevant ASCs that
are responsible for the production of oligoclonal IgG might be key
to dissect the mechanisms driving the intrathecal B cell response
in MS.

Our study has several limitations. In order to accurately match
oligoclonal IgG to specific subpopulations of B cells and perform
a precise characterization and comparison of them, we selected
patients from our previously published cohort who had a higher
number of sorted and processed B lineage cells. Although this
approach provided us with a larger amount of data for analysis, it is
important to acknowledge that it might have introduced a selection
bias, as it may have preferentially included patients with higher
CSF cell numbers and potentially greater disease activity. Therefore,
our findings may not be applicable to patients with less active
disease. Furthermore, although we observed a lower expression of
the proliferation marker MKI67 in cluster 2, we cannot definitively
determine whether these cells are more differentiated plasma cells
or if they represent plasmablasts in the G1 phase of the cell cycle –
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FIGURE 2

Antibody-secreting cells (ASCs) in the cerebrospinal fluid of MS patients cluster in two distinct yet clonally related groups, and intrathecally
produced IgG matches cells from both groups. (A) UMAP projection and unsupervised clustering of intrathecal ASCs [n = 10 patients (1,283 cells)].
(B) Highly differentially expressed genes in each cluster compared to the other cluster. The genes are ranked according to the Mann–Whitney U test.
(C) Enrichment map depicting Gene Ontology (GO) pathway enrichment analysis of highly differentially expressed genes in each cluster. Each node
represents a GO biological process term. Related terms are clustered and labeled using the AutoAnnotate Cytoscape application following published
protocols (Reimand et al., 2019). The lines (edges) between the nodes signify that genes are shared between the GO terms. (D) The expression of
MKI67 and the proportion of immunoglobulin (Ig) transcripts superimposed on the UMAP projection of ASCs. (E) Violin plots showing the expression
of genes of particular interest for ASCs in the two clusters. The genes in each cluster were compared in Scanpy using Wilcoxon rank-sum test, and
the given p-values are adjusted for multiple testing using Bonferroni correction. ns: not significant. (F) Venn diagrams depicting the clonal overlap
between ASCs in the two UMAP clusters. Given are the numbers of collapsed clonotypes and the number of singletons in brackets. The Venn
diagrams are scaled according to the sum of collapsed clonotypes and singletons. Clonal relatedness was based on the identification of common
V-and J-gene sets among the sequences, equivalent CDR3 length, and CDR3 nucleotide distances < 0.2 as calculated using a human 5-mer
targeting model (Yaari et al., 2013). (G) UMAP projection of ASCs colored according to matches with intrathecally produced IgG. The pie charts show
the proportion of ASCs matching intrathecally produced IgG in each UMAP cluster, and the Venn diagram shows the clonal overlap of these
IgG-matching ASCs in each cluster (clonotypes collapsed and singletons in brackets).

transiently downregulating MKI67. Finally, the selected patients
had different ages, and one of them had developed secondary
progressive disease, indicating a longer disease duration. This
heterogeneity may have introduced variability in our study.

Matching mass spectrometry data of IgG to immunoglobulin
transcripts can be challenging due to the high degree of sequence
homology between the transcripts (Snapkov et al., 2022). Here, we
addressed this issue by setting strict criteria for what is considered a
hit, requiring peptide hits for both the heavy and light chains of
a given IgG molecule, or at least three hits for the heavy chain.
However, these strict criteria may lead to a loss of sensitivity, and
therefore our study might underestimate the true overlap between
the immunoglobulin proteome and transcriptome in the CSF of
MS patients. Another potential source of bias in our study is the
intrathecal fraction of IgG that originates from serum, as less than

50% of intrathecal IgG in MS represents intrathecally produced
oligoclonal IgG (Reiber et al., 1998). To account for this, we utilized
label-free quantification of heavy and light chains in serum and CSF,
measured by MaxQuant’s intensity-based absolute quantification
(iBAQ) values, a measure of protein abundance (Schwanhäusser
et al., 2011). Of note, all included mass spectrometry hits had
an estimated abundance in the CSF of at least twice that in
serum.

In conclusion, our study sheds light on the cellular origins
of oligoclonal IgG in MS by combining single-cell RNA-
seq data with mass spectrometry. Our findings suggest that
oligoclonal IgG is produced by both heavily proliferating
ASCs and more differentiated ASCs mainly focused on
immunoglobulin production, which likely share a common
ancestry or developmental progression. Overall, our study
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contributes to understanding the intrathecal B cell response in
MS and highlights the need for further investigation to pinpoint
the disease-relevant ASCs responsible for the production of
oligoclonal IgG.
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