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Introduction: The visual cortex is a key region in the mouse brain, responsible for

processing visual information. Comprised of six distinct layers, each with unique

neuronal types and connections, the visual cortex exhibits diverse decoding

properties across its layers. This study aimed to investigate the relationship

between visual stimulus decoding properties and the cortical layers of the visual

cortex while considering how this relationship varies across di�erent decoders and

brain regions.

Methods: This study reached the above conclusions by analyzing two publicly

available datasets obtained through two-photon microscopy of visual cortex

neuronal responses. Various types of decoders were tested for visual cortex

decoding.

Results: Our findings indicate that the decoding accuracy of neuronal populations

with consistent sizes varies among visual cortical layers for visual stimuli such as

drift gratings and natural images. In particular, layer 4 neurons in VISp exhibited

significantly higher decoding accuracy for visual stimulus identity compared to

other layers. However, in VISm, the decoding accuracy of neuronal populations

with the same size in layer 2/3 was higher than that in layer 4, despite the overall

accuracy being lower than that in VISp and VISl. Furthermore, SVM surpassed

other decoders in terms of accuracy, with the variation in decoding performance

across layers being consistent among decoders. Additionally, we found that

the di�erence in decoding accuracy across di�erent imaging depths was not

associatedwith themean orientation selectivity index (OSI) and themean direction

selectivity index (DSI) neurons, but showed a significant positive correlation with

the mean reliability and mean signal-to-noise ratio (SNR) of each layer’s neuron

population.

Discussion: These findings lend new insights into the decoding properties of

the visual cortex, highlighting the role of di�erent cortical layers and decoders

in determining decoding accuracy. The correlations identified between decoding

accuracy and factors such as reliability and SNR pave the way for more nuanced

understandings of visual cortex functioning.

KEYWORDS

neuron, layer-specified, visual cortex, stimulus decoding, layers diversity, sensory input,
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1. Introduction

The mammalian visual cortex plays an essential role in visual

information processing. It consists of six distinct layers, each

possessing specialized functions that contribute variably to visual

perception. In the visual cortex, neuronal populations exhibit

variations in their tuning to visual stimuli at different depths.

Hubel and Wiesel (1974) notably described this phenomenon

through their identification of “orientation-selective columns”.

These columns play a crucial role in preventing abnormal

sensitivities to various line orientations within the visual field.

In terms of the information transmission across different cortical

layers, according to Gilbert and Wiesel’s circuit posits (Gilbert,

1983), thalamic input reaches layer 4 (L4), and excitatory cells in L4

relay signals to the layer 2/3 (L2/3), which further project to layer 5

(L5) and then to layer 6 (L6). This loop is completed by a projection

from L6 back to the input L4. The circuit has been extensively

studied (Douglas and Martin, 2004; Olsen et al., 2012; Harris and

Mrsic-Flogel, 2013; Quiquempoix et al., 2018; Marshel et al., 2019),

forming the foundation for studies on the organization of the

visual cortex and the collaboration and information transmission

of cortical layers in processing visual information.

Mice are among the most widely used model organisms in

mammalian visual cortex research. Transgenic cre-lines in mice

facilitate the expression of genetically encoded fluorescent calcium

sensors (Luo et al., 2008), thereby allowing the expression of

fluorescent proteins and fluorescent-labeled biomolecules in live

mammalian neurons (Giepmans et al., 2006). This ever-evolving

technique permits researchers to image neural populations across

different layers by expressing fluorescent proteins in the mouse

visual cortex neurons, using either transgenic or viral approaches.

Studying layer-specific performance requires three-dimensional

imaging. Light field microscopy (LFM) offers a snapshot-based

approach to three-dimensional imaging with low phototoxicity

on single-photon microscopy. And the development of virtual-

scanning LFM (VsLFM) has pushed the resolution to the diffraction

limit of a snapshot by introducing periodic optical beam scanning

to increase spatial sampling density (Wu et al., 2022; Zhang

et al., 2022; Lu et al., 2023). In comparison to single-photon

microscopy, two-photon microscopy (Helmchen and Denk, 2005)

provides several advantages for observing neural activity, such

as enhanced tissue penetration, reduced background noise, and

improved resolution. Furthermore, recent advancements in two-

photon microscopy have mitigated its typical limitations of a

smaller field of view and high phototoxicity (Zhao et al., 2023).

