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Neurodevelopment, plasticity, and cognition are integral with functional

directional transport in neuronal axons that occurs along a unique network

of discontinuous polar microtubule (MT) bundles. Axonopathies are caused

by brain trauma and genetic diseases that perturb or disrupt the axon MT

infrastructure and, with it, the dynamic interplay of motor proteins and cargo

essential for axonal maintenance and neuronal signaling. The inability to visualize

and quantify normal and altered nanoscale spatio-temporal dynamic transport

events prevents a full mechanistic understanding of injury, disease progression,

and recovery. To address this gap, we generated DyNAMO, a Dynamic Nanoscale

Axonal MT Organization model, which is a biologically realistic theoretical axon

framework. We use DyNAMO to experimentally simulate multi-kinesin tra�c

response to focused or distributed tractable injury parameters, which are MT

network perturbations a�ecting MT lengths and multi-MT staggering. We track

kinesins with di�erent motility and processivity, as well as their influx rates,

in-transit dissociation and reassociation from inter-MT reservoirs, progression,

and quantify and spatially represent motor output ratios. DyNAMO demonstrates,

in detail, the complex interplay of mixed motor types, crowding, kinesin o�/on

dissociation and reassociation, and injury consequences of forced intermingling.

Stalled forward progression with di�erent injury states is seen as persistent

dynamicity of kinesins transiting between MTs and inter-MT reservoirs. DyNAMO

analysis provides novel insights and quantification of axonal injury scenarios,

including local injury-a�ected ATP levels, as well as relates these to influences on

signaling outputs, including patterns of gating, waves, and pattern switching. The

DyNAMO model significantly expands the network of heuristic and mathematical

analysis of neuronal functions relevant to axonopathies, diagnostics, and

treatment strategies.
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1. Introduction

Traumatic brain injury (TBI) and the associated long-term disease progression
known as chronic traumatic encephalopathy (CTE) continue to be the leading causes
of mortality and morbidity worldwide, with implications for Alzheimer’s disease and
Parkinson’s disease (Daneshvar et al., 2015). Trauma pathophysiology includes damage
to neurons such as shearing, crush damage, and stretch injuries that result in axonal
pathologies at the earliest stages of the disease. Distortion of axonal cytoskeleton structure
and varicosities, which are axonal protrusions similar to beads on a string, may also
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be evident along axon length (McKee et al., 2013). Axonal
transport is required for neuron homeostasis, and neural signaling
and disruptions in the process are increasingly associated
with a variety of neurological disorders (Sleigh et al., 2019).
Shared neuropathological hallmarks such as the transactivation
response (TAR) DNA-binding protein 43 (TDP-43) are seen not
only in TBI but also in other neurodegenerative pathologies,
such as Amyotrophic lateral sclerosis (ALS), for which axonal
transport defects are common (Baldwin et al., 2016). TDP-43
is a multifunctional RNA-binding protein with roles in mRNA
transport in axons and dendrites and contributes to localized
translation in pre-synaptic neurons for rapid signaling and
neuronal homeostasis (Ling, 2018; Nagano et al., 2020). Regulation
of TDP-43 is linked to axonal survival and neurodegeneration in
visual circuits (Shigeoka et al., 2016) as well as additional roles
in the structure and function of dendritic spines in Drosophila
and mice (Lu and Vogel, 2009; Fogarty et al., 2016; Handley
et al., 2016). While disease hallmarks such as TDP-43 highlight
the outcomes of disrupted axonal transport, theoretical models
such as DyNAMO can now provide a detailed mechanistic
understanding of the nano- to microscale processes that escape
detection due to the limitations of live cell imaging at this
scale. The DyNAMO theoretical axon is the first computational
platform designed to enable studies of altered dynamics of multiple
motor proteins in axonal injury scenarios, including visualization,
classification, and quantification of transiting events and outputs
to drive long-term advancements in treatments for TBI and
other axonopathies.

In the three decades since the discovery of neuronal kinesin
and fast axonal transport (Smith, 1980; Tsukita and Ishikawa,
1980; Vale et al., 1985), progress toward nanoscale visualization
of dynamics along axons remains challenging (Surana et al.,
2020). Biological studies of fast axonal transport in living cells,
which initially relied on techniques such as video-enhanced
contrast-differential interference contrast microscopy (Allen et al.,
1982; Song et al., 2016), have evolved to apply correlative
live cell and super-resolution microscopy (Bálint et al., 2013),
as well as an advanced and growing toolkit of technical
approaches (Surana et al., 2020), but still remain challenging
for interpreting and evaluating interactions of multiple types
of biomolecules at nanoscale resolution. In contrast, detailed
imaging of fixed samples has led to a dramatic new realization
of the complex and layered biological infrastructure of the
axon that includes three interacting cytoskeletons, containing
discontinuous, staggered, polar MT bundles (Yamada et al.,
1971), actin waves (Ruthel and Banker, 1999), actin rings (Xu
et al., 2013; Vassilopoulos et al., 2019), actin hotspots and
trails (Ganguly et al., 2015), and neurofilaments (Trojanowski
et al., 1986; Nixon and Shea, 1992; reviewed by Leterrier
et al., 2017; Papandréou and Leterrier, 2018; Hahn et al., 2019;
Leterrier, 2021), as well as numerous interacting motor and
non-motor binding proteins (Hirokawa and Takemura, 2005;
Conde and Cáceres, 2009; Hirokawa et al., 2009) essential to
axonal functions. Advanced mathematical models are critical for
bridging experimental gaps, such as nanoscale dynamics, while
incorporating static information from high-resolution images on
fixed samples or obtained by super-resolution methods on living

cells into the theoretical heuristic. Few computational models
exist to address axonopathies. A model allowing simulations of
the viscoelasticity of the MT-associated protein tau, MAPT, was
developed relevant to Alzheimer’s disease and axonal stretch
injuries (Ahmadzadeh et al., 2014, 2015; Barbier et al., 2019).
Banerjee et al. (2018) modeled multiple neuron compartmentalized
functions as a nanoscale end-to-end communication system,
enabling experimental data from multiple biological studies to be
evaluated to compare amyloid-beta neurotoxicity at membranes,
receptors, and internal calcium stores relevant to Alzheimer’s
disease. The DyNAMO theoretical axon is a significant step in
providing a detailed framework that significantly expands the
ability to interrogate a diverse set of parameters relevant to axonal
MT injury, infrastructure perturbations, and impacts on motor-
based axonal transport relevant to neurological disease (Sleigh et al.,
2019).

To model axonal transport, including non-equilibrium
statistical mechanics and diffusion behaviors of multiple motors
on axonal MT bundles, DyNAMO applies a totally asymmetric
simple exclusion process, TASEP (Spohn, 1991; Derrida, 1998;
Derrida and Evans, 2009), and Langmuir kinetics (LK). TASEP
is a cross-disciplinary framework that restricts events to a
unidirectional driven diffuse system relevant to diverse biological
applications of intracellular molecular transport as well as the
fields of chemistry and physics. LK algorithms, when integrated
with TASEP, allow the capture of diffusive absorption/desorption
dynamics, such as reattachment/detachment of motor proteins
from MTs and inter-lane transition (Wang et al., 2007) as well
as more complex scenarios in DyNAMO. Generalized transport
studies of single or dual MTs have revealed the potential of
combined TASEP-LK analysis on high- and low-density particle
trafficking (Parmeggiani et al., 2003, 2004; Nishinari et al., 2005;
Wang et al., 2007). DyNAMO significantly builds on these
approaches to incorporate a rich set of parameters for dense
capture of information, quantification, and co-evaluation relevant
to axonal transport. This includes staggered discontinuous MT
bundles, dynamic events of multiple motors with motor-specific
motility parameters, and motor-type MT crowding, dissociation,
and reassociation dynamics at site-specific locations along the
theoretical axon, never co-evaluated. DyNAMO provides multiple
types of quantifiable readings resulting from MT injury for the
motor types navigating the theoretical axon, including input,
stalling, progression patterns, and outputs. The roles and impact
of varying kinesin types and their motility parameters in in vivo

axon transport (Brunner et al., 2004; Verbrugge et al., 2009;
Lo et al., 2011; Sun et al., 2011; Jenkins et al., 2012; Lessard
et al., 2019), including axonal distribution (Hirokawa et al.,
2009), remain unknown. Advanced theoretical axon models,
such as DyNAMO, will benefit the understanding of axonal
mechanisms and aid the analysis of brain injury pathologies
and axonopathies that impact axonal MT structure and neuronal
signaling. DyNAMOprovides the ability to simulateMT length and
multi-MT staggering injury changes in axonal MT cytoskeleton
architecture along with impacts on the progression of multiple
kinesins of differing motility and processivity. DyNAMO expands
our understanding of axonal injury events and provides a means
to spatio-temporally characterize and quantify associated transport
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impacts. This information and the continued advancement of
neuronal theoretical models are anticipated to have numerous
benefits, including mechanistic and biomarker discovery to
distinguish minor vs. severe changes in axonal transport and other
mechanistic considerations in designing future diagnostics and
therapeutics for axonopathies.

