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Research progress on the
reduced neural repair ability of
aging Schwann cells
Hao Zhang, Zhong Zhang and Haodong Lin*

Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School
of Medicine, Shanghai, China

Peripheral nerve injury (PNI) is associated with delayed repair of the injured

nerves in elderly patients, resulting in loss of nerve function, chronic pain, muscle

atrophy, and permanent disability. Therefore, the mechanism underlying the

delayed repair of peripheral nerves in aging patients should be investigated.

Schwann cells (SCs) play a crucial role in repairing PNI and regulating various

nerve-repair genes after injury. SCs also promote peripheral nerve repair

through various modalities, including mediating nerve demyelination, secreting

neurotrophic factors, establishing Büngner bands, clearing axon and myelin

debris, and promoting axon remyelination. However, aged SCs undergo structural

and functional changes, leading to demyelination and dedifferentiation disorders,

decreased secretion of neurotrophic factors, impaired clearance of axonal and

myelin debris, and reduced capacity for axon remyelination. As a result, aged SCs

may result in delayed repair of nerves after injury. This review article aimed to

examine the mechanism underlying the diminished neural repair ability of aging

SCs.
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1. Introduction

Peripheral nerve injury (PNI) involves the impairment of the peripheral nerve trunk
and its ramifications resulting from various factors, such as trauma, tumor, metabolic
disease, or iatrogenic intervention, especially external trauma (De la Rosa et al., 2018). Axon
and myelin sheath rupture and disintegrate at the site of injury after PNI, leading to the
degeneration of distal segment of the nerve, which is known as Wallerian degeneration (Li
et al., 2021). The peripheral nervous system (PNS) has a regeneration capability in mammals.
Axons regenerate at 1–3 mm daily after PNI to reach the motor endplates and innervate
corresponding muscles (Slavin et al., 2021). However, incomplete recovery of axons occurs
in about one-third of PNI patients, leading to inadequate restoration of function (loss of
sensory and motor functions), chronic pain, muscle atrophy, and even permanent disability
(Wang et al., 2019).

Aging is one of the major causes of incomplete recovery of the peripheral nerve (Büttner
et al., 2018). The impairment of peripheral nerve repair in elderly patients poses a significant
burden on families and society due to a gradual increase in the aging population in
industrialized countries and thus requires an urgent solution. Research has demonstrated
that age-related changes such as persistent inflammation, delayed macrophage response to
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injury, Schwann cells (SCs) dysfunction, and changes in the
microenvironment reduce the regenerative capability of the PNS in
murine models. In aged animals, there are fewer axonal protrusion
buds and an altered chromatolytic response in neurons. The
distribution of axon microtubules and microfilaments and nerve
regeneration at the terminals are also altered (Tanaka et al.,
1992). The number of macrophages in sciatic nerves of old mice
is significantly increased without injury, indicating a chronic
inflammatory microenvironment. In aged mice, macrophage
numbers and cytokine markedly decreased on day 3 after
injury but were considerably higher at 8 weeks than in young
mice, which reflects a delayed acute immune response with a
persistent chronic inflammatory response. Because of the delayed
macrophage response, the clearance of myelin and chemotaxis of
other fundamental molecules for successful Wallerian degeneration
is reduced in old mice. The persistence of proinflammatory
macrophages and higher cytokine expression also becomes
one of the inhibitory elements of nerve regeneration in aged
mice. Additionally, SCs dysfunction is an important factor
in delayed repair of PNI (Büttner et al., 2018; Maita et al.,
2023).