In this study, we examined two datasets: one sourced from the

Allen Brain Observatory Visual Coding (Allen Institute MindScope

Program, 2016; de Vries et al., 2020) and the other from Stringer’s

publication (Stringer et al., 2019a). Both datasets were acquired

using two-photon microscopy.

Drift grating orientation classification and natural image

classification are prevalent visual tasks employed to evaluate the

stimulus tuning of neurons within the primary visual cortex.

Neurons in the primary visual cortex process linear features

such as orientations and temporal frequencies. This selectivity

emerges from a blend of afferent input from the lateral geniculate

nucleus (LGN) and intracortical inhibitory inputs (Xing et al.,

2004). A plethora of studies has delved into the tuning properties

of individual neurons in response to diverse stimuli, further

investigating the decoding attributes of neuronal assemblies in

the visual cortex. For example, researchers have classified tens

of thousands of neurons based on their joint reliability to

multiple stimuli using data from the Allen Brain Observatory,

subsequently validating this functional classification via visual

responses (de Vries et al., 2020).

Marshel et al. (2019) found thatthe activity of neural

ensembles in the visual cortex typically propagates from L2/3

to L5rather than vice versa, and activating L2/3 necessitates

stimulating a larger numberof cells compared to L5. Stringer

et al. (2019a) demonstrated that large neuronal ensemblesrespond

to high-dimensional natural image stimuli, resulting in high-

dimensionalcollective activity with a power-law distribution of

information across dimensions. Additionally, Stringer et al.

(2019b) identified that neurons in the primary visual cortex

concurrently encode visual-related information andmotion-related

activity associated with facial movements, implying the early

amalgamation of sensory input and motion behavior within the

primary sensory cortex. Stringer’s research group also leveraged

activity recordings from up to 50,000 neurons, gauged stimulus

discrimination thresholds, and deduced that neural thresholds were

almost 100 times more refined than behavioral discrimination

thresholds in mice, signifying that perceptual discrimination in

these animals is constrained more by non-sensory networks

than by sensory representation neural noise (Stringer et al.,

2021). Extensive research has been dedicated to understanding

the decoding properties in neuronal populations. Concerning the

study of various regions of the visual cortex, Marshel et al.

(2011) analyzed the functional specialization of the mouse visual

cortex’s L2/3 and found that Higher visual areas are functionally

distinct, with disparate groups of areas possibly specializing in

computations related to motion and pattern processing. For

decoder enhancements, Schneider et al. (2023) developed a

decoding method that combines behavioral and neural data using

either a supervised or self-supervised approach, revealing complex

kinematic features. Many of the aforementioned studies have

scrutinized the functional specialization of neuronal populations

across various regions of the mouse visual cortex. However, there

is a lack of research on the stimulus-specified, decoder-specified,

and layer-specified properties across different cortical layers in

decoding stimulus identity from neuronal populations of the same

size. Consequently, probing decoding discrepancies via diverse

stimulus categories, population dimensions, and varied decoders

might unveil the intrinsic reasons for the disparate efficacy of

neuronal groups in visual stimulus assignments.

The objective of this research was to discern potential variances

in decoding visual stimuli based on the responses of neuronal

assemblies across cortical layers within the mouse visual cortex

and to elucidate the determinants behind these disparities. We

incorporated a range of commonly used multi-class decoders and

utilized the decoders used in the aforementioned studies in our

research to analyze the decoding differences across layers and

found diverse decoding differences among neuronal populations

in L2/3 to L6. As the information is relayed to connected layers

and secondary visual areas from the thalamus, associated and

context-dependent information is added, we hypothesize that

holding population size constant, the decoding precision of the
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neuronal population in L4 would be superior. We provide evidence

confirming our hypothesis that differences exist in the decoding

accuracy of neural populations across cortical layers.

2. Materials and methods

2.1. Visual stimulation two-photon dataset

In this study, we primarily utilized Allen Brain

Observatory (Allen Institute MindScope Program, 2016)

dataset to analyze the inter-layer differences in the mouse

visual cortex in response to two visual stimuli and explore

the factors contributing to these differences. We investigated

the influence of decoder types and cell population size on

decoding accuracy across different layers. Additionally, we

validated the influencing factors behind the decoding differences

across imaging depths using Stringer dataset (Stringer et al.,

2019a).

