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During brain and spinal cord development, GABA and glycine, the inhibitory

neurotransmitters, cause depolarization instead of hyperpolarization in adults.

Since glycine and GABAA receptors (GABAARs) are chloride (Cl−) ion channel

receptor, the conversion of GABA/glycine actions during development is

influenced by changes in the transmembrane Cl− gradient, which is regulated

by Cl− transporters, NKCC1 (absorption) and KCC2 (expulsion). In immature

neurons, inhibitory neurotransmitters are released in a non-vesicular/non-

synaptic manner, transitioning to vesicular/synaptic release as the neuron

matures. In other word, in immature neurons, neurotransmitters generally act

tonically. Thus, the glycine/GABA system is a developmentally multimodal system

that is required for neurogenesis, differentiation, migration, and synaptogenesis.

The endogenous agonists for these receptors are not fully understood, we

address taurine. In this review, we will discuss about the properties and function

of taurine during development of neocortex. Taurine cannot be synthesized

by fetuses or neonates, and is transferred from maternal blood through the

placenta or maternal milk ingestion. In developing neocortex, taurine level is

higher than GABA level, and taurine tonically activates GABAARs to control radial

migration as a stop signal. In the marginal zone (MZ) of the developing neocortex,

endogenous taurine modulates the spread of excitatory synaptic transmission,

activating glycine receptors (GlyRs) as an endogenous agonist. Thus, taurine

affects information processing and crucial developmental processes such as

axonal growth, cell migration, and lamination in the developing cerebral cortex.

Additionally, we also refer to the possible mechanism of taurine-regulating Cl−

homeostasis. External taurine is uptake by taurine transporter (TauT) and regulates

NKCC1 and KCC2 mediated by intracellular signaling pathway, with-no-lysine

kinase 1 (WNK1) and its subsequent kinases STE20/SPS1-related proline-alanine-

rich protein kinase (SPAK) and oxidative stress response kinase-1 (OSR1). Through

the regulation of NKCC1 and KCC2, mediated by the WNK-SPAK/OSR1 signaling

pathway, taurine plays a role in maintaining Cl− homeostasis during normal

brain development.
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Introduction

Taurine (2-aminoethane-1-sulfonic acid), a sulfur-containing
amino acid, is the most abundant amino acid in the central nervous
system (CNS) and has been extensively studied (Kontro et al.,
1984; Huxtable, 1989). Taurine functions as a partial activator of
GABAAR and induces Cl− currents in neuronal cells (Ye et al.,
1997). Compared to the adult brain, the immature brain contains
higher levels of taurine, despite the limited ability to produce
taurine during fetal development (Kaczmarek, 1976; Hayes and
Sturman, 1981; Stipanuk et al., 1984; Ghisolfi, 1987; Benitez-
Diaz et al., 2003). In mammals, taurine, an essential nutrient for
fetal development, is acquired from the maternal source via the
placenta during gestation, and neonates receive taurine through
maternal milk ingestion (Sturman et al., 1977; Sturman, 1981).
In addition, taurine concentrations are significantly higher in
umbilical venous plasma than in the maternal artery, and taurine
acts as a trophic factor and neuromodulator in the development
of the CNS (Bernardi, 1985; Michel et al., 1994; Cetine et al.,
1996; Chen et al., 1998). In kittens with a taurine deficiency, it
was reported that a delay in the migration of granule cells from
the outer layer of the cerebellum to the inner layers (Sturman
et al., 1985). In addition to physiological functions of taurine in
the developing brain, which have been established in previous
studies, we demonstrated that endogenous taurine plays a role
in activating GABAARs and influencing radial migration in the
developing cerebral cortex (Furukawa et al., 2014).

In the developing brain, the primary inhibitory
neurotransmitter GABA elicits depolarization, while in the
adult brain, it induces hyperpolarization. This switch in the
effects of GABA from depolarization (resulting in Cl− efflux) to
hyperpolarization (resulting in Cl− influx) during development
is attributed to changes in the Cl− gradient across the cell
membrane. The regulation of this gradient involves cation-chloride
cotransporters, such as NKCC1 (which facilitates Cl− uptake) and
KCC2 (which promotes Cl− extrusion), specifically expressed in
neurons. During the early stages of neuronal development, GABA
is released through non-vesicular and non-synaptic mechanisms
(Owens and Kriegstein, 2002; Manent et al., 2005). Consequently,
the activation of GABAARs is typically tonic and primarily
influenced by the ambient GABA present in the surrounding
environment. In immature neurons, GABAAR-mediated tonic
conductance is depolarizing (sometimes excitatory) because the
intracellular Cl− concentration is maintained high by the balance
of Cl− transporters (Owens et al., 1996; Ben-Ari, 2002; Yamada
et al., 2004). It is believed that this tonic conductance through
GABAARs plays a crucial role in various developmental processes,
including neurogenesis (LoTurco et al., 1995; Haydar et al., 2000;
Andang et al., 2008), neuronal migration (Behar et al., 1996, 1998,
2000, 2001; López-Bendito et al., 2003; Cuzon et al., 2006; Heck
et al., 2007; Bortone and Polleux, 2009; Denter et al., 2010; Inada
et al., 2011; Inoue et al., 2012), and synaptogenesis (Nakanishi
et al., 2007; Wang and Kriegstein, 2008).