Schwann cells are glial cells found in the PNS involved
in repairing injuries to peripheral nerves (Galino et al., 2019).
SCs originate from multipotent neural crest precursors, which
migrate within nascent peripheral nerves and undergo two
distinct conformations: myelinating Schwann cells (mSCs) and
non-myelinating Schwann cells (nmSCs) – mSC establishes an
exclusive relationship with one axon, while nmSC (Remak Schwann
cells) enclose multiple axons of smaller caliber (Monje, 2020;
Muppirala et al., 2021). SCs initiate a regenerative response after
PNI by dramatically changing the expression of various genes
involved in nerve repair. SCs acquire a repair phenotype (Repair
Schwann Cells; RSCs) after PNI to promote nerve regeneration
and functional recovery (Figure 1; Bolívar et al., 2020). However,
SCs undergo various changes during aging that can potentially
reduce their repair abilities. For example, SCs aging is associated
with decreased cytoplasmic volume occupied by mitochondria
and increased residual bodies and myelin debris, which can
reduce energy availability and hinder nerve regeneration, leading
to delayed functional recovery (Pannese, 2021). Changes in
metabolic patterns, reduced stress adaptation ability, accumulation
of damaged proteins, lipids and DNA, as well as pathological and
traumatic factors can also affect the repair ability of SCs (Sardella-
Silva et al., 2021). In an aged environment, SCs exhibit a slow
activation of the transcriptional repair system, which results in
diminished dedifferentiation, macrophage recruitment, and myelin
clearance ability (Maita et al., 2023). Therefore, the mechanisms
underlying SCs aging should be evaluated to develop effective
strategies for nerve repair after PNI.

Although numerous recent studies have investigated the
underlying mechanism of SCs in repairing damage to the PNS. The
pathophysiological mechanism underlying delayed nerve repair of
aging SCs is unclear. Therefore, further research should elucidate
how SCs transform with age and how these changes impact
their repair ability. This article aimed to review the relevant
literature evaluating the pathophysiological mechanism underlying
the decreased neural repair capacity of aging SCs.

2. Search strategy

Studies cited in this review were searched on the PubMed
database. These studies were published between 1999 and 2022.
Literature retrieval was performed using the following keywords:
peripheral nerve injury, aging Schwann cell, nerve repair, aging
nerve, c-Jun, Schwann cell dedifferentiation, neurotrophic factors,
myelin clearance, macrophages, and remyelination. The aim of
this review is to explore the mechanisms by which aging SCs
cause delayed nerve repair. Therefore, we selected “peripheral nerve
injury,” “aging Schwann cell,” “nerve repair,” and “aging nerve” as
search keywords. Previous literature has shown that c-Jun functions
as a single independent initiator of the repair SC phenotype,
which is essential for the dedifferentiation and transdifferentiation
of SCs and subsequent regeneration (McMorrow et al., 2022).
Therefore, exploring the changes in c-Jun in aging SCs is extremely
important. In addition, secretion of neurotrophic factors combined
with macrophage clearance of myelin and remyelination are
important ways for SCs to play a role in repair (Nocera and
Jacob, 2020). Therefore, we also selected “neurotrophic factors,”
“myelin clearance,” “macrophages,” and “remyelination” as search
keywords. The search was completed on June 2023 (Table 1).

3. Mechanism of SCs promoting
peripheral nerve repair

Schwann cells undergo various changes, such as changes in
the expression of genes related to nerve repair, after PNI to
promote the repair process. Nerve repair after PNI involves two
successive and partially overlapping stages. In the initial stage,
SCs detach from the distal segment of axons and demyelinate,
followed by dedifferentiation and trans-differentiation of SCs into
RSCs (Jessen and Mirsky, 2016; Brosius Lutz et al., 2022), thus
activating a series of repair functions. Welleford et al. (2020)
analyzed the whole transcriptome profile of the human peripheral
nerve after injury. They found that genes related to the cell cycle,
cell proliferation, immune cell function, synaptic structure, and
neuron function revealed significant changes, myelination-related
gene transcripts were downregulated and genes related to growth
factor activity were upregulated. Besides, SCs transdifferentiated or
reprogrammed from a mature form into a repair phenotype. Chau
et al. (2022) reached a similar conclusion in a study of transection
injury to the human sural nerve.

3.1. SCs mediate demyelination of injured
nerve

Several pro-myelinating genes, such as Early Growth Response
2 (Erg2 or Krox20) and other myelin-related genes, including
Myelin Basic Protein (MBP), Myelin Protein Zero (Mpz or P0),
Peripheral Myelin Protein 22 (Pmp22), and Myelin Associated
Glycoprotein (Mag) are down-regulated after PNI (Nocera and
Jacob, 2020). Furthermore, the upregulation of F-actin within SCs
that accumulate at the myelin Schmidt-Lantermann incisures (SLI)
occurs after PNI, damaging E-cadherin/catenin complexes, thus
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FIGURE 1

The development process of Schwann cells during development and after injury. SCs mature in two distinct conformations: myelinating Schwann
cells (mSC) and non-myelinating Schwann cells (nmSC). SCs acquire a repair phenotype (repair Schwann cells; RSCs) after injury as a regenerative
response, after which the repair of nerve RSCs returns into the phenotype of mSCs and nmSCs.

leading to the demyelination of injured nerves (Jung et al., 2011;
Tricaud and Park, 2017).