2. Materials and methods

2.1. Development of a framework to
capture complex axonal parameters

We developed a multiple MT lattice structure (MMLS) for
axonal MT bundles that are designed on the basic framework
of TASEP-LK, significantly modified to enable a nanoscale
functional analysis of discontinuous staggeredMTs with interacting
dual kinesins and distinct kinesin-specific motility parameters
in a theoretical axonal framework. Table 1 summarizes the
experimental and defined parameters applied. Combined TASEP-
LK has been applied by others to analyze unidirectional single
motor flow in single MTs and motor particles for the co-existence
of high- and low-density trafficking regions (Parmeggiani et al.,
2003, 2004; Nishinari et al., 2005) or in two-MT models with
motors as particles with symmetric or asymmetric distribution
(Wang et al., 2007). In DyNAMO, the influx of the two
kinesins into the MMLS at MT minus ends is regulatable
and followed by stochastic progression of the kinesins along
binding sites with lateral MT transitions permissible depending
on MMLS scenarios. The only interactions considered between
the two kinesins modeled in this study are those that result
on a given single lane as hindered forward progression due
to varied motility. To incorporate asymmetric coupling with
MTs (Pronina and Kolomeisky, 2004, 2006; Jiang et al., 2007,
2008; Xiao et al., 2010), we used a three-MT MMLS and
lateral movement parameters introduced for both kinesins to
regulate crowding dynamics (Figure 1C). Two neuronal kinesins,
Kin1 (S) and Kin3 (F) are described in the text, chosen for
their significance and differences in motility and processivity
(Verbrugge et al., 2009; Sun et al., 2011; Soppina et al., 2014;
Lessard et al., 2019). LK detachment/reattachment dynamics (Jiang
et al., 2007; Wang et al., 2007; Vuijk et al., 2015) are evaluated
relative to kinesin-specific parameters and MMLS interactions.
Detachment of kinesins into finite-length productive reservoirs
at MT corresponding lattice sites in DyNAMO, instead of a
singular bulk reservoir used in other studies, allows detailed
retention of spatio-temporal dynamic information. The influx
of kinesins into the MMLS is done via TASEP as bulk access
to MTs and has measurable impacts on crowding and forward
progression in coupled multilane interactions. Our DyNAMO
model is the first theoretical axon model capable of capturing
the nanoscale dynamics of multiple kinesins trafficking on a
three-MT expandable TASEP-LK framework of discontinuous
staggered MTs. DyNAMO expands the critical network of
heuristic and mathematical analysis of compartmentalized sub-
neuronal functions.

2.2. Numerical model of the axonal MT
architecture

To represent the complex multiple MT and staggered
architecture in the axon we extend a simple TASEP single
MT framework, applying basic MT descriptive principles
of a lattice with sites. According to Parmeggiani et al.
(2004), a one-dimensional TASEP was used, in which the
analytical solution applied mean-field approximation to the
Heisenberg equation and compared outcomes with Monte
Carlo simulation results. Similarly, we defined a finite one-
dimensional lattice with sites labeled i = 1, 2, . . . N with
lattice spacing l (8 nm). The stochastic equation for the
bulk lattice sites (1 ≤ i ≤ N − 1) with attachment (A)
and detachment (D) dynamics of an MT is described by a
master equation, where d〈nl〉

dt
determines the rate of change

in expected occupancy of a site and 〈 〉 characterizes the
statistical average.

d〈nl〉

dt
= 〈nl−1 (1−nl) 〉−〈nl (1−nl+1) 〉 + ωA〈1− nl〉 −ωD〈nl〉

(1)
The subsequent work by Verma et al. (2015) and Verma

and Gupta (2018) resulted in a heuristic designed for analysis
of a single MT with two lanes. In DyNAMO the tracks
represent MT protofilaments on MTs in fully asymmetric
coupled TASEP-LK under open boundary conditions. The
evolution of motor density in the bulk for two lanes was
given by:

d〈ni1〉

dt
= ωA〈1− ni1〉 + 〈n

i−1
1 (1− ni1)〉−〈n

i
1(1− ni+11 )〉

−ωD〈n
i
1〉 − ω 〈ni1n

i+1
1 (1− ni2)〉 (2)

d〈ni2〉

dt
= ωA〈1− ni2〉 + 〈n

i−1
2 (1− ni2)〉−〈n

i
2(1− ni+12 )〉

−ωD〈n
i
2〉 + ω 〈ni1n

i+1
1 (1− ni2)〉 (3)

The positive and negative terms on the right-hand side
denote gain and loss terms arising due to kinesin attachment,
detachment, and forward hopping succeeded by lane-
changing processes. At the boundaries, particle densities are
given by:

d〈n1t 〉

dt
= αA〈1− n1t 〉 −〈n

1
t (1− n2t )〉 (4)

d〈nLt 〉

dt
= 〈nL−1t (1− nLt )〉 − βA〈n

L
t 〉 (5)

2.3. Capturing individual motor variables in
a combined system of multiple motors

To capture kinesin motility parameters along with any inter-
dependencies of transport and processivity, we combined multiple
parameters as step-dependent equations. The dependency on
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TABLE 1 Parametric values used in the simulations.

Sl. No Attributes Symbol Values Units Simulation
equivalent

Experimental
references

1 No. of parallel MTs (one
protofilament per MT
considered)

D 3 In numbers Subset of MTs per axon
diameter Typical=
12–20 (Human= 13)

Ledbetter and Porter,
1964; Tilney et al.,
1973; Sui and
Downing, 2010

2 No. of MT segments
(MMLS scenario
conditions)

j 1 or 3 In numbers Single or multi scenarios
(1 or 3 segments)

Defined here

3 Length of each MT L 4,000 Nanometer Human MTs Yu and Baas, 1994

4.02+/– 5.28 um

4 Motor step size (l= L/N) l 8 Nanometer 1 site Svoboda et al., 1993;
Kojima et al., 1997;
Coy et al., 1999;
Okada et al., 2003

5 Lattice sites on each MT
(No. of 8 nm kinesin
binding sites)

N 500 In numbers Length dependent Defined here

6 Loading rate of Kin3 (F)
from the reservoir to MT
lane

αa 10 Motors/s 2 motors in 10
timestamps

Defined here

15 Motors/s 3 motors in 10
timestamps

Defined here

7 Loading rate of Kin1 (S)
from the reservoir to MT
lane

αb 10 Motors/s 2 motors in 10
timestamps

Defined here

15 Motors/s 3 motors in 10
timestamps

Defined here

8 Outflow/delivery rate of
Kin3 (F)

βa 5–8 Motors/s 1–2 motors in 10
timestamps

Simulated result

9 Outflow/delivery rate of
Kin1 (S)

βb 5–8 Motors/s 1–2 motors in 10
timestamps

Simulated result

10 Motility rate Kin3 (F)
(va) [Human Kif1A]

va 1,350 Nanometer/s ∼7 steps per time t Lessard et al., 2019

12 Motility rate Kin1 (S)
(vb) [Human KHC]

vb 620 Nanometer/s ∼3 steps per time t Sun et al., 2011

13 Processivity of Kin3 (F)
[Human Kif1A]

pa 6,240 Nanometer ∼780 sites Lessard et al., 2019

14 Processivity of Kin1 (S)
[Human KHC]

pb 1,070 Nanometer ∼130 sites Verbrugge et al., 2009

15 Lifetime of kinesins in
the productive reservoir

lt 60 Seconds 1,500 iterations (not
limiting) up to 37 h

Brunner et al., 2004;
Verbrugge et al., 2009

16 Minimum waiting time
for ATP regeneration

wt 10 Seconds 250 iterations Defined here

17 Productive reservoirs
length and capacity

c [ ][ ] 400 Nanometer Equivalent to sites; 50
motor capacity

Defined here

18 Observation time stamp T 600 Seconds 15,000 iterations Defined here

19 Iteration time stamp t 40 Milliseconds 1 iteration Defined here

multiple motor parameters creates a challenge to incorporate all
variables into solvable partial differential equations (PDEs). To be
able to capture individual motor variables in a combined system
of multiple motors, as well as any interdependencies, we combine

multiple motility parameters of speed and processivity into the
following step-dependent equations. We let 〈nit〉 and 〈m

i
t〉 denote

the discrete binary states of occupancy of protofilament lattice
sites by motor species “a” and “b” representing kinesins at site “i”
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FIGURE 1