Altered GABAergic functions that arise during early brain
growth are caused by variations in Cl− homeostasis and play
important roles in the development of the neocortex by regulating
processes such as synaptogenesis and laminar organization

(Figure 1). During neural development, GABA, which is non-
synaptically released from GABAergic neurons, has a paracrine
effect on immature neurons (Demarque et al., 2002; Manent et al.,
2005), which may influence both radial migration (Behar et al.,
1996, 1998, 2000, 2001; Heck et al., 2007; Denter et al., 2010)
and tangential migration (López-Bendito et al., 2003; Cuzon et al.,
2006; Bortone and Polleux, 2009). The MZ plays a critical role
in the developmental processes of cell migration and lamination
within the cerebral cortex. Although Cajal-Retzius cells and non-
Cajal-Retzius cells in the MZ are temporary cell populations,
they both receive functional synaptic inputs and play a role in
transient synaptic circuits. These synaptic interactions involving
different cell types within the MZ are believed to be instrumental
in the activity-dependent maturation of the neocortex, considering
their vital contribution to structural development. Previous studies
have highlighted the significance of these synaptic integrations in
understanding the dynamic developmental processes occurring in
the neocortex (Hestrin and Armstrong, 1996; Zhou and Hablitz,
1996; Radnikow et al., 2002; Luhmann et al., 2003; Soda et al., 2003).
The intricate synaptic networks formed within the MZ are likely to
contribute to the overall functional and structural organization of
the cerebral cortex during development (Kilb et al., 2011).

The transcriptional regulation of KCC2 is influenced by
brain-derived neurotrophic factors (Aguado et al., 2003; Rivera
et al., 2004; Coull et al., 2005) and GABA (Ganguly et al.,
2001). Additionally, KCC2 function is modulated through post-
translational mechanisms such as phosphorylation (Kelsch et al.,
2001; Fiumelli et al., 2005; Khirug et al., 2005; Wake et al., 2007)
and other pathways (Balakrishnan et al., 2003; Ikeda et al., 2004;
Blaesse et al., 2006; Inoue et al., 2006). Previous studies suggest
that the WNK-SPAK/OSR1 signaling pathway plays a role in the
regulation and activation of NKCC1 through phosphorylation (Xu
et al., 2000; Dowd and Forbush, 2003; Richardson and Alessi, 2008;
Kahle et al., 2010). de Los Heros et al. (2006), Garzon-Muvdi et al.
(2007), and Rinehart et al. (2009) proposed that the WNK signaling
pathway is also responsible for the activation of KCCs, such as
KCC2. Activation of WNKs is triggered by osmotic stress, but the
upstream signaling mechanism is currently unknown (Anselmo
et al., 2006; Richardson and Alessi, 2008; Zagórska et al., 2007).

Taurine is an agonist of both GABAA
and glycine receptors

It is known that taurine structurally resembles GABA and
glycine and interacts with both GABAAR and GlyRs to induce
chloride currents in neuronal cells (Linne et al., 1996; Ye et al.,
1997). GlyRs are pentameric proteins composed of α and β

subunits. Five glycine receptor subunits have been identified
consisting of 4 alpha (1–4) and one beta subunit. During
development, homomeric α2 GlyRs are abundantly expressed in
neurons (Kuhse et al., 1991) and are activated by taurine with
lower affinity than glycine (Le-Corronc et al., 2011). GABAARs
are composed of five subunits, and nineteen distinct subunits of
GABAARs (α1–6, β1–3, γ1–3, δ, ε, ϕ, π, and ρ1–3) have been
identified. Depending on the composition of subunits, GABAAR
subtypes have different pharmacological and electrophysiological
properties (Mehta and Ticku, 1999; Sieghart and Sperk, 2002). In
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FIGURE 1

In the VZ and SVZ, ambient GABA affects neurogenesis. When post-mitotic neurons migrate to the CP, they are tonically depolarized by ambient
GABA, which is released from tangentially migrating GABA neurons prior to forming synapses. Taurine taken-up and released by CP, subplate, and
MZ neurons activates GABAA receptors in migrating cells. Vesicular release of GABA, which remains depolarizing, could contribute to synapse
formation. Following establishment of GABAergic synapses and prior to hyperpolarization, GABA acts as an excitatory neurotransmitter. Up to this
stage, intracellular chloride concentration levels are high due to NKCC1 and KCC2. Following up-regulation of KCC2 and down-regulation of
NKCC1, GABA acts as an inhibitory neurotransmitter. Adapted from Fukuda and Wang (2013).

addition, the expression patterns of GABAAR subunits are entirely
different during development (Laurie et al., 1992; Fritschy et al.,
1994). In the prenatal and early postnatal periods, neocortical
neurons primarily express the α2–5, β2/3, and γ1/2 subunits
(Laurie et al., 1992). The expression patterns of subunit transcripts
of α2/3 and α5 were observed throughout the developing CNS. In
the germinal matrix, specifically the ventricular zone (VZ), there
was a high abundance of GABAAR α4, β1, and γ1 subunit mRNAs.
However, these subunits were not detected in the intermediate
zone (IZ) at embryonic day (E) 17 and E20 in rats, indicating that
proliferating cells in the germinal matrix may express these specific
subunits (Ma and Barker, 1995).