3.2. SCs dedifferentiate and
transdifferentiate into RSCs

Schwann cells undergo dedifferentiation after PNI, leading to
a state reminiscent of neonatal SC progenitors, and thus they
are converted into RSCs (Xu et al., 2020; Stassart and Woodhoo,
2021). The transcription factor, which rapidly increases 80 to
100-fold after PNI, regulates SCs reprogramming by directly
or indirectly modulating the expression of at least 172 genes
within SCs post-injury (Arthur-Farraj et al., 2017). These genes
are involved in several neural repair processes, including SCs
dedifferentiation, myelin clearance, neuronal survival, and axonal
regeneration (Norrmén et al., 2018; Della-Flora Nunes et al.,
2021). These processes promote nerve repair by triggering the
secretion of neurotrophic factors, formation of bands of Büngner,
clearance of damaged axons and myelin, and stimulation of axonal
remyelination (Glenn and Talbot, 2013; Fornaro et al., 2021).

Repair Schwann cells secrete various neurotrophic factors
involved in the repair process after PNI, including nerve growth
factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell
line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3),
neurotrophin-4/5 (NT-4/5), ciliary neurotrophic factor (CNTF),
and fibroblast growth factor (FGF) (Fontana et al., 2012; Huang
et al., 2019).

The accumulation of axon and myelin debris at the site of
nerve injury can impede nerve repair. SCs play a critical role in
accelerating the clearance of debris. SCs can phagocytose axonal
debris and digest myelin after injury, establishing a favorable

environment for neural repair and axon regeneration (Vaquié et al.,
2019; Wang et al., 2020). Myelin clearance involves intracellular
and extracellular components. For intracellular components, RSCs
can clear debris through autophagic destruction (myelinophagy)
(Reed et al., 2020). RSCs can initiate myelin breakdown, attracting
macrophages for debris phagocytosis (extracellular component)
(Gomez-Sanchez et al., 2015). RSCs up-regulate several cytokines,
such as tumor necrosis factor α (TNFα), interleukin-1α (IL-1α), IL-
1β, leukemia inhibitory factor (LIF), monocyte chemotactic protein
1 (MCP-1), and fibroblast growth factor 9 (FGF9), during myelin
clearance to activate the innate immune response (Jessen and
Mirsky, 2016; Qu et al., 2021).

Repair Schwann cells are shortened by about sevenfold after
conversion from the repair phenotype to the myelin phenotype,
thereby generating typically short internodes in regenerated
nerves (Gomez-Sanchez et al., 2017). RSCs up-regulate myelin
proteins, including neuregulin-1 (NGR-1) type III, adhesion G
protein-coupled receptor (GPCR), and tyrosine kinase (Fyn) after
reconnecting with axons through activation of multiple signaling
pathways, including Par-3/Par-6/aPKC, PI3K/Akt/mTOR, Ga6-
Tyro3, NRG-1/ErbB2/3 (Birchmeier and Bennett, 2016; Torii et al.,
2019). As a result, RSCs redifferentiate into mSCs, facilitating
remyelination of large-caliber axons, while Remak SCs stimulate
ensheathing of small-caliber fibers to reform Remak bundles
(Ulrichsen et al., 2022).

4. Mechanism of aging SCs delaying
peripheral nerve repair

The diminished repair ability of aging SCs is associated
with impaired nerve repair after PNI in older animals

Frontiers in Cellular Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fncel.2023.1228282
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1228282 July 14, 2023 Time: 14:30 # 4

Zhang et al. 10.3389/fncel.2023.1228282

TABLE 1 Summary of key papers exploring the aging Schwann cells and nerve repair.