DyNAMO is a theoretical axon MT framework. (A) Diagram representation of a biological neuron, highlighting cargo-carrying kinesin transport on a

single MT segment as part of a larger staggered multi-MT axon framework. Although MTs contain 13 protofilaments arranged in a cylindrical

structure with a diameter of ∼25 nanometers, DyNAMO models dual distinct kinesins along a single MT track/lane to restrain model complexity. Both

axon superstructures (not modeled) and staggered MTs are implicated in influencing axonal transportation dynamics. (B–D) Illustrated in views are

regions of gaps or full access to MTs, staggering in MT structures, and non-accessible regions [purple] that may arise as a consequence of damage or

lost access due to bound proteins, tubulin code, or other mechanisms. (B) Axon cross-section slice is an end-on view of MTs. In DyNAMO, we model

dual kinesin transport on a three-MT MMLS that allows us to simplify constraints while retaining su�cient model complexity. (C) Axon lateral slice

view. (D) End in view of three-MT MMLS scenarios. The outer ring around MTs represents the modeling of a mathematical gradient probability

distribution for the detachment and reattachment of a kinesin from MTs into inter-MT productive reservoirs. The motor lifetime in reservoirs is set at

1,000 ns which is non-limiting in our studies.

in lane t, respectively. The forward hopping rate or step size of
species “a” is normalized to be a unit, and the forward hopping
rate or step size of “b” is assumed v ≤ 1. The reattachment
(R) rate of species “a” and “b” to any unoccupied lattice site i

is denoted by ωa,R and ωb,R, and the detachment (D) rate from
the lattice site is denoted by ωa,D and ωb,D. For sites 1 ≤ i ≤

N − 1, the time evolution of nit and mi
t are governed by the

following PDEs to incorporate asymmetric coupling of motors
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in the lanes with TASEP-LK and limited processive steps on
lane t:

d〈nit〉

dt
= ωa,R〈1−n

i−1
t n

i

tn
i+1
t −mi−1

t m
i

tm
i+1
t 〉 −ωa,D〈n

i
t〉

+ 〈ni−1t

(

1− nit−mi
t

)

〉−〈nit

(

1− ni+1t −mi+1
t

)

〉

− ωa,l〈n
i
tn

i+1
t

(

1− nit−1−mi
t−1

) (

1− nit+1−m
i
t+1

)

〉

+ ωa,l〈n
i
t−1n

i+1
t−1

(

1− nit−m
i
t

)

+ nit+1n
i+1
t+1

(

1− nit−m
i
t

)

〉

(6)

d〈mi
t〉

dt
= ωb,R〈1−n

i−1
t n

i

tn
i+1
t −m

i−1

t m
i

t
mi+1

t 〉 −ωb,D〈m
i
t〉

+ 〈vmi−1
t

(

1− nit−m
i
t

)

〉−〈vmi
t

(

1− ni+1t −mi+1
t

)

〉

− ωb,l〈m
i
tm

i+1
t

(

1− nit−1−mi
t−1

) (

1− nit+1−m
i
t+1

)

〉

+ ωb,l〈m
i
t−1m

i+1
t−1

(

1− nit−m
i
t

)

+mi
t+1m

i+1
t+1

(

1− nit−m
i
t

)

〉

(7)

The complex correlation between multiple motors in the
MMLS model made it impossible to find an analytical or
numerical solution using partial differential equations (PDEs)
without removing these interdependencies. Furthermore, external
parametric conditions such as the processivity and lifetime of
motors added more complexity to the equation. Thus, a heuristic
approach was used to solve MMLS, which involved defining
specific testable algorithm conditions to examine these complex
interactions. The forward hopping of motors and asymmetric
coupling with adjacent lanes is governed by the TASEP principle
but our model allowed for motors to make multiple hops with
their respective speeds within one-time frame. The natural exit
and entry of motors from/into the productive reservoir into/from
the MT lanes are governed by the principles of LK. The entire
dynamics of the motor are subdivided into four major action
phases—loading, forward progression, detachment–reattachment,
and output/delivery governed by the TASEP-LK principles with
asymmetric coupling.

2.4. The influx of kinesins onto the minus
ends of MT MMLS lanes

In DyNAMO, the finite junction reservoir loads Kin3 (F) and
Kin1 (S) onto MT binding sites following a normalized Gaussian
distribution. The inter-arrival time or the time between successive
loading is distributed. The expected run time of the simulation
is proportional to motor generation rate αa, αb (“influx rate”
in motors/s). In Scenarios 1–8, both Kin3 (F) and Kin1 (S) are
loaded onto MTs one kinesin at a time from the finite productivity
reservoir present at the minus end of the MT lanes. As described in
Algorithm 1, kinesin loading is restricted to the binding site i = 1
(referred to as the loading site) at the minus end of each MT. The
kinesins have access to all parallel lanes with equal probability in all
scenarios, except when the flow is forcefully channelized to a single
lane due to proximal staggering in Scenarios 3–5.

Input: Influx_rate (αa, αb), input_reservoir,

particle, lane, site

Output: motor_cargo: Total numbers of Kin3 (F) and

Kin1 (S) motors attach

1 Initialization

2 An infinite reservoir of motor-cargo pair

(input_array) is generated at the given generation

rate (αa and αb)

3 for time← 1 to runtime do

4 temp← input_reservoir [time]

5 lane← one of the lanes (1/2/... T)

6 site← loading site (1)

7 particle [lane][site]← temp

8 if particle [lane][site] == 1 then //

motor_a (Kin3 (F)) is loaded

9 The other parameters (velocity, span, and

lifetime) are updated accordingly.

10 else if particle [lane][site] == 2 then //

motor_b (Kin1 (S)) is loaded

11 The other parameters (velocity, span, and

lifetime) are updated accordingly.

12 else // no motor is loaded

13 particle [lane][site] = 0

14 No changes.

15 end

16 end

Algorithm 1. Kinesin influx model: loading of Kin3 (F) and Kin1 (S) on MTs.

2.5. Unidirectional traversal of kinesins
along the MT lane (TASEP)

We confined our MMLS to a two-dimensional plane, which

is necessary to simplify the current simulation to implement
greater overall complexity with additional parameters and realize

that this may create some bias (Whitesides, 1970). In our two-
kinesin DyNAMO trafficking model, we have defined multiple one-

dimensional LS of T lanes (T ≥ 2) of length L consisting of N

lattice sites (N ≥ 3). The multiple one-dimensional binding sites

are labeled i= 1, 2, 3 ... N, and lattice spacing is l=L/N. The binding

sites i= 1 and i= N define the left and right boundary, while i=2,

3 . . . N-1 is referred to as the bulk. The binding site is characterized

by
{

ni=1, 2, 3 ... N
t=1,2,3 ... t

}

, when the occupied state by motor “a” (denoted

by nit) or motor “b” (denoted by mi
t) is equal to zero (vacant) or

one (occupied). Every site can be occupied by either kinesin or not
occupied by either kinesin type.

To model the transport of two different types of motors, the

faster Kin3 (F) can traverse to the next open site at a rate of

va steps, while the slower Kin1 (S) can traverse at a rate of vb
steps (assuming: va ≥ vb). No kinesin can hop over another to

occupy a forward available site during traversing along the lane

(protofilament). Kin3 (F) upon encountering a barrier (on the

occupancy of the next site by Kin1 (S) or blockage), either laterally
moves into an available lateral MT lane or gets detached into the

productive reservoir. Kin1 (S) is a limited processivity motor. To

characterize the processivity component of motility, we implement
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Kin1 (S) with a processivity length (the maximum distance the
motor traverses on an MT before detachment) of 1,070 nm (i.e.,
equivalent to ∼130 lattice sites). The progressive system dynamics
for different MT transitions based on the modified TASEP are
governed by the following methodologies:

1. Loading:At the site (i= 1), a motor can enter theMMLS with
rate α if unoccupied.

2. Forward progression: If the sites (i+1, i+2 . . . i+v) are
unoccupied, a motor with velocity v can jump from site (i) to
site (i+v) that is equivalent to an 8 nm dimeric kinesin step
in DyNAMO.