In rodents, during corticogenesis, GABAergic interneurons
originate from the medial ganglionic eminence (MGE) and caudal
ganglionic eminence (CGE) migrate tangentially toward the cortex
(Marin, 2013; Lim et al., 2018). The MGE and CGE are the
primary sources of cortical interneurons in the developing nervous
system. As these cells migrate from the MGE to the neocortex,
their sensitivity to GABA increases (Cuzon et al., 2006). Cuzon
and Yeh (2011) demonstrated that migrating neurons in the MGE
and cortex exhibit distinct response profiles to specific subunits,
indicating the presence of different GABAAR isoforms. In their

study, expression profiling of GABAAR subunits at the mRNA level
(α1–5, β1–3, γ1–3, and δ) revealed elevated mRNA expression of
α1, α2, α5, γ2, and γ3 subunits in the cortex.

Since E17, the mRNA levels of β subunits have been increasing
at varying rates (with β3 exhibiting the highest increase, followed by
β2 and then β1), with each subunit reaching its peak expression at
different times. Specifically, β1 and β2 reach their peak expression
levels at postnatal day (P) 12, while β3 reaches its peak expression
level between E19 and P12. Additionally, the γ1 and γ2 subunits
of GABAARs are upregulated at birth as they are expressed at low
levels during E14. The mRNA expression of the δ and γ3 subunits
appears around P0, with δ peaking at P12 and γ3 peaking at P6
(Laurie et al., 1992).

The functional characteristics and affinity of GABAAR for
taurine vary depending on the subunit composition. Earlier
investigations have established that taurine specifically affects β2
subunit containing GABAAR (Bureau and Olsen, 1991; Kash
et al., 2004). Recombinant studies have also indicated that the
effectiveness of taurine is not determined by the type of α subunit
but rather by the specific β subunit. Furthermore, δ-containing
receptors exhibit stronger and more effective activation by taurine
compared to γ-containing receptors (Kletke et al., 2013). Based on
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these findings, it can be inferred that GABAARs containing αxβ1/2δ

subunits are likely to be strongly activated by taurine. Immature
cortical cells express GABAAR subunits α2–5, β1–3, γ1/2, and δ,
and their expression is regulated during development (Gambarana
et al., 1991; Araki et al., 1992; Cheng et al., 2006; Peden et al., 2008).
Although the specific GABAAR subunits expressed in radially
migrating cells are not completely clear, it is plausible that these
cells are responsible for the effects of taurine. Additionally, our
study suggests that GABAARs are activated tonically by ambient
taurine rather than by ambient GABA in the fetal cerebral cortex.
Thus, in the cerebral cortex of fetal mice, taurine may be the
major agonist for tonic GABAAR, which is expressed by the radially
migrating cells (Egawa and Fukuda, 2013).

Embryonic and fetal taurine is
maternal origin

In adult mammals, taurine is synthesized in the liver through
the conversion of methionine and cystine. However, due to the
limited activities of taurine synthase, the synthesis of taurine is
minimal in the livers and brains of human fetuses and newborn
infants (Gaull et al., 1972; Zlotkin and Anderson, 1982; Sturman,
1988). Therefore, taurine is often referred to as a semi-essential
amino acid (Lambert et al., 2015; Tochitani, 2017). As the
ability of taurine synthesize in humans and rodents is limited,
taurine deficiency is appears to be the result of reduced uptake
of exogenous taurine (Miyazaki and Matsuzaki, 2014). TauT is
responsible for the transport of taurine from the maternal blood
to the developing brain of the embryo through the placenta
(Ramamoorthy et al., 1994). In addition, fetuses consume amniotic
fluid, which is abundant in taurine. Although fetal taurine levels
decrease after birth, infants acquire taurine from breast milk, which
contains a high concentration of taurine (Gaull, 1989; Sturman,
1993). Taurine is believed to play a role in osmoregulation and
neuronal modulation through its interactions with GABAARs and
GlyRs (Schmieden et al., 1992; del Olmo et al., 2000; Lambert,
2004). However, its precise role in brain development remains
incompletely understood.

In TauT knockout (KO) mice, taurine level are strongly reduced
in various tissues: in skeletal and heart muscle, brain, kidney,
retina, and in liver (Heller-Stilb et al., 2002; Warskulat et al., 2004).
TauT KO mice showed reduction of body weight gain during
development and muscular endurance (Watanabe et al., 2022).
Additionally, Hosoi et al. (2022) investigated the effect of taurine
depletion during fetal and postnatal neocortical development
on the functional properties of differentiated pyramidal neurons
using TauT KO mice. They found that the depletion of taurine
during development resulted in significant alteration in the
firing responses of pyramidal neurons to external stimuli. These
observations suggest that maternal and exogenous taurine is
essential for normal development of neurons after birth.

Similar effect of taurine deficiency during perinatal period in
other mammals was reported. The study using monkeys showed
that infants fed taurine-free soy formula had impaired growth
retardation (Hayes et al., 1980; Neuringer and Sturman, 1987).
In human research, addition of taurine to formula increases fat
absorption (Rigo and Senterre, 1977; Sturman, 1988). Nutritional
studies of human premature infants showed that infants receiving

taurine-enriched formula had more mature brain stem responses
and a developmental advantage in motor function (Chesney et al.,
1998). Additionally, premature infants who received breast milk
showed an intelligence quotient advantage over infants who never
received breast milk (Chesney et al., 1998). These evidences
suggests that it is likely that there are feeding-dependent actions
of taurine for normal development.

Paracrine taurine is essential for
normal fetal development

Taurine plays various biological roles including ensuring tRNA
stability (Suzuki et al., 2002) and promoting retinal development
(Warskulat et al., 2007; Osakada et al., 2008). However, the
precise signaling pathways that utilize intracellular taurine remain
uncleared. During development, GABAAR-mediated signaling
influences neurogenesis. LoTurco et al. (1995) found that GABA
depolarize cells in the VZ of rat embryonic neocortex, ant that
GABAAR antagonist application increase DNA synthesis. Their
findings revealed that the depolarizing effects of GABA were
associated with a reduction in progenitor cell proliferation in the
developing neocortex of rats.