References Literature number Type Findings

Büttner et al., 2018 10.1111/acel.12833 Original research Identifies CCL11 as a promising target for anti-inflammatory
therapies aiming to improve nerve regeneration in old age

Tanaka et al., 1992 10.1016/0014-4886(92)90022-i Original research Myelinated fiber regeneration could be retarded by suppressing
macrophage responses and was not significantly changed by

conditioning lesions before crush injury

Maita et al., 2023 10.1016/j.jss.2023.03.017 Review The interaction between macrophages and SC plays a crucial role
in the nerve regeneration of aged models

Pannese, 2021 10.4081/ejh.2021.3249 Review The molecular profiles of neuroglia also change in old age,
which, in view of the interactions between neurons and neuroglia

Jessen and Mirsky, 2016 10.1113/jp270874 Review The repair Schwann cell and its function in regenerating nerves

Brosius Lutz et al., 2022 10.1186/s12974-022-02462-6 Original research Provides a valuable platform for understanding key differences in
the PNS and CNS glial responses to injury and for designing

approaches to ameliorate CNS regeneration

Welleford et al., 2020 10.1177/0963689720926157 Original research Provides new insights regarding the essential interactions of
different molecular pathways that drive neuronal repair and

axonal regeneration in humans

Nocera and Jacob, 2020 10.1007/s00018-020-03516-9 Review Discusses the main steps of the repair program with a particular
focus on the molecular mechanisms that regulate SC plasticity

following peripheral nerve injury

Kang and Lichtman, 2013 10.1523/jneurosci.4067-13.2013 Original research Facilitating clearance of axon debris might be a good target for
the treatment of nerve injury in the aged

Fazal et al., 2017 10.1523/jneurosci.0986-17.2017 Original research Modest c-Jun elevation, which is beneficial for regeneration, is
well tolerated during Schwann cell development and in the adult

and is compatible with restoration of myelination and nerve
function after injury

Painter et al., 2014 10.1016/j.neuron.2014.06.016 Original research Age-associated decline in axonal regeneration results from
diminished Schwann cell plasticity, leading to slower myelin

clearance

Sardella-Silva et al., 2021 10.3390/biom11121887 Review This review gathers essential information about Schwann cells in
different stages, summarizing important participation of this

intriguing cell in many functions throughout its lifetime

Chen et al., 2017 10.1142/s0218810417500514 Original research The process of Schwann cell dedifferentiation following
peripheral nerve injury shows different trends with age

Wagstaff et al., 2021 10.7554/eLife.62232 Original research Reduced c-Jun in Schwann cells regulates success and failure of
nerve repair both during aging and chronic denervation

Jessen and Arthur-Farraj,
2019

10.1002/glia.23532 Review Discussed the emerging similarities between the injury response
seen in nerves and in other tissues

Jessen and Mirsky, 2021 10.3389/fncel.2021.820216 Original research Failure of c-Jun expression is implicated in repair cell failures in
older animals and during chronic denervation

Scheib and Höke, 2016 10.1016/j.neurobiolaging.2016.05.004 Original research Both macrophages and Schwann cells had attenuated responses
to nerve injury in aged rats, leading to inefficient clearance of

debris and impaired axonal regeneration

Shi et al., 2021 10.1016/j.jot.2021.09.004 Original research RAB7A, ARF6, ARF1, VPS45, RAB11A, DNM3, and NEDD4
were the core markers and may control the molecular

mechanism of the endocytosis pathway

Lu et al., 2022 10.1093/bfgp/elab009 Original research Both molecular and cellular phenotypes of innate immune cells
that contribute to age-related inflammation

Cantuti-Castelvetri et al.,
2018

10.1126/science.aan4183 Original research Cholesterol-rich myelin debris can overwhelm the efflux capacity
of phagocytes, resulting in a phase transition of cholesterol into
crystals and thereby inducing a maladaptive immune response

that impedes tissue regeneration

Sakita et al., 2016 10.1186/s12868-016-0277-4 Original research Both the distal MFs and capillaries in the peripheral nerve may
simultaneously regress with aging

Sakita et al., 2018 10.1152/japplphysiol.00257.2018 Original research Regular, moderate-intensity aerobic exercise may help to prevent
and reverse peripheral nerve regression in older adults

(Continued)
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TABLE 1 (Continued)

References Literature number Type Findings

Tanaka et al., 1992 10.1016/0014-4886(92)90022-i Original research Myelinated fiber regeneration could be retarded by suppressing
macrophage responses and was not significantly changed by

conditioning lesions before crush injury

Sakita et al., 2020 10.1111/joa.13168 Original research Myelinated fibers of peripheral nerves show signs of regression
in elderly rats