3. Lateral movement: If any of the sites (i+1, i+2 . . . i+v) are
occupied, a motor can jump from site (i) to either site (i-1) or
(i+1) of an adjacent lane if unoccupied.

4. Delivery/output: At the site (i = N-v+1, N-v+2 . . . N), if a
motor with velocity v is present it can leave the MMLS from
the plus end of the MT lane.

Limited processivity requires the movement of kinesins to
detach from MTs into an inter-MT reservoir from which they
can either reattach onto the same MT or an adjacent MT in the
MMLS. When congestion prevents reattachment to the same MT,
reattachment must occur to an adjacent MT or the kinesin is
retained in the productive reservoir until sites are available. A
general Algorithm 2 governing the TASEP model is formulated
on the basis of the above methodologies. Different simulation
paradigms are considered for different scenarios. For example,
in Scenario 2, we limit the provisions for lateral movement;
whereas in all other scenarios, both Kin3 (F) and Kin1 (S) have
provisions to move to adjacentMTs upon encountering congestion.
In Scenarios 3–8, a portion of MMLS is staggered to channel
kinesin flow into a singular MT lane either in proximal or distal
ends to evaluate blocked access by a variety of mechanisms
(damage, tubulin modifications, MAPs, and so forth) as described
in the text. The kinesins can overcome crowding by detaching
and reattaching to the localized productive reservoir and MT
availability for movement to an adjacent lateral MT. Previous
studies have included similar concepts of MT lanes and lattice sites
(Dixit et al., 2008; Che et al., 2016; Liang et al., 2016), productive
reservoirs (Leduc et al., 2012; Ciandrini et al., 2014; Feng et al.,
2018), or side-stepping lateral movement to an adjacent MT lane
(Wang et al., 2007; Jiang et al., 2008; Hoeprich et al., 2014), which
are also conceptually included in DyNAMO.

2.6. Reattachment and detachment
dynamics into productive reservoirs (LK)

Productive reservoirs are defined by LK from the lattice sites
(1≤i ≤N-1) of the MMLS. In previous studies, TASEP-LK (Wang
et al., 2007; Vuijk et al., 2015; Dhiman and Gupta, 2016) was used
to define the reattachment and detachment of kinesins to and from
a bulk productive reservoir. In DyNAMO, we define productive
reservoirs instead as a queue of a fixed size corresponding to each
lattice site (motor binding site) on MTs of the MMLS. The LK
dynamics of reattachment and detachment are defined accordingly:

Data: particle, lane, site

1 Initialization

2 for time← 1 to runtime do

3 for i← 1 to T and j← 1 to binding sites do

4 gap← distance between two motors

5 lane← i;

6 site← j;

7 if gap ≥ velocity then // motor moves

with constant velocity

8 Motor jumps from the site (j)→

(j+velocity)

9 The other parameters (velocity, span,

and lifetime) are updated accordingly.

10 else if gap < velocity then

// lateral movement of motor

11 if the corresponding (j+velocity) site of

adjacent lanes is empty then,

12 Motor jumps to this site of adjacent

lanes i ± 1

13 The other parameters (velocity, span, and

lifetime) are updated accordingly.

//crowding-induced detachment of motor

14 else if the corresponding (j+velocity)

site of adjacent lanes is blocked due

to staggering then,

15 Motor is detached into the productive

reservoir.

16 Particle [lane][site]← 0

17 end

18 end

19 if no. of sites traveled on microtubular

lane ≥ processivity then

//processivity-induced detachment

20 motors are detached into a productive

reservoir.

21 Particle [lane][site]← 0

22 end

23 end

24 end

Algorithm 2. TASEP model: forward traversal of Kin3 (F) and Kin1 (S)

on MTs.

1. Detachment: During the kinesin motility along one-
dimensional lattice sites, detachment occurs when one motor
cannot take the assigned hops (stepping) due to crowding.
That is, if the site (i+1, i+2 . . . i+v) of the MT lanes,
such as Kin3 (F) trailing Kin1 (S), will result in Kin3
(F) being detached into a productive reservoir at lattice
site i.

2. Reattachment: In the productive reservoir at lattice site i,
within a given lifetime of the motor, if a site (i-1, i, i+1)
is unoccupied, then the motor reattaches to an open site on
the MT.

3. Leakage: If a motor does not reattach within its lifetime, then
we describe the motor as leaked out of the system into a
non-productive reservoir.
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Algorithm 3 describes the process of reattachment/detachment
of motors (also described as absorption and desorption). We
apply LK to describe the off–on dynamics of motors along
the MTs because of crowding, which also creates opportunities
for motors to reattach to lateral MTs to avoid local crowding
along MTs. All our scenarios considered for simulation have
provision for kinesin reattachment back to MTs on the availability
of vacant sites corresponding to the point of detachment.
Scenarios 1 and 2 featured parallel MT lanes, while Scenarios
3–8 included staggering to limit access to adjacent MTs,
either proximally at the minus end or distally at the plus
end of MTs. The LK model enabled the interpretation of
the on–off dynamics of kinesins under different scenarios and
flow rates.

Input: particle, productive_reservoir, wait, leakage,

lifetime, lane, site

Output: wait: Number of Kin3 (F) and Kin1 (S) waiting

in productive reservoir for reattachment

leakage: Number of Kin3 (F) and Kin1 (S) detached out

of the system in a non-productive reservoir

1 Initialization

2 Productive reservoir of queue length (fixed)

and non-productive reservoirs is present at

each corresponding site of the microtubular

lane.

3 for time← 1 to runtime do

4 for i← 1 to T and j← 1 to N do

5 lane← i;

6 site← j;

7 if lifespan of motors in

productive_reservoir(c[lane]

[site]) ≥ lifetime(lt) then

// leakage of motor

8 Motor is popped from the productive

reservoir and pushed to the non-productive

reservoir.

9 leakage← leakage+1

10 else if lifespan of motors in productive_

reservoir(c[lane][site]) < lifetime(lt)

then // reattachment

11 Motor is popped from the productive

reservoir and reattached to (1 of 9)

neighboring sites of

corresponding_particle [lane][site].

12 The other parameters (velocity, span,

and lifetime) are updated accordingly.

13 end

14 end

15 end

Algorithm 3. LK model: process of reattachment and detachment of Kin3

(F) and Kin1 (S) to and from the productive reservoir along the MTs.

2.7. Delivery of kinesins from the MT plus
end

The transit of Kin3 (F) and Kin1 (S) is to the distal plus
end (i = N) of an MMLS by motor service rate βa, βb given
as an “Outflow rate” in motors/s). At the end of an MT lane,
the kinesins are transferred to a junction reservoir (described
in Algorithm 4). These kinesins at the junction reservoir form a
limited pool of available kinesins that can be loaded onto the next
MMLS segment. This limited reservoir of kinesins is analyzed in
the evaluations of mixed organization of MMLS scenarios in an
extended axonal framework.

2.8. Solution scheme paradigms

The simulation environment uses Python 3.8 for testing the
algorithms in DyNAMO. The code and documentation developed
for DyNAMO are available in the open platform GitHub. The
parameters used are in accordance with biologically observed
data obtained from numerous different sources and summarized
in Table 1. In summary, the model starts by setting up the
MMLS system of T number of parallel lanes and N binding sites.
The dual-motor dynamicity is parameterized by their individual
speed/velocity (v), processive steps (p), and influx rate (α). Based
on the chosen scenario, theMMLS is set up with different boundary
conditions and restrictions within the system. The kinesins from
the finite reservoir in the minus end are loaded onto MT initial
sites at each iterative time stamp. The motors based on the different
decisions governed by TASEP and LK, gradually traverse alongMTs
and exit the system from MT plus ends. The evaluated metrics
(such as outflow rate, dissociation, and dynamicity) and critical
condition cases are considered for depicting different kinesins
of distinct parameters trafficking across various scenarios. To
extensively study the effect of these parameters on multiple linked
segments of MMLS scenarios, we considered a linked architecture
with varied linked MMLS having different scenario restrictions.

Input: particle, velocity, throughput, lane, site

Output: wait: Number of Kin3 (F) and Kin1 (S)

delivered from plus end

1 Initialization

2 for time← 1 to total_simulation_time do

3 for i← 1 to T and j← 1 to lattice sites do

4 lane← i

5 site← j

6 if j+velocity ≥ N (total_lattice_site) then

// delivery of motor

7 motor jumps from site (j)→ junction_repair

8 particle[lane][site]← 0

9 throughput← throughput+1

10 end

11 end

12 end

Algorithm 4. Kinesin delivery model: process of delivery of Kin3 (F) and

Kin1 (S) at MT plus ends to a junction reservoir.