During the early phase of cortical neurogenesis in the VZ of
rats, GABA causes cell depolarization and reduces DNA synthesis.
This suggests that the presence of endogenous GABA downregulate
the cell cycle and proliferation of neocortical progenitor cells
(LoTurco et al., 1995; Haydar et al., 2000). GABA exhibits similar
effects on neural progenitor cell populations in the subventricular
zone (SVZ), where it also acts to suppress proliferation (Haydar
et al., 2000). GABA exerts a significant influence on postnatal adult
neurogenesis through its depolarizing effects, and the expression
of NKCC1 is critical for proliferation (Liu et al., 2005; Ge
et al., 2006). Notably, robust expression of NKCC1 has been
observed in the neurepithelium, including the VZ and ganglionic
eminence. When KCC2 was globally overexpressed in newly
fertilized zebrafish embryos, it led to a reversed Cl− ion gradient,
which subsequently led to hyperpolarization induced by glycine
in all neurons. As a consequence, there was an observed decrease
in the quantity of motoneurons and interneurons, suggesting a
decline in the generation of new neurons (Reynolds et al., 2008).
Hence, excitation mediated by Cl− ions plays a crucial role in
facilitating neurogenesis during the early stages of embryonic
development. Furthermore, Andang et al. (2008) provided evidence
that autocrine/paracrine signaling of GABA through GABAARs
inhibits the proliferation of embryonic and peripheral neural crest
stem cells.

In the neocortex, different classes of neurons, such as cortical
pyramidal neurons and GABAergic interneurons, arise from
distinct origins and exhibit specific migration patterns. Cortical
pyramidal neurons, which are glutamatergic neurons, undergo
radial migration from the VZ of the dorsal telencephalon. During
this process, they migrate along the radial glial scaffolding
toward the cortical plate (CP). On the other hand, GABAergic
interneurons, derived from the MGE and CGE, migrate tangentially
within the cerebral wall, following a different path (Marín and
Rubenstein, 2001). It is possible that GABAAR signaling can
have different effects on neurons that migrate in radial or
tangential directions. About radial migration, a number of studies,

Frontiers in Cellular Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fncel.2023.1221441
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1221441 July 28, 2023 Time: 14:32 # 5

Furukawa and Fukuda 10.3389/fncel.2023.1221441

including pioneering in vitro research by Behar et al. (1996,
1998), demonstrated that GABA plays a role in cortical cell radial
migration (Luján et al., 2005; Heng et al., 2007). Behar et al. (1996)
conducted a study demonstrating that the modulation of neuronal
migration by GABA is highly dependent on its concentration.
They found that femtomolar concentrations of GABA promote
migration along a chemical gradient, known as chemotaxis, while
micromolar concentrations enhance random migration, known as
chemokinesis. Additionally, continuous subdural application of a
GABAAR antagonist to block GABAAR activity in vivo led to an
acceleration of radial migration and the development of abnormal
cortices similar to heterotopia (Heck et al., 2007). Similarly, the
application of a GABAAR antagonist directly into the ventricles
also resulted in an accelerated radial migration, indicating that the
activation of GABAAR acts as a signaling mechanism to halt radial
migration in the cortical plate. The signaling that is induced by the
action of GABAARs could include Ca2+ signaling. Some studies
demonstrated that GABAAR-induced depolarization in radial
migration cells produced calcium influx through voltage-gated
L-type Ca2+ channels (Maric et al., 2001; Soria and Valdeolmillos,
2002; de Lima et al., 2009). The depolarization is attributed to the
high intracellular Cl− concentration, which is dependent on the
activity of NKCC1. Therefore, disturbances in immature Cl− ion
homeostasis could lead to abnormal migration patterns.

The activation of GABAB receptors in neuroblastic cells or
GABAARs containing ρ-subunits promotes migration from the
subventricular zone (SVZ) and IZ (Behar et al., 2000; Denter
et al., 2010). GABA also plays a role in regulating the tangential
migration of immature GABAergic cortical interneurons (Inada
et al., 2011). Taurine has been identified as a potential candidate in
this process, given its accumulation in immature neurons during
cerebral cortex development (Shimada et al., 1984; Flint et al.,
1998). Furthermore, certain studies suggest that taurine-deficient
kittens exhibit abnormal neuronal migration in the cerebellum and
cerebral cortex (Sturman et al., 1985; Palackal et al., 1986). As both
radial and tangential migration are regulated via GABAAR, taurine
may act on both radiating and tangential cell migration. Avila et al.
(2013) suggested that glycine receptor activation is also involved
in tangential migration. They speculated that glycine rather than
taurine activates glycine receptor during neonatal period (Avila
et al., 2013). Therefore, regarding cell migration in the developing
neocortex, taurine regulation for tangential migration may be lower
than that for radial migration.