Djuanda et al., 2021 10.1007/s12031-020-01768-5 Original research Lipid metabolism might play an important role in maintaining
the structure and physiological function in sciatic nerves during

aging

Shen et al., 2011 10.1016/j.neulet.2011.07.034 Original research Myelin-associated proteins perform distinct actions on the
formation, maturation, degeneration, and regeneration of myelin

sheaths

Liu et al., 2018 10.4103/1673-5374.241469 Original research In peripheral nerves, cells and the microenvironment change
with age, thus influencing the function and repair of peripheral

nerves

Giorgetti et al., 2019 10.1038/s41598-019-49850-2 Original research Underlines the power of MTR for the study of peripheral nerve
injury in small tissues such as the sciatic nerve of rodents and
contributes new knowledge to the effect of aging on recovery

after injury

Han et al., 2019 10.4103/1673-5374.253511 Review Provides a comprehensive basis on which to make clinical
decisions for the repair of peripheral nerve injury

Fuertes-Alvarez and Izeta,
2021

10.14336/ad.2020.0708 Review Summarizes the current knowledge about the implication of tSCs
in the age-associated degeneration of NMJs

Schira-Heinen et al., 2022 10.3390/ijms231810311 Original research Sphingosine-1-phosphate receptors augments a repair mediating
Schwann cell phenotype

(Kang and Lichtman, 2013). Recent studies have shown that
several factors promote delayed nerve repair in aging SCs,
including demyelination and dedifferentiation disorders, decreased
secretion of neurotrophic factors, obstruction of axon and myelin
clearance, and reduced remyelination ability (Figure 2; Fazal et al.,
2017).

4.1. Demyelination and dedifferentiation
disorders associated with aging SCs

Genes related to myelin production in aging SCs, such
as Pmp22, Mpz, Mal, and Egr2 are overexpressed after PNI.
As a result, these genes have decreased myelinating ability,
leading to delayed demyelination of injured nerves (Painter
et al., 2014). Demyelination is the first step involved in nerve
repair after PNI, and thus delayed demyelination can delay
subsequent physiological processes, ultimately impeding the repair
of injured nerve.

Additionally, delayed demyelination weakens the ability of
aging SCs to transdifferentiate into RSCs, thus limiting nerve repair.
Significant downregulation of mitosis-related genes (Kif2c, Pbk,
Birc5, and Cdc20) and growth factor genes (Btc, Ngfr, and Bdnf)
can also delay demyelination (Painter et al., 2014; Sardella-Silva
et al., 2021). The reduced neural repair ability of aging SCs is
caused by the failure to maintain or activate high levels of the
transcription factor c-Jun, which promotes SC dedifferentiation.
c-Jun also acts as a global amplifier of the RSC phenotype (Chen
et al., 2017; Wagstaff et al., 2021). Wagstaff et al. (2021) reported
that c-Jun protein levels within the distal nerve stump are about

50% lower in aged mice than in young mice on the fourth day
after PNI. Furthermore, increased c-Jun levels in SCs reversed age-
related defects in nerve regeneration. As a result, the same number
of regenerated neurons and CGRP+ nerve fibers were similar
between the older and younger animals. Painter et al. (2014) also
reported that c-Jun protein levels in the nerves are significantly
different between the aged and young animals immediately after
injury. c-Jun expression was significantly higher in the nerves
of young animals 1 day after injury (about fivefold higher) than
in aged animals. In an analysis involving 173 c-Jun-regulated
injury genes, 138 genes were differentially expressed between
young and aged mice in both uninjured and injured nerves.
c-Jun down-regulation inhibits the expression of multiple genes
closely related to SC proliferation and differentiation, including
Gpr37L1, Igfbp2, and Olig1 (Boerboom et al., 2017; Wagstaff et al.,
2021). As a result, the repair ability of SCs is inhibited and
neural cell adhesion molecule (NCAM), p75 neurotrophin receptor
(p75NTR), and glial fibrillary acidic protein (GFAP) (Jessen and
Arthur-Farraj, 2019) are down-regulated, thus delaying the repair
of injured nerves.