Frontiers inCellularNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncel.2023.1215945
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Chandra et al. 10.3389/fncel.2023.1215945

These individual MMLS segments evaluated in a multiple MMLS
scenario retain their outcomes as discrete segments but when linked
demonstrate the broader impact of distributed or concentrated MT
injuries. The simulations were run on standard desktop processors
(Intel i7-9th generation with RTX 2080 Ti) and took ∼3–4 h for
each scenario. The subcases of each scenario were also evaluated
on GPU clusters at Purdue University. In future, the DyNAMO
model can be scaled up to analyze longer MT tracks with more
protofilaments per MT, as well as incorporate additional kinesins.
However, such an increase in variables will significantly increase
the computational complexity of the model and require access
to more powerful computing resources such as larger clusters
or supercomputers.

3. Results

3.1. DyNAMO, a parameter-dense
theoretical axon framework

To evaluate combined contributions of multiple kinesins
on a disease- or injury- perturbed axonal MT infrastructure
requires the ability to capture detail-rich dynamic information. In
DyNAMO, we apply a TASEP-LK paradigm approach for non-
equilibrium and equilibrium statistical mechanics, summarized
here and detailed in Methods. The simulations are analyzed
in the environment of Python 3.8, with parametric values as
defined from experimental measurements or by assumptions based
on published experimental data (Table 1). Two unidirectionally
trafficking kinesins with different motility and processivity rates
are mathematically described to enable considerations of crowding,
including influx rates, and the influence of motor type in damage
scenarios. In this study, we focus on human conventional Kinesin-
1 KHC and Kinesin-3 Kif1A neuronal kinesins referred to herein
as Kin1 (S) and Kin3 (F) slower and faster motors. Electron
microscopy studies of longitudinal or transverse axon sections were
used to provide guidance on parameters for MT discontinuous
organization. In human hippocampal developing neurons, shorter
MT lengths are reported (4.02 +/– 5.28 um; Yu and Baas,
1994). Detailed MT cytoskeleton maps along axon length in
Caenorhabditis elegans neurons are generally slightly longer 1.2–
10.7 um in length (Chalfie and Thomson, 1979). We apply a
three-MT framework MMLS during simulations with the ability of
kinesins to move between all MTs and capture features of normal
or increased staggering as a simulation of MT injury (Matamoros
and Baas, 2016; Figure 1). The MT surface is modeled as a single
lattice structure, single protofilament-like, with N kinesin-binding
sites along a defined but adjustable MT length. Axonal MTs are
non-contiguous staggered short segments (Figure 1A). Maximum
MT lengths for this study are set at 4,000 nm, reflective of average
MT segment lengths observed experimentally (Yu and Baas, 1994),
and containing up to 500 binding sites of stochastically Gaussian-
envelope-like kinesin steps of 8 nm, the step size of dimeric kinesin
moving along a protofilament (Svoboda et al., 1993; Kojima et al.,
1997; Coy et al., 1999; Okada et al., 2003).

In TASEP, motor interactions with MTs are described by
hard-core repulsion, such that each binding site is accessible to
only one of any kinesin at any moment. TASEP describes bulk

kinesins entering or leaving the system at system boundaries
(MT ends), such as from the AIS at the neuron soma (Petersen
et al., 2014; Kapitein and Hoogenraad, 2015; Leterrier, 2016) or
in interconnected multiple MMLS along the axon length. LK
allows specified actions on transiting kinesins to be mathematically
described, such as kinesins undergoing MT-to-MT jumps or
dissociating into and reassociation from position-correlated inter-
MT reservoirs. Detachments can occur via internal crowding,
processivity limitations, or termination of MT segments, with MT
reassociation when there is open access. The use of positionally
distinct inter-MT reservoirs in DyNAMO rather than a long bulk
reservoir (Leduc et al., 2012; Feng et al., 2018) allows us to capture
stationary positional with on/off dynamicity. High dynamicity
reflects crowding and highlights delayed forward progression
points along the theoretical axon. The positional reservoirs have
an adjustable storage capacity that can be restricted in capacity
and time. Kin1 (S) has been observed to have a long but definitive
lifespan of ∼37 h in the vicinity of axonal MTs (Brunner et al.,
2004; Verbrugge et al., 2009), and in our shorter-term scenarios,
no motors are lost from inter-MT reservoirs, and all eventually
return to the system. The full simulation environment is detailed in
Methods. The corresponding kinetic rates obey a detailed balance
such that the system evolves into an equilibrium steady state.

3.2. Initial patterning and progression of
kinesins on the theoretical axon

In previous studies applying TASEP to two-lane systems,
single particle dynamics vary due to exchange between lanes at
asymmetric rates (Pronina and Kolomeisky, 2006; Jiang et al., 2007,
2008; Cook et al., 2009; Vuijk et al., 2015; Dhiman and Gupta,
2016; Gupta, 2016). Using DyNAMO, we evaluated the impact of
“influx rate” in our multi-kinesin MMLS to study how kinesin-
specific motility parameters such as speed and processivity, as
well as MT-to-MT lateral access or restriction, impact progression.
Two MMLS scenarios and outcomes are described in Figure 2.
In MMLS Scenario 1 (Figure 2A), all MTs are accessible with
lateral movement at any position. This allowance accommodates
the presence of Kin1 (S) and Kin3 (F) of variable speed by allowing
Kin3 (F) to jump laterally to adjacent MTs to avoid crowding and
support forward progression. In Scenario 2 (Figure 2B), no lateral
access is allowed. When the Influx rate is varied incrementally
from 10 to 15 motors/s, Kin1 (S) is minimally affected, whereas the
impact on the detachment of Kin3 (F) is significant with 400–700
motors detached per second. Comparative histograms (Figure 2C
vs. Figure 2D) and quantitative analysis (Figure 2E vs. Figure 2F)
are shown. The primary contributing factor to the detachment
of Kin3 (F) is crowding, whereas, for Kin1 (S), it is limited
processivity, which is consistent with previous theoretical models
(Leduc et al., 2012; Ciandrini et al., 2014). In our analysis, early
lateral access to MTs in axons has the primary impact on defining
the initial kinesin traffic patterning in a multiple motor system,
which is consistent with experimental observations in vivo (Rank
and Frey, 2018).
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FIGURE 2

Contributions of Influx rate and lateral MT-to-MT access in defining axonal kinesin progression. Traversing kinesins reflect an overall dynamic that

involves influx, forward motion, detachment, and reattachment to the same or an adjacent parallel MT in the MMLS based on site availability. (A, B)

Two MMLS scenarios are depicted, one with provision (Scenario 1) for kinesins to move laterally onto adjacent parallel lanes and one without

(Scenario 2). (C, D) Detachment metrics of Kin1 (S) and Kin3 (F) are measured and plotted in histograms in relation to influx rate and MMLS scenarios

for parallel MT lanes. (E, F) In Scenario 1, accessibility to parallel MTs is reflected in the low detachment of Kin1 (S) and Kin3 (F). However, in Scenario

2, restricted lateral movement along with an increase in influx rates promotes the detachment of faster motor due to hindrance (10x-15x for influx

rates of 10–15 motors/s).

3.3. Simulated axonal injury di�erently
impacts kinesin types in dissociation or
progression

To simulate axonal injury such as stretch-induced gaps
or destabilization of MTs affecting length due to partial
depolymerization, we modeled the impact of altered MT
staggered lengths in our MMLS on kinesin progression vs.
on/off dynamicity. Proximal or distal staggering was evaluated in
multiple MMLS scenarios with 12.5% staggering considered within

normal variation (Scenario 3) and 25–50% staggering reflecting
increasing degrees of injury-induced perturbation (Scenarios 4
and 5, respectively). Staggering creates channelization of kinesins
(Figures 3A–C). When staggering is proximal and the influx rate

is low (<13 motors/s), Kin3 (F) is impacted, whereas Kin1 (S)

is not impacted (Figures 3D, E). However, at higher influx rates

(>13 motors/s), bulk crowding occurs due to the channelization

of multiple kinesin types with differing motility parameters onto a

single MT lane. This results in a high rate of detachment of both
Kin1 (S) and Kin3 (F) into the inter-MT reservoir. The detachment
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rate for staggered injured MT tracks (such as Scenarios 4 and 5)
increases by 3–4 times compared to a normal MT Scenario 3 for
faster Kin3 (F), while it results in an almost 10-fold increase for
the slower Kin1(S). In addition, channelization and influx rates
combine to limit the availability of free MT sites for kinesins to
move along a singular MT lane. Thus, a huge dynamic on-off
activity is observed with an increased length of channelization.
DyNAMO reveals that during proximal channelization, and
dependent on influx rate, the slowest moving kinesin dictates the
progression of all the kinesins (see Figures 3F, G) until additional
parallel MT lanes become available for MT-to-MT jumps. The
outcomes support a mechanistic need to limit staggering within
the AIS or apply gating controls at the AIS that have been proposed
biologically (Petersen et al., 2014; Kapitein and Hoogenraad, 2015;
Leterrier, 2016).