Despite the absence of GAD65 or GAD67 expression in
knockout mice, leading to a significant reduction in brain GABA
levels, the structural integrity of the neocortex remains unaffected
(Ji et al., 1999). This paradoxical observation prompted us to
propose the existence of compensatory mechanisms that mitigate
the effects of GABA deficiency. One potential solution is taurine,
the dominant free amino acid during brain development, which
functions as a partial activator of GABAARs (Jia et al., 2008).
It was demonstrated that neuroblasts in the visual cortex of
newborn kittens from taurine-depleted mothers failed to migrate
and differentiate normally, indicating taurine’s critical role in
regulating neuronal migration (Palackal et al., 1986). In neocortex
of E17.5 mouse embryos of GAD67-GFP knock-in mice, GFP
positive cells were mainly located in VZ, SVZ, and MZ. By
immunohistochemical analysis, taurine signals located in MZ and
SP (Furukawa et al., 2014). These results suggested that there was

FIGURE 2

Maternal administration of D-CSA decreased ambient taurine in
fetal cortex. Taurine is synthesized from cysteine via cysteine
sulfinic acid (CSA) and hypotaurine. Cysteine dioxygenase and
cysteine sulfinic acid decarboxylase mediates this pathway. As CSA
is naturally L-type, administration of the optical isomer D-type CSA
suppress taurine synthesis (Weinstein et al., 1988). The
concentration of taurine released from fetal brain slices into the
incubation medium was measured by HPLC, and the taurine level of
brain slices from maternally D-CSA-injected fetuses was reduced by
half. *P < 0.05, Student’s t-test.

distinct distribution patterns of GABA and taurine in developing
neocortex. When the ambient cerebral taurine concentration in
homozygous embryos of GAD67-GFP knock-in mice was reduced
to 50% by maternal administration of D-cysteine sulfinic acid (D-
CSA), a taurine synthesis inhibitor (Figure 2), GABAAR-mediated
tonic currents were disappeared, and radial migration of CP cells
was accelerated (Furukawa et al., 2014). These findings suggest that
taurine functions as an innate agonist of embryonic tonic GABAAR
in the neocortex. Considering the distinct distribution patterns of
GABA and taurine and the absence of significant differences in
tonic GABAAR currents among the different genotypes of GAD67-
GFP knock-in mice, it is plausible that maternally derived taurine
acts as a stop signal for radially migrating CP cells.

In the neocortex, high expression of TauT has been detected
(Smith et al., 1992). The distribution pattern of TauT in E17.5
mouse neocortex was similar to taurine distribution pattern,
located in MZ and SP (Furukawa et al., 2014). TauT belong to the
neurotransmitter transporter family, which relies on Na+ and Cl−

and facilitates the uptake of taurine into cells during inactive states
(Tappaz, 2004). The activity of TauTs can be reversed by stimuli that
disrupt the Na+ and Cl− membrane gradient, as taurine uptake is
dependent on this gradient (Oja et al., 1985; Oja and Kontro, 1987;
Takuma et al., 1996). Inhibition of the TauT with the TauT inhibitor
2-(guanidino) ethanesulfonic acid (GES) led to elevated ambient
taurine levels in fetal cortical slices. Furthermore, GES application
during the taurine-loading phase decreased the release of taurine
from cortical slices preloaded with 10 mM taurine. Additionally,
GES application enhanced GABAAR-mediated tonic currents in
subplate (SP) cells. These findings align with the expected function
of TauTs in the uptake of extracellular taurine (Furukawa et al.,
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2014). Hence, the neocortex of fetal mice exhibits uptake of ambient
taurine through the activity of TauTs, however, which types of cells
in the cerebral cortex take up taurine is not yet clear.

Endogenous taurine modulate
immature state of Cl homeostasis

KCC2 activity is known to be kinase-regulated (Kelsch et al.,
2001; Lee et al., 2007; Wake et al., 2007; Rinehart et al., 2009;
Watanabe et al., 2009). Taurine inhibit the KCC2 activity via
serine/threonine phosphorylation (Inoue et al., 2012). When
residues Thr-906 and Thr-1007 residues in KCC2 were replaced
by Ala (KCC2T906A/T1007A), the facilitation of KCC2 activity
was observed and the inhibitory effect of taurine was prevented
(Inoue et al., 2012). Exogenous taurine activates WNK1, which in
turn activates downstream SPAK/OSR1. The SPAK/OSR1 kinases
regulate Thr906/Thr1007 phosphorylation sites of KCC2 (de
Los Heros et al., 2014; Watanabe et al., 2019). The excessive
expression of active WNK1 suppresses the function of KCC2. The
phosphorylation of SPAK was consistently more pronounced in
embryonic brains compared to neonatal brains and was reduced
by inhibiting the TauT in vivo. Additionally, the radial migration
of the cerebral cortex was disturbed by a variant of KCC2,
known as KCC2T906A/T1007A, which is insensitive to taurine
and can be regulated by the WNK-SPAK/OSR1 signaling pathway.
Furthermore, activation of WNK-SPAK/OSR1 pathway leads to the
activation of NKCC1. Taurine induced activation of the WNK-
SPAK/OSR1 pathway suppresses KCC2 and activates NKCC1,
resulting in increases intracellular Cl− influx and a positive shift
in EGABA. These facts suggests that the taurine-WNK-SPAK/OSR1
signaling pathway may have a physiological role in maintaining
embryonic Cl− homeostasis. Thus, taurine and WNK-SPAK/OSR1
signaling may contribute to the proper maintenance of neuronal
Cl− homeostasis during embryonic development, which is crucial
for normal brain development. Notably, the activation of WNK-
SPAK/OSR1 signaling triggered by taurine may play a pivotal role
in brain development (Figure 3).