4.2. Aging SCs are associated with
decreased secretion of neurotrophic
factors

Decreased secretion of neurotrophic factors after injury also
affects the repair capacity of aged SCs. Besides, recent research
has elucidated that aging SCs cannot efficiently secrete various
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FIGURE 2

Mechanism by which aging SCs delay peripheral nerve repair. Demyelination is a disorderly process associated with impeded PNI repair. Additionally,
disorders involving SC dedifferentiation have detrimental effects on the repair process. The secretion of neurotrophic factors is reduced in aging
SCs, affecting all phases of nerve repair. Moreover, the reduced secretion affects the clearing of axons and myelin by SCs and macrophages at the
distal end of injured nerves. Finally, decreased remyelination ability of aging SCs results in inefficient remyelination of new axons.

neurotrophic factors, such as GDNF, BDNF, NGF, CNTF, NT-3, and
β-cellulin (Btc) (Jessen and Mirsky, 2021).

Glial cell line-derived neurotrophic factor can promote the
survival of motor neurons, neurite outgrowth, myelination, and
remodeling of neuromuscular junctions (Cintron-Colon et al.,
2022). GDNF down-regulation in aging SCs delays neural repair.
BDNF is rapidly up-regulated in the early phase of nerve injury
and mediates early nerve repair. BDNF has two receptors,
tropomyosin receptor kinase B (trkB) and p75NTR. The BDNF/trkB
signaling pathway promotes the transport of actin filaments and
associated proteins toward the growth cone, thereby promoting
axon outgrowth. p75NTR mediates remyelination through a BDNF-
dependent mechanism. p75NTR down-regulation delays functional
recovery and axonal growth (McGregor and English, 2018).
Overall, BDNF down-regulation in aging SCs delays neural repair.
Additionally, NGF can enhance autophagic activities in SCs via
the p75NTR/AMPK/mTOR dependent pathways, thus promoting
the clearance of axons and myelin in the early stage of PNI (Li
et al., 2020). CNTF mediates a neuroimmune cascade by activating
signal transducer and activator of transcription 3 (STAT3) and

inducing interleukin 6 (IL-6) (Hu et al., 2020), thus promoting
the survival of nerve cells and the regeneration of axons through
the ERK1/2/MAPK pathway (Fan et al., 2017). Other neurotrophic
factors, such as NT-3, are also involved in nerve repair. Unlike
BDNF/p75NTR, which inhibits SC migration and enhances myelin
formation, NT-3/TrkC promotes SCs migration while inhibiting
myelin formation. NT-3 also mediates the activation of downstream
MAKP/ERK and AKT signaling pathways, thus facilitating in vitro
SC migration. NT-3 down-regulation can decrease the myelination
of regenerating axons. Furthermore, NT-3/TrkC participates in the
regeneration of Remak bundles (Ulrichsen et al., 2022), indicating
that reduced NT-3 levels in aging SCs can significantly delay
nerve regeneration after PNI. SCs-secreted Btc is significantly
up-regulated in injured segments, driving SCs proliferation, thus
stimulating their migration, regulating their phenotype, influencing
neuron behavior, increasing neurite length, and mediating nerve
regeneration. In one study (Wang et al., 2021), the scratch
area of SCs transfected with siRNA control decreased by nearly
twofold compared with the scratch area SCs transfected with
siRNA against Btc, consistent with transwell migration assay.
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Furthermore, neurons co-cultured with SCs transfected with siRNA
control had longer neurites than those with siRNA against Btc.
These assays suggest that Btc is essential after PNI.

Therefore, down-regulation of the above neurotrophic factors
secreted by SCs can affect the stages of nerve repair, thus delaying
PNI-related repair.

4.3. Aging SCs are associated with
obstruction of axon and myelin
clearance

Senescent SCs have decreased ability to assimilate and
digest axons and myelin sheaths at the distal end of injured
nerves, limiting Wallerian degeneration in aged nerves. Therefore,
inefficient removal of axons and myelin sheaths inhibits axon
extension (Scheib and Höke, 2016). Painter et al. (2014) showed
that axons in the nerve distal to the injury are degenerated after
PNI and cleared. Although myelin sheaths are degenerated in
young mice within 3 days post-PNI, aged mice have more axons
with intact myelin sheaths (about four times) than young mice,
indicating that myelin and axon clearance is delayed in aging mice.
Scheib and Höke (2016) also showed that myelin debris increases
in distal-aged rats. They also showed that aged grafts in aged rats
had more debris than young grafts in young rats, indicating that
age affects debris clearance. Moreover, Painter et al. (2014) revealed
that phagocytosis of myelin is decreased by 35% in aged compared
with young SCs based on Florescent-activated cell sorting, which
was not attributable to reduced viability of aged SCs. Scheib and
Höke (2016) demonstrated that SCs from young rats engulf more
myelin than those from aged rats, indicating that SCs from young
rats are more phagocytic than those from aged rats. The SCs aging
is associated with gradual decrease in various autophagy functions,
thus obstructing axon and myelin clearance (Longo et al., 2015; Shi
et al., 2021).