Increased staggering length at the distal end of the MMLS
(Figures 4A–C) was also modeled at 12.5% (Scenario 6), 25%
(Scenario 7), and 50% (Scenario 8). In distal staggering, the initial
uniform loading and distribution of the motors along the parallel
MT lanes abruptly transitions to channeling. Kin1 (S) and Kin3 (F)
motors become channelized onto a dedicated single MT lane. At
a low influx rate, Kin3 (F) is primarily affected, whereas a higher
density of motors results in bulk crowding that impacts both Kin1
(S) and Kin3 (F) forcing increased detachment. Histogram plots
of staggered vs. open MT regions (Figures 4D, E) show the effect
of distal channelization on kinesins with different motility rates.
In summary, an increased initial influx rate of motors from 10 to
15 motors/s results in denser packing of motors on the MMLS
that increases dynamicity abruptly at the junctional change to
staggering. The channelization length (12.5, 25, or 50% blockage
of lateral binding sites) impacts the progression rate, defined by
the slowest motor, and further impacts the degree of dynamicity
along the staggered column (Figures 4F, G). The rate of on–off
activity increases proportionately with increases in the length of
staggered columns. The DyNAMO model reveals the importance
of mapping the natural and injury distribution of staggered axonal
MTs along the axon length in future. Furthermore, DyNAMO
reveals that proximal staggering of axonal MTs at the AIS or along
the axonal MT length can generate a gatekeeper effect dominated
by slower kinesins, whereas distal staggering has a clearing effect
that can remove the bulk of kinesins such that their reattachment
will immediately influence the downstream distribution of kinesins
on the theoretical axon and therefore signaling output.

3.4. Kinesin dynamicity is elevated in axonal
injury and impacts concentrations of
axon-distributed motors

We refer to the detachment and reassociation of kinesin
as dynamicity and compare different scenarios of MT lattice
staggering in the MMLS and influx rates on the dynamicity
of kinesin types (Figure 5). The DyNAMO allows kinesin
reattachment from reservoirs toMTs at plus/minus one step around
that detachment site. Four MMLS scenarios with influx rates of 10
or 15 motors/s were compared (Figures 5A–D), namely Scenario
1 (maximum MT lengths and MT-to-MT lateral access), Scenario

2 (maximum MT lengths with no lateral movement permitted),
Scenario 4 (25% proximal staggering), and Scenario 7 (25% distal
staggering). For each scenario and influx rate, four dynamicity
maps are shown that represent data for multiple conditions that are
Kin3 (F) and Kin1 (S) separately, both motors combined, and Kin1
(S) alone on an expanded x-axis scale. In Scenario 1, which is least
restrictive for MT access, the rate of detachment for both Kin1 (S)
and Kin3 (F) is nominal at 10 motors/s (Figure 5A, central column,
note scales, and dispersed peaks). The Kin3 (F) processivity is
equivalent to the MT maximum length in our defined parameters,
and the allowance of MT-to-MT transitions results in minimal
dissociations affected by Kin1 (S) in Scenario 1 at 10motors/s. At an
increased 15 motor/s, the dynamicity of both Kin1 (S) and Kin3 (F)
increases due to a higher crowding of motors in between MT lanes
(Figure 5A, right, note scales, and compacting peaks). In Scenario
2, when no lateral MT-to-MT access is permitted (Figure 5B), the
flow rate and composition of bound motors on MTs are dictated
by slower Kin1 (S). This is due to the forced dissociation of
Kin3 (F) when it trails and encounters Kin1 (S) (Figure 5B central
column, note scales, and elevated compacted dynamicity plot). The
elevated blue peaks are in accordance with the high dynamic on-off
characteristic of Kin3 (F) along the bulk. In scenarios with proximal
(Scenario 4, Figure 5C) or distal staggering (Scenario 7, Figure 5D)
and a slower flow rate of 10 motors/s, the Kin1 (S) motor is
nominally affected, whereas Kin3 (F) due to hindrance along the
singular MT lane by the slower Kin3 (S) has increased dissociation
to the productive reservoir and dynamic on–off flow in channeled
regions. At 15 motors/s, both kinesins are limited in progression,
with increased dissociation and limited ability to reassociate due
to crowded conditions, effectively gating the downstream flow of
motors and the type of motors progressing (Figure 5C, central and
right columns, note scales). In situations involving distal staggering
and high influx rates of 15 motors/s (Figure 5D, right, note scale),
we observed bulk detachment of both motors, resulting in a much
crowded and channelized flow with limited progressive movement
due to limited access to rejoin MTs. This is reflected in a flatter
dynamic plot, indicating a narrow band of flow. The distribution
and flow dynamics of the kinesins along an MMLS and productive
reservoir in two staggered scenarios (Scenarios 4 and 7) are shown
in Supplementary Videos 1, 2. Overall, our findings suggest that
under high flow rates of 15 motors/s, the channelization of motors
at the distal end of theMTs affects the dissociation of both faster and
slower motors. The results of our DyNAMO simulations highlight
that the alignment of axonalMT organization with different kinesin
parameters, such as speed and processivity, plays an important role
in the spatial flow of kinesin types and concentrations along the
axonal MT network.

3.5. DyNAMO analysis of multiple injury
scenarios along the axon length and signal
outputs

To gain a better understanding of how motors flow in bulk
along the axon in different scenarios and segments, we developed a
multi-MMLS heuristic consisting of three linked MMLS scenarios
and a junctional reservoir. We computed the outflow rate of each
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FIGURE 3

Proximal MT staggering on the channeling of kinesins. Kinesin speed (motility rate) and duration of movement (processivity) with multi-MT

architecture combine to a�ect kinesin axonal progression. (A–C) Diagrammatic representations of MMLS scenarios for proximally staggered MTs.

Staggering 12.5% (Scenario 3, Normal), 25% (Scenario 4, TBI), and 50% (Scenario 5, TBI) were modeled and are regions inaccessible to the kinesins.

Higher staggering in Scenario 5 is considered a more severe injury to MTs. (D, E) A graph is presented that shows the e�ects of di�erent influx rates

on the detachment rates of Kin1 (S) and Kin3 (F) in staggered scenarios. The detachment rate for each motor is plotted on the y-axis, and the influx

rate is plotted on the x-axis. (F, G) The channelization of the Kin1 (S) and Kin3 (F) from the proximal minus end on the MT lanes favors the flow of a

kinesin with slower motility. At low influx rates (10–13 motors/s), a comparable di�erence in the detachment rates of Kin3 (F) with the Kin1 (S) is

observed. However, beyond an influx threshold (14–15 motors/s), the increased motor density results in the channelization with increased rates of

kinesins being forced into dynamic productive reservoirs.

motor from each individual lane/MT of the MMLS to assess the
impact of different scenarios on the output flow of Kin3 (F) and
Kin1 (S). We show two methods for representing motor delivery
at different rates: “DETAILED” flow, which shows motor delivery
at every computation timestep (40ms; Figures 6A, B, upper rows),
and “BINNED” data, which is a collective output over a timeframe
of 1 s, equivalent to 25 iterations (Figures 6A, B, bottom rows).
To illustrate the temporal output dynamics, we also generated
simulation videos (Supplementary Videos 3, 4) for specific MMLS
Scenarios 4 and 7. The temporal output of the two motor types
was tracked through each of the single scenario MT sections of
the multi-MMLS scenarios from left to right. Each dot along the
time (x) axis represents the cumulative number of motors output
from each MT section per second (values indicated on the y-
axis; Figures 6A, B, right). In the multi-MMLS Scenario 1-4P-
7D (P-25% proximal staggering and D-25% distal staggering), the
binned plot in Section 1 reveals that motors are equally output
from all three lanes due to the provision of lateral movement on

adjacent lanes that avoids crowding. As motors enter and exit
Section 2, proximal staggering exists, and the slower motor Kin1
(S) dominates the singular channeled lane (Lane 2), while faster
motors tend to move to adjacent lanes (Lanes 1 and 3). The
output of Section 2 reflects the pattern established by the proximal
staggering, as motors retain their favorable positions. Entering and
exiting Section 3, since all the outflows are channelized at the
distal end to a single lane (Lane 2), the output reflects a restored
mixed motor composition. When a different MMLS Scenario
1-7D-4P is evaluated in which distal and proximal staggering
are adjacent, the final output from each MT is reflective of the
previous injury event. In both evaluated multi-MMLS scenarios,
we observe that the temporal outflow rate of kinesins is ∼4–5
motors/s for all sections. To further investigate the relationship of
kinesin processivity and MT length with the temporal outflow, we
simulated similar multi-MMLS scenarios with a longer MT length
of 8µm (Supplementary Figure 1). We observe that for longer
MT lengths within the multi-MMLS, the temporal outflow rate
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FIGURE 4