In the early stages of embryonic development, several types of
neurons are generated, such as Cajal-Retzius and SP cells within the
cerebral cortex. These particular cells have important functions in
regulating the process of cell migration within the cerebral cortex.
Several studies showed that these neurons, which are generated
at an early stage in the MZ and SP, were activated by GABA and
glycine (Mienville, 1998; Kilb et al., 2002, 2008; Hanganu et al.,
2009). These early generated neurons are capable of expressing
KCC2 at the embryonic and neonatal stages (Achilles et al., 2007).
In addition, as taurine is abundant in these brain regions, our
findings suggest that KCC2 is dysfunctional owing to taurine
distribution, affecting WNK-SPAK/OSR1 signaling and preserving
GABAergic excitation. This signaling cascade may play a more
extensive and crucial role in the development of the brain than
previously reported.

Nugent et al. (2012) report that administering estradiol to
newborn rat offspring significantly increases the levels of SPAK and
OSR1 proteins, two kinases upstream of the NKCC1 cotransporter.
The elevation of estradiol levels leads to a significant increase in
NKCC1 phosphorylation, and this effect is reliant on transcription.
Notably, the time frame of the estradiol-induced rise in NKCC1

FIGURE 3

Taurine control WNK-SPAK/OSR1 signaling pathway and affect
modulation of developmental switch in GABA actions induced by
changes in Cl− homeostasis. In immature stage, taurine, taken up
into cells by TauT, activates WNK-SPAK/OSR1 pathway (left). Both
KCC2 and NKCC1 are phosphorylated, but their functions are
oppositely regulated; KCC2 is inactivated, and NKCC1 is activated.
Thus, the WNK-SPAK/OSR1 pathway maintains an immature stage
of Cl− homeostasis with a high intracellular chloride concentration,
rendering GABA-mediated depolarization that affects neural
development. In mature stage, (possibly a while after birth), the
decrease in taurine reduces the activity of WNK-SPAK/OSR1
pathway, together with the upregulation and downregulation of
KCC2 and NKCC1 expression, respectively, and maintains the
mature stage of Cl− homeostasis with a low intracellular Cl−

concentration (right). Adapted from Fukuda and Watanabe (2019).

phosphorylation coincides with that of the estradiol-induced
increase in NKCC1 expression. Intriguingly, unlike taurine,
estradiol does not have an impact on the protein levels of WNK
kinases or pSPAK. These findings suggest that estradiol does not
modulate NKCC1 signaling by exerting its effects upstream of
SPAK and OSR1.

Taurine regulate WNK1 phosphorylation because
WNK1S382A and WNK1S382E mutant decrease the effect of
taurine on positive EGABA shift (Inoue et al., 2012). The ratio
of phosphor/total SPAK was downregulated at postnatal day
1 in cerebral cortex. It is suggested that WNK-SPAK/OSR1
signaling immediately decrease after birth. However, since the
phosphorylated WNK1 level was not changed between embryo and
postnatal rat, the phosphorylation of SPAK is not only regulated by
intracellular taurine. The WNK signaling pathway can be activated
by various stimuli, including osmotic stress, although the precise
mechanisms underlying its activation remain unclear (Zagórska
et al., 2007; Richardson and Alessi, 2008). Additionally, suppression
of KCC2 function via WNK-SPAK/OSR1 signaling in rat is likely
to decrease with development, however, the phosphorylation of
KCC2 gradually diminishes as they progress into adulthood in mice
(Rinehart et al., 2009). Further studies are necessary for the detail
mechanism of WNK-SPAK/OSR1 signaling to KCC2 function.

Ambient taurine as an endogenous
agonist of tonic GABA current

The persistent activation of GABAAR plays a role in the tonic
depolarization observed in embryonic neurons. While numerous
studies have investigated the involvement of GABAAR activation
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in neocortical development, particularly in migration, they mostly
relied on exogenous inhibitors (Behar et al., 1996, 1998, 2000;
Bolteus and Bordey, 2004; Heck et al., 2007; Denter et al., 2010).
Using a different approach from previous reports, we accessed
GABAAR activation in the developing neocortex. In previous
study, we utilized GAD67-GFP knock-in mice lacking GABA
synthesis (GAD67GFP/GFP) and performed in utero electroporation
to label radially migrating cells originating from the VZ. A total
of 3 days after electroporation, we found normal distribution of
labeled-cells even in homozygous GAD67GFP/GFP mice (Furukawa
et al., 2014). Furthermore, the sensitivity of labeled cells to
GABA was also normal. Nonetheless, the accelerated radial
migration observed in GAD67GFP/GFP mice upon continuous
inhibition of GABAAR using the GABAAR antagonist SR95531
suggests the involvement of alternative endogenous agonists for
GABAAR. Therefore, ambient taurine level was focused and
measured in the fetal cerebral cortex using high-performance
liquid chromatography (HPLC). In E17.5 wild-type mice, the
taurine concentrations released from the cerebral cortex were
measured to be approximately 50 fmol/µl·mg, while GABA was
undetectable (Furukawa et al., 2014). Taking into account the
measurement capabilities of the HPLC system (GABA is detected
in 0.05 fmol/µl·mg), it is inferred that taurine levels in the
cerebral cortex of E17.5 mice are more than 1000 times higher
than those of GABA (Morishima et al., 2010). Furthermore,
after taurine-loading to acute slices of the cerebral cortex, the
released taurine concentration increased with a 10 mM taurine-
loading, but after 1 mM taurine-loading did not affect the
released taurine concentration (Furukawa et al., 2014). These
findings suggest that the ambient taurine concentration in the fetal
cerebral cortex may reach millimolar levels. The GES increased
extracellular taurine concentration by blocking taurine uptake.
The elevated extracellular taurine induced a GABAAR-mediated
tonic current. In the taurine-deficient mouse model by maternal
D-CSA administration, GABAAR-mediated tonic currents were
abolished and radial migration was accelerated. Taurine, rather
than GABA, may serve as an innate activator of embryonic
tonic GABAAR conductance, as the tonic currents induced by
GABAergic excitatory stimulation were indistinguishable between
GAD67-GFP knock-in mice genotypes. Taurine is likely to exert
agonistic effects on tonic GABAARs, potentially functioning as
a signaling mechanism to halt the radial migration of neurons.
The physiological significance of the suppression of migration by
taurine is not yet known, and the benefit of this suppression is also
not yet known. Such points should be addressed in future studies.