Furthermore, aging SCs secrete fewer cytokines, impeding
prompt recruitment of macrophages, further hindering clearance
of damaged axons and myelin. The expression of cytokines, such as
pro-inflammatory IL-6, anti-inflammatory IL-10, and arginase-1, is
decreased in aging nerves, slowing down macrophage recruitment
at the injury site and reducing clearance of axons and myelin.
The secretion of CCL2, a key chemoattractant for macrophages,
s decreased in aging SCs (Scheib and Höke, 2016). Phagocytosis
assays have indicated that macrophages from young rats are more
phagocytic than those from aged ones. Although there are many
macrophages in aged rats, only a few may infiltrate the injury site
after PNI. More macrophages enter young nerve grafts in young
rats than aged grafts in aged rats (Scheib and Höke, 2016; Lu
et al., 2022). Cantuti-Castelvetri et al. (2018) also reported that
myelin debris, lipid droplets, and needle-shaped cholesterol crystals
accumulate in phagocyte lysosomes in old mice, a typical hallmark
of cholesterol overloading found in numerous foam cells. Lesion
restitution failure in old mice could be due to the inability to clear
excessive myelin-derived cholesterol from phagocytes.

In conclusion, impaired phagocytosis and decreased cytokine
secretion in aging SCs affect axon and myelin clearance, resulting
in physical blockage of regenerated axons, thus slowing the repair
of damaged nerves.

4.4. Aging SCs are associated with
decreased remyelination ability

Schwann cells aging causes myelination abnormalities in mice.
Furthermore, the number of myelinated nerve fibers is significantly
decreased in older mice. Myelinated fiber diameter, axon perimeter,
myelin thickness, and myelin perimeter are also significantly
decreased in older mice compared with those in younger mice
(Sakita et al., 2016, 2018). Tanaka et al. (1992) reported that
after crush injury, nerves from aging mice contained significantly
fewer regenerating myelinated fibers, with smaller axons and
thinner myelin sheaths. The length and thickness of the myelin
sheath are controlled by axolemmal “myelinating” signals and their
receptors. Aging SCs may have an abnormal number or distribution
of receptors, which delays remyelination of regenerating axons
(Tanaka et al., 1992). Sakita et al. (2020) also reported that the
structure of myelin sheaths and axons in myelinated fibers is
altered in aged mice, with many irregularities stemming from
degeneration. Furthermore, they showed that the mean fiber
diameter, axon diameter, and myelin thickness are significantly
lower in the aged group than in the young and middle-aged groups.
Moreover, aging mice have tiny vacuoles within the myelin sheath,
accompanied by thinning and some dislodged myelin walls. Fiber
loss and massive disorganization also occur within the myelin
sheath of aging mice, culminating in irregular disintegrated and
dysmyelinated fibers (Djuanda et al., 2021). These changes are
mainly caused by down-regulation of myelin proteins. Djuanda
et al. (2021) also showed that MBP is significantly down-regulated
in healthy aging nerves at 6 months, which remained low until
the late stages of life. Other myelin proteins, such as MAG, MPZ,
and PMP22, are also significantly down-regulated in aged SCs
(Shen et al., 2011).