Distal MT staggering on the channeling of kinesins. Channelization of motors at the distal end of MTs has a considerable e�ect on kinesins and

controls the outflow of motors from the plus end. Staggering at the distal end of adjacent MT lanes forces the freely flowing motors from parallel

adjacent lanes onto a reduced number of MTs inducing crowding between Kin1 (S) and Kin3 (F) and motor detachment. (A–C) Diagrammatic

representations of MMLS scenarios for distal staggered MTs of 12.5% (Scenario 6, Normal), 25% (Scenario 7, TBI), and 50% (Scenario 8, TBI). (D, E)

Graphical representation showing Kin1 (S) and Kin3 (F) detachment rates for di�erent influx rates for distal staggered scenarios. (F, G) Influx of

kinesins at the point of transition to a single staggered path (channelization) creates immediate dense crowding of motors. This junction point results

in the detachment/reattachment dynamicity of both Kin1 (S) and Kin3 (F) with productive reservoirs. At low influx rates, dynamicity is primarily

influenced by motor processivity. However, at high influx rates, crowding plays a more dominant role in regulating the dynamicity of motors.

is comparatively lower (∼2–3 motors/s), an indication that MT
displacements of kinesins, on/off dynamicity, and loss of kinesins
from the productive reservoir are greater.

In Figure 6, we evaluated the motor distribution output for
different multi-MMLS scenarios under a continuous motor flow
rate of 10 motors/s. We next evaluated the impact of a pulsed input
of motors in several multi-MMLS scenarios at 10/15 motors/s.
We either generate a “fresh” block and release it to free MTs
(Figure 7B) or we assume MTs already contain residual motors
“sprinkled” due to “previous” unblocked trafficking in that region
(Figure 7C). The modeled distributed P-D multi-MMLS scenarios
are 1-3P-6D (12.5%), 1-4P-7D (25%) (Figure 7A), and 1-5P-8D
(50%), and D-P multi-MMLS scenarios that create a larger injury
site are 1-6D-3P (12.5% staggering), 1-7D-4P (25% staggering),
and 1-8D-6P (50% staggering). All injury scenarios (25 or 50%
staggering) are compared to the 12.5% staggering considered
within the normal range (Figures 7B, C, gray rows). We applied
a pulsed input for 15 s which involved 300–450 motors for both

Kin1 (S) and Kin3 (F) at association rates of 10 and 15 motors
per second, respectively. We recorded the time it took for all
the motors to exit Section 3 (pulsed time output) in each multi-
MMLS scenario, and the results are listed in the tables (Figures 7B,
C). The green-shaded ranges are near-normal (gray shading).
When intermittent successive regions of staggering are present,
such as in multi-MMLS P-D scenarios, kinesins take longer to
exit (delayed progression) than when a larger single continuous
staggered region (our multi-MMLS D-P scenarios) is present.
Thus, DyNAMO predicts that smaller intermittent damage is more
disruptive in injury scenarios. The higher flow rate in injury
scenarios coupled with pulsed input in a sprinkled multi-MMLS,
generates the greatest delays in output for both motors. Kin3
(F) is affected by “full” block and release for 15 motors/s, while
Kin3 (F) and Kin1 (S) are also affected by slower inflow in
MMLS for a higher percentage of staggering. All these data are
consistent with counteracting factors of motor speed, processivity,
MT organization, and crowding.
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FIGURE 5

Axonal injury scenarios reveal increased kinesin dynamicity in lieu of progression. Influx rate, kinesin-specific parameters of speed and processivity,

and crowding dynamics contribute to motor dynamicity that stalls the progressive flow of kinesins. Each graph represents the dynamicity of kinesin

on-o� activity with the productive reservoir. The first subplot shows the dynamicity of Kin3 (F) [Red] followed by a reduced scale flow of Kin1 (S)

[Blue]. The next subplot shows a comparative study of both the kinesin [note the reduced axis]. The final subplot shows the detachment dynamics of

Kin1 (S) in true scale. (A) For Scenario 1, Kin3 (F) and Kin1 (S) have a minimal collision throughout the lane, while the majority of the detachment of

Kin1 (S) is limited by its processivity. (B) With the restriction of lateral movement in Scenario 2, the Kin3 (F) are heavily crowded by the slow-moving

Kin1 (S) throughout the MTs, observed as the wide purple lines. (C, D) For staggered scenarios, a combination of channeling and higher influx rates

results in significant changes in the flow and patterning of the kinesins on MTs.
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FIGURE 6

Temporal motor output from combined normal and injury-linked MMLS scenarios. Di�erent scenarios and their restrictions dictate the final temporal

output of kinesins along the axon length. The figure shows the temporal outflow of motors from di�erent lanes of a combined multi-MMLS.

Maximum MT length of 4µm. In (A, B) the left figure illustrates motor delivery either as “DETAILED” per 40ms time step or “BINNED” within a 1-s

timeframe, equivalent to 25 iterations. [(A)—right] The rotated scatter plots show a varied range of dynamicity of motors for di�erent scenarios. In

multi-MMLS Scenario 1-4P-7D, we see that the outflow of motors is equally distributed along the three parallel MT lanes of Section 1 (Scenario 1),

consistent with the provision of lateral movement. However, for Section 2 (Scenario 4P), proximal staggering channelizes motors at entry. Beyond

the staggering point due to overcrowding of motors, most of the slower motors (red) remain in the middle lane forcing the faster motors (blue) to

move to adjacent lanes (here Lanes 1 and 3) as evident from the increased blue dots. In Section 3 (Scenario 7D), all motors are channelized to a

singular middle lane at the opposite distal end, which results in a compressed output. [(B)—right] Similar dynamics can be seen for sections in

Scenario 1-7D-4P.

4. Discussion

Mathematical models of neuronal axons complement and
expand biological studies by providing a missing correlation
between nanoscale mechanisms and spatio-temporal dynamic
events relevant to neuronal function and signaling. The nanoscale
dynamics of motors along the axon’s dense polar (Burton and
Paige, 1981) naturally staggered and discontinuous MT networks

(Baas et al., 2016; Prokop, 2020) in living biological systems
are still largely undescribed experimentally. This limits the full
understanding of the normal and perturbed dynamic mechanisms
of multiple interacting biomolecules in living systems. Moreover,
surprisingly few studies exist that have detailed regional maps of
axonal MT organization (Chalfie and Thomson, 1979; Yu and
Baas, 1994; Reis et al., 2012), and virtually no study exists that
map axonal MT organization and staggering distribution along the
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entire length. Due to limited nanoscale experimental correlations
that reflect dynamics, axonopathies and axonal transport deficits
in neurological disorders remain largely mysterious, hindering
our ability to unravel neuropathology mechanisms (Millecamps
and Julien, 2013). The DyNAMO theoretical model of axonal
transport was developed to reveal the complex interrelationship
between normal and injury-perturbed MT axonal architecture
and the impacts on interactions of multiple motor protein types
traversing that infrastructure. DyNAMO permits multi-parameter
co-evaluations relevant to axonal injury (Figure 7D), including
multiple kinesin types with distinct speed and processivity motility
parameters, the ability to influence influx rate, and to track motor
movements as MT-to-MT, detachment/reassociation dynamicity,
stationary states, or forward progression, and in the context of
axonal MT injuries reflected in MT length (or blocked access)
and MT staggering that are regional or distributed lengthwise.
No other model currently exists with this complexity to simulate
axonal transport.