Given that taurine is taken up by TauT and that GABAAR
is activated by taurine, there would be a mechanism of taurine
release to modulate GABAAR activation in the developing cortical
cells. The exact mechanism of taurine release is still remains
unknown, but several lines of evidence have been reported
suggesting non-vesicular and hypo-osmotic taurine release via
taurine permeable channel. Immunoelectron microscopy analysis
revealed the presence of taurine within immature neurons, while
it was not detected in presynaptic structures in both mice and
rats (Furukawa et al., 2014; Qian et al., 2014). These findings
indicate that the release of taurine might be controlled by a non-
vesicular process. This discovery is consistent with earlier research

proposing that taurine can be released as an osmolyte using non-
vesicular mechanisms in neurons and glial cells (Calvert and
Shennan, 1998; Flint et al., 1998; Mongin et al., 1999; Mulligan
and MacVicar, 2006). Taurine release mediated by volume-
sensitive anion channels has been documented in numerous studies
(Fugelli and Thoroed, 1986; Jackson and Strange, 1993; Hall,
1995; Shennan, 1999; Haskew-Layton et al., 2008). Despite the
crucial role of taurine in functional growth, there is a lack of
comprehensive knowledge regarding the release of taurine in
the developing nervous system, although previous studies have
reported non-synaptic and hypo-osmotic taurine release in the
immature rat cortex (Flint et al., 1998; Kilb et al., 2008). The
utilization of HPLC in acute neocortical slices demonstrated that
the introduction of 4,4′-diisothiocyanatostilbene-2,2′-di-sulfonate
(DIDS), a wide-ranging Cl− channel inhibitor, and 4-(2-butyl-6,7-
dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid (DCPIB),
a specific inhibitor of volume-sensitive anion channels, impeded
the release of taurine. Conversely, taurine release was stimulated
in a hypotonic medium (Furukawa et al., 2014). These findings
provide compelling evidence that the release of taurine in the
fetal cerebral cortex is facilitated through volume-sensitive anion
channels (Jackson and Strange, 1993). However, it is still unclear
which types of cells in the cerebral cortex release taurine, and how
and when taurine release is modulated. Future studies will elucidate
the detailed mechanism of taurine released in the developing
cerebral cortex.

Activity-dependent taurine release
modurate network excitability

Cajal-Retzius cells are a type of early generated neurons
found in the MZ of the developing rat neocortex. These cells
are crucial for cell migration and lamination processes in the
cerebral cortex. Previous studies have indicated the presence of
excitatory GABAergic neurotransmission in the MZ, and it has
been observed that Cajal-Retzius cells express NKCC1 mRNA and
protein (Mienville, 1998; Kilb and Luhmann, 2001; Achilles et al.,
2007). This suggests that the uptake of Cl− is sufficient to maintain
high intracellular Cl− concentrations, which are necessary for
generating excitatory responses to GABA. Disruptions in the
normal regulation of Cl− homeostasis and GABAergic signaling
in the MZ may potentially contribute to cortical malformations,
considering the MZ’s unique role in cell migration and lamination
as well as its distinctive Cl− homeostasis mechanisms.

Excitatory GABAergic neurotransmission, depolarization
mediated by GlyRs, and the functional expression of α2/β
subunits of GlyRs in Cajal-Retzius cells have been substantiated
by various studies (Hestrin and Armstrong, 1996; Mienville,
1998; Kilb and Luhmann, 2001; Kilb et al., 2002; Okabe et al.,
2004). The propagation of action potentials across the MZ in rats
remained unaffected by the administration of glutamate receptor
blockers. On the other hand, inhibition of them was observed
upon the administration of either GABAAR or glycine receptor
antagonists. Notably, the combined application of blockers
targeting GABAA and GlyRs resulted in the near-complete
cessation of excitatory propagation. The impact of GABAA and
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glycine receptor antagonists on MZ neurotransmission was found
to be additive, indicating the involvement of both GlyRs and
GABAARs in synaptic transmission within the MZ (Qian et al.,
2014). Bumetanide, an inhibitor of NKCC, has demonstrated
the ability to attenuate excitation propagation in MZ. The
cotransporter NKCC uptakes Cl− and facilitates the accumulation
of Cl− in cells. Consequently, the activation of GABAAR can
induce depolarization and occasional excitation in immature
neurons. Additionally, the application of electrical stimulation to
tangential slices including MZ followed by HPLC analysis revealed
the release of GABA and taurine, while glycine or glutamate
release was not observed (Qian et al., 2014). This suggests that the
excitatory neurotransmission mediated by GABA in the rat MZ is
facilitated through the activation of GlyRs by endogenous taurine.
Although the release of taurine in response to depolarization and
electrical stimulation has been observed in immature cortical
regions, the specific mechanisms underlying activity-dependent
taurine release remain unclear (Collins and Topiwala, 1974).