Furthermore, aging SCs lead to inefficient remyelination of
newborn axons. Myelin-associated proteins, such as PMP22, MPZ,
MAG, and EGR2 are down-regulated in aged SCs during the
myelin repair stage after PNI, reducing remyelination ability (Liu
et al., 2018). Giorgetti et al. (2019) showed that myelin and axons
are highly damaged and disorganized in both young and aging
mice, with the ring structure of myelin disappearing and intense
myelin accumulation occurring at week 1 after injury. Although the
young mice fully recovered by week 6, the level of myelin in older
mice remained low, ultimately delaying nerve repair in older mice.
Additionally, myelin trophic factors, such as prosaposin (PSAP)
and prosaptide are secreted after PNI, thus promoting sulfide
synthesis in the myelin sheath, mRNA expression of MPZ, and
UDP-galactose expression (ceramide galactosyltransferase; GalT),
thereby promoting repair of myelinated nerves (Hiraiwa et al.,
1999). Although G protein-coupled receptors GPR37 and GPR37L1
serve as receptors for PSAP and prosaptide (Taniguchi et al.,
2021; Massimi et al., 2022), the expression of these receptors is
low in aging SCs (Wagstaff et al., 2021), leading to peripheral
nerve remyelination disorders and delayed nerve repair. Cantuti-
Castelvetri et al. (2018) indicated that inadequate clearance of
damaged myelin results in the accumulation of cholesterol crystals,
eventually impairing remyelination. Cholesterol crystals can induce
inflammation by phagolysosomal membrane rupture, followed
by stimulation of the caspase-1-activating NLRP3 (NALP3 or
cryopyrin) inflammasome and secretion of IL-1 cytokine, thus
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activating NLRP3 inflammasome in macrophages. Uncontrolled
inflammation impairs inflammation resolution and subsequent
repair processes in aging animals, thus delaying remyelination
(Cantuti-Castelvetri et al., 2018).

5. Conclusion

Peripheral nerve injury induces protracted delays in the repair
of nerve damage among elderly patients. The morphological,
physiological, and biochemical transformations caused by the
aging of peripheral nerves affect the efficacy of regeneration.
Therefore, the neural repair impairment mechanism in aging
individuals should be evaluated due to the increasing human
longevity and the number of elderly citizens. SCs are crucial in
the developmental and regenerative responses of peripheral nerves.
Therefore, understanding SCs is crucial for exploring homeostasis
in peripheral nerves and regeneration mechanisms. Furthermore,
the mechanism underlying the delayed repair of PNI should be
investigated. The role of senescent SCs in the restoration of
damaged nerves should also be analyzed.

Several studies have examined the pathophysiological
mechanism of aging SCs and their impact on delayed nerve repair.
This review focused on the principal mechanisms underlying the
diminished neural repair capabilities of aging SCs in the latest
research. The disorderly process of demyelination affects the
expression of various myelin genes in senescent SCs, thus impeding
the repair process of PNI. Additionally, disorderly dedifferentiation
of SCs further delays the repair process, primarily due to c-Jun
down-regulation. Furthermore, aging SCs reduce the secretion of
neurotrophic factors, including GDNF, BDNF, NGF, CNTF, NT-3,
and Btc, thus affecting all stages of nerve repair. Moreover, SCs
and macrophages cannot efficiently clear axons and myelin at the
distal end of injured nerves, thus affecting the physical regeneration
of axons and resulting in uncontrolled inflammation that hinders
remyelination. Senescent SCs mediate myelination irregularities,
which cause inefficient remyelination of nascent axons.

Nonetheless, a comprehensive network of mechanisms by
which aging SCs delay neural repair after PNI should be
evaluated. Furthermore, the pathophysiology of aging SCs should
be evaluated. Numerous studies have been conducted on
therapeutic strategies for aging cells. These include conventional
senotherapeutics, prodrugs, protein degraders, nanocarriers, and
immunotherapies. The most common senotherapeutic strategy
is selectively killing aging cells, known as senolytics. Another
way is senomorphics, which reduces the detrimental effects
of the senescence-associated secretory phenotype (SASP). In
addition, senoreverters, galactose-based prodrugs, proteolysis-
targeting chimera, nanocarriers, immunotherapy based on the

senescent cell surfaceome are all important therapeutic strategies
for aging cells (Birch and Gil, 2020; Zhang et al., 2022).
Potential therapies against aging SCs have been proposed, such
as maintenance of c-Jun levels to reverse age-related defects,
transplantation of SCs and use of sphingosine-1-phosphate
receptor agonist Fingolimod to enhance the repair phenotype (Han
et al., 2019; Fuertes-Alvarez and Izeta, 2021; Wagstaff et al., 2021;
Schira-Heinen et al., 2022). However, there are still few therapeutic
strategies for aging SCs. Therefore, gaining insight into the biology
of aging SCs may provide new research directions and therapeutic
strategies for preventing and repairing PNI among older people.
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