DyNAMO provides modeling of axonal injury and is
expandable to consider broader axonal mechanisms and
applications. In the context of TBI and CTE, DyNAMO is
expected to help identify, classify, and model disease hallmarks
and biomarkers relevant to injury severity by kinesins and their
cargos of vesicles, organelles, RNA, proteins, and neurotransmitter
signaling molecules, For example, recent studies indicate that TDP-
43, an indicator of severe damage to axons, is transported by KHC
in neurons, Kin1 (S) modeled here, with the overexpression or
inhibition of KHC leading to an increase or decrease, respectively,
in the transport of TDP-43 (Chu et al., 2019). DyNAMO analysis is
consistent with this finding and reveals an impressive tolerance of
slower Kin1 (S) kinesin to minor alterations in MT infrastructure,
with effects only seen with more severe damage scenarios,
supporting TDP-43 as a severe injury hallmark. In contrast, we
observe immediate effects with minor damage on faster kinesins
such as Kin3 (F) and their cargos. In relevance to signaling output,
DyNAMO reveals how axonal injuries can delay signaling and
generate altered signaling patterns, composition, and strengths in
relevance to kinesin types. DyNAMO allows modeling multiple
kinesins in relation to perturbations to axon MT infrastructure
in this study, relevant to injury states (Matamoros and Baas,
2016; Muñoz-Lasso et al., 2020) but is generalizable to address
a multitude of future questions on additional mechanisms that
impact kinesin access to MTs in the context of MT-associated
proteins (MAPs), such as CAMSAP (Jiang et al., 2014; Yau et al.,
2014) and MAPT (Barbier et al., 2019), or post-translational
tubulin modifications (Janke and Chloë Bulinski, 2012) postulated
to represent a code for binding interactions, as well as MT length
regulating agents (Conze et al., 2022). We also demonstrate
DyNAMO’s flexibility to evaluate additional parameters, such
as reduced local levels of ATP available to kinesins in injury
zones, a consequence of disrupted mitochondrial transport in
neurodegeneration (Sleigh et al., 2019; Supplementary Figure 2).
By subclassifying our position-specific productive reservoir, we
regionally evaluated ATP concentration differences relevant to
injury and non-injury sites. In the case of low ATP concentration,
we defined a longer time constraint on kinesins vs. no time
restriction on normal ATP levels in non-injury regions. The

simulation output reveals that when the availability of ATP is
reduced, there is delayed output flow of both motor types, with
a higher impact on Kin1 (S) low processivity kinesin, and with
output further influenced by the damage scenarios. In DyNAMO,
any impact that removes a motor from the MT to the productive
reservoir (i.e., crowding or limit of processivity or lack of ATP)
offers an opportunity to control motor stationary position vs.
forward motion, or in future studies, a switch between the
anterograde and retrograde movement of cargo. Although in
this study we focus on kinesin anterograde transport and MT
axonal injury scenarios, intracellular transport of cargo is often
bidirectional. This is due in part to retaining a mixed steady-state
population of opposite polarity unidirectional kinesin and dynein
motors (Encalada et al., 2011). Simulations will help distinguish
multiple mechanisms that may include the ratio of motor types
in a tug of war (Gross, 2004; Welte, 2004) or regulation of motor
activity, including autoinhibition (Verhey and Hammond, 2009;
Akhmanova and Hammer, 2010) or KLC interactions between
the intact Kinesin-1C/KLC1 complex and dynein, which were
shown to be needed for proper dynein retrograde activity (Martin
et al., 1999; Ally et al., 2009; Encalada et al., 2011). Since a switch
to the retrograde motion of motor-coated vesicles may impact
several local levels of kinesins, consideration of the influx of
the new kinesins will also need to be evaluated. In our studies
with DyNAMO, we note that the rate of influx of motors has
interestingly different impacts on kinesin types. We also anticipate
the use of DyNAMO in the analysis of additional neuronal
kinesins (Hirokawa and Takemura, 2005; Hirokawa et al., 2009)
or evaluating the impact of multiple kinesins on processivity
and obstacle avoidance (Ferro et al., 2019). DyNAMO reveals
how axonal MT organization and multiple kinesins interplay to
generate localized axonal crowding and patterning. Actin rings
have also been proposed to play a role in localized crowding
along the axon length (Sood et al., 2018). To what degree these
two mechanisms, axonal MT staggering and actin rings, may
co-contribute to the axonal flow of information is not yet known.
In summary, DyNAMO is a powerful expandable platform for
rigorous investigation of axonal transport mechanisms that reflect
biological mechanisms and disease.

Finally, we anticipate that DyNAMO and other sub-neuronal
models will also benefit the composition of larger neuronal
communication models. We previously modeled the neuron as a
nanoscale communication system using experimental data from
multiple biological studies to understand and compare amyloid-
beta toxicity and altered calcium signaling in Alzheimer’s disease
(Banerjee et al., 2018) in end-to-end events in intracellular
signaling. It is anticipated that neuronal compartment models such
as DyNAMO for axonopathies will advance biomedical research,
analogous to models of synapses to evaluate synaptopathies for
autism spectrum disorders (Chatterjee et al., 2021) and the spatial
dendritic context of synaptic signaling (Larkum and Nevian, 2008;
Tønnesen and Nägerl, 2016) in cognition and psychiatry. New
initiatives toward mapping the spatial three-dimensional cellular
context of rodents and eventually the human brain also make it
imperative to continue to build and strengthen models of neuronal
function (McMenamin et al., 2003; Watanabe et al., 2004; Pa?ca,
2018). Fully developed software and hardware computational
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FIGURE 7

Intermittent axonal injuries are more disruptive than single broader impacts. Illustrated and quantified is the comprehensive flow of the dual kinesins

along the axon length when encountering di�ering injury scenarios in a multi-MMLS format evaluated at influx rates of 10 and 15 motors/s. (A)

Representative diagram of the multi-MMLS Scenario 1-4P-7D. The other multi-MMLS scenarios used in (B, C) are not shown. In (B, C) we provide an

input pulse of kinesins for 30 s and then measure the time required for all motors to exit the system. We include benchmark normal multi-MMLS

scenarios (1-3P-6D and 1-6D-3P), at 10 or 15 motors/s influx. The data output is shown for spaced/intermediate [intm] and clustered/continuous

[cont] axonal injuries. In (B) we use a full block and release multi-MMLS scenario, such that the Kin3 (F) and Kin1 (S) influx occurs on an empty MT

MMLS from the minus end to delivery to MT plus ends. In (C) we model scenarios assuming an initial semi-dense “sprinkled” distribution of motors on

(Continued)
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FIGURE 7 (Continued)

the multi-MMLS and new motors entering that MT injury region. For (B, C) our [intm] TBI MMLS scenarios shows a significant delay vs. normal

controls [gray] in the throughput of both the Kin1 (S) and Kin3 (F). When an initial semi-dense “sprinkled” state of the multi-MMLS scenarios is used

the e�ect of crowding is consistent across the scenarios but with substantial delay to output. In comparing [intm] Scenarios (1-4P-7D and 1-5P-8D),

there is a reduced and gated flow of downstream motors for Kin1 (S) and Kin3 (F) compared to the similar influx conditions for [cont] axonal injury

(1-7D-4P). (D) The DyNAMO analysis engine is a parameter-dense platform that provides new information to understand underlying changes in

axonal transport in the context of axonal injury to benefit downstream diagnostics and therapies for traumatic brain injury and other axonopathies.

models that interlink synaptic function, dendritic mechanisms,
somatic correlations, and axonal signaling are almost certain to be
as complex as larger topological models of brain function (Hennig,
2013; Chen and Sneyd, 2015). DyNAMO represents an innovative
significant step in deciphering, visualizing, and quantifying axonal
MT cytoskeleton end-to-end transport mechanisms in order to
keep pace with the experimental realization of nanoscale structures
and processes in biological systems. DyNAMO use will benefit
studies relevant to a range of axonopathy diseases andmechanisms,
including relevance to brain trauma or cognitive disorders such as
Alzheimer’s disease. The greatest challenge in modeling biological
aspects of axonal transport with DyNAMO is expected to primarily
be in computing power; currently, simulations are run on a laptop
or small GPU cluster, whereas more complex parameters and
interrelationships are expected to expand this need, particularly
for full three-dimensional complex interrelationships. Where
experimental detail is lacking, assumptions must be generated that
may have compounding downstream effects. Because our focus was
on the interrelationship of MT infrastructure and kinesin types,
layers of kinesin regulation were not yet modeled in DyNAMO,
such as multimers of kinesins that can affect processivity and
bypassing obstacles, as well as dimerization that affects processivity.
DyNAMO establishes a robust platform that can be built on by
the user to make parameter and simulation decisions based on
mechanistic questions.
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