Several studies prove that taurine induces long-lasting
enhancement of neurotransmission. In corticostriatal pathway,
an involvement of taurine uptake by Na+-dependent TauTs
accompanied by membrane depolarization has been considered
(Chepkova et al., 2002, 2006; Sarkar et al., 2003; Sergeeva et al.,
2003). This mechanism may accelerate the propagation of
excitation, however, it is unlikely in the MZ because GES did
not affect the spread of evoked signals induced by electrical
stimulation. On the contrary, the induction of long-lasting
synaptic transmission enhancement in the hippocampus by
taurine relies on the presence of TauTs that are sensitive to
GES (Galarreta et al., 1996; del Olmo et al., 2004; Dominy
et al., 2004). In hippocampus, intracellular taurine accumulation
rather than taurine uptake through TauT induces long-lasting
synaptic potentiation (Galarreta et al., 1996; del Olmo et al., 2004;
Dominy et al., 2004). While GES did not exhibit an impact on
excitation within the MZ, inhibiting taurine uptake can lead
to an elevation in extracellular taurine levels. It is possible that
this discrepancy between the MZ and the hippocampus can be
attributed to the possibility that electrical stimulation-induced
extracellular taurine reaches a saturation point in facilitating
excitatory propagation within the MZ. While the exact mechanism
underlying the facilitatory effect of taurine on neurotransmission
is yet to be fully understood, it is anticipated that taurine would
augment excitatory propagation independent of GES-induced
depolarization.

The possible effect of taurine action

There are some other excitatory or facilitatory effects of taurine.
In retina, taurine is the most abundant amino acid (Pasantes-
Morales et al., 1972). Bulley et al. (2013) demonstrated that taurine
increases the firing rate of action potentials generated by current
injection in ganglion cells of retina. The taurine-induced increase
of firing rate was not affected by Cl− -permeable GABA and glycine
receptor and GABAB receptor antagonists but was suppressed
by voltage-gated potassium (KV) channel blockers. Furthermore,
endogenous inward rectifier potassium current mediated by Kv
channel was reduced by 5-HT2A serotonin receptor antagonist

and PKC inhibitor. These results suggest that taurine facilitates
neural activity by modulating serotonin system including 5-HT2A
receptor and PKC pathway. There is possibility that taurine
increased excitation through other intracellular pathways.

In addition to the developmental regulation of K-Cl
cotransporters, Cl− homeostasis regulation in adult neurons
has been reported. For example, the depolarizing EGABA shift was
induced by tetanic stimulation, epileptic activity, hyperpolarizing
current pulses, synaptic activity and BDNF application (Kapur and
Coulter, 1995; Avoli, 1996; Kaila et al., 1997; Rivera et al., 2002,
2004; Wardle and Poo, 2003; Woodin et al., 2003; Fiumelli et al.,
2005; Wang et al., 2006). After the depolarizing EGABA shift, GABA
would promote neural activation and transmission. The EGABA
shift in adult neurons would be caused by modification of KCC2
regulation. KCC2 regulation via WNK/SPAK signaling pathway
in adult was reported (Conway et al., 2017; Lee et al., 2022). The
possible effect of taurine on regulation of Cl− homeostasis in adults
may be studied in future.

In this review, we have discussed about properties, functions,
and role of maternal taurine including GABAAR- and GlyR-
mediated actions. Otherwise, the various actions of GABA and
taurine in immature neurons have been reported (Ben-Ari
et al., 2007; Li et al., 2017). The GABAAR- and GlyR-mediated
depolarization induced calcium elevation via voltage-gated calcium
channels in immature neurons (Connor et al., 1987; Yuste and Katz,
1991; Owens et al., 1996). Whereas, taurine has been proposed to
have antiexcitotoxic activity, and taurine diminish depolarization-
induced intracellular calcium elevation by inhibition of reverse
mode activity of Na+/Ca2+ exchanger in immature neuron (Zhao
et al., 1999; Chen et al., 2001). This suggests that it is possible
that taurine action is not simply, and other action of taurine may
contribute to neural development beyond the taurine function
described in this review article. Further research may reveal
the detailed mechanism and novel effects of taurine on neural
development.

Conclusion and perspectives

Even though it has been established that the activity of
GABAARs can promote the growth of neurons, its impact
appears to differ depending on the cell type or region: activation
of GABAARs can either positively or negatively regulate the
proliferation of neuronal progenitors or migration of neurons.
Tonic and subsequent phasic depolarization mediated by
GABAARs play a crucial role in the process of synaptogenesis.
During development, the intracellular Cl− concentrations change,
GABAAR containing tonically responsive subunit, and GABA
and glycine receptor ligands (GABA or taurine), which is locally
controlled by uptake or release mechanisms, allow the GABAAR-
mediated actions to control the variety of developmental events
in a mode and region-specific fashion. A disruption in the tonic
conductance of GABA and glycine, which is regulated by the non-
synaptic presence of GABA and taurine, can contribute to brain
maldevelopment. Consequently, a range of pathological conditions
such as epilepsy, psychiatric disorders, motor dysfunction, and
neurodevelopmental disorders may be attributed, at least in part,
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to aberrant tonic GABA conductance. Therefore, maintaining the
appropriate tone of tonic conductance and regulating the ambient
GABA levels are crucial for normal brain function, and taurine, as
an environmental factor acquired from the mother, is likely to play
a modulatory role in CNS development.
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