If not specifically mentioned, all other data was included

without quality control. When limiting the number of neurons,

random multiple repetitions were used for selection, and the

results were averaged. We have created a table to display the basic

information of the two datasets (Supplementary Table 1). The table

includes details on the GCaMP6 variants, cre-lines, number of

experiments, average number of neurons, target cell of each cre-

line, and their distribution across different cortical layers for both

datasets.

2.1.1. Allen Brain Observatory dataset
The Allen Brain Observatory dataset offers population imaging

of neural activity across various brain regions and imaging depths,

utilizing two-photon microscopy at a 30 Hz time resolution.

This dataset comprises experimental results from the primary

(VISp), lateral (VISl), anterolateral (VISal), anteromedial (VISam),

posteromedial (VISpm), and rostrolateral (VISrl) visual areas from

mice with different cell lines that enable the expression of GCaMP6f

in different layers of themouse visual cortex, thereby facilitating the

study of decoding characteristics and performance across cortical

layers of the visual cortex. Our analysis was centered on the

neuronal populations of VISp, whilst also considering the neuronal

populations in VISl and VISpm as points of reference against VISp.

Due to a lack of data from Ntsr1-Cre GN220 mice for layer 6,

our analysis did not include data from the posteromedial (VISal),

rostrolateral (VISrl), and anteromedial (VISam) areas (Esfahany

et al., 2018). Specifically, we employed the drifting grating stimulus

session on the mouse visual cortex. We conducted experiments

using mice with four cre-lines expressed in each of the layers.

Cux2-Cre-ERT2 expressing on layers 2/3 and 4, Emx1-IRES-

Cre and Slc17a7-IRES2-Cre expressing on layers 2/3, 4, and 5,

and Ntsr1-Cre GN220 expressing on layer 6. As per de Vries

et al. (2020), we utilized the representative depths for each layer:

<250 µm (L2/3), 250–365 µm (L4), 375–500 µm (L5), and

550 µm (L6) from the surface. The dataset utilized a variety of

visual stimuli, our focus was on the drifting grating stimulus,

characterized by eight directions spaced evenly at 25◦ intervals,

and five different temporal frequencies (1, 2, 4, 8, and 15 Hz).

We also studied on the natural image stimulus that comprised

119 natural images. Each stimulus was displayed ∼75 times. We

selected experiments with neuron count greater than or equal

to the specified neuron number. To isolate cellular objects and

obtain the neural traces, a segmentation method that utilized the

spatial and temporal information from the entire movie has been

employed to get neuron traces of each experiment (Allen Institute

MindScope Program, 2016). We analyzed each group of neurons

separately and performed overall statistics on the population

activity. By utilizing this dataset and applying our analysis methods,

we were able to investigate the decoding characteristics and

performance of neural populations in different layers of the mouse

visual cortex.

2.1.2. Stringer dataset
The Stringer dataset employed 2-photon imaging to capture

neural activity, recording roughly 10,000 neurons concurrently

through an 11-plane 3D scan at a 30 Hz time resolution. Multi-

plane acquisition controlled by a resonance scanner was used,

with planes spaced 30–35 µm apart in depth. This dataset

presents findings frommice in which the GCaMP6s were expressed

under the Emx1-IRES-Cre transgene’s guidance, facilitating the

expression of GCaMP6s from layers 2 to 5 in the mouse visual

cortex.While various visual stimuli were integrated into the dataset,

our analysis predominantly centered on the 32-class drifting

grating stimuli and the natural image stimuli. For drift grating

stimuli, the directions were evenly spaced at 11.25◦ intervals and

had 32 directions with a spatial frequency of 0.05 cycles per

degree and a temporal frequency of 2 Hz. For nature image

stimulation, a set of 32 natural images was selected from the

ImageNet (Russakovsky et al., 2015) database. Each stimulus was

presented 70–120 times. All calcium signals were processed using

Suite2p (Pachitariu et al., 2016). Compared to Allen’s dataset, the

z-axis data of the Stringer dataset was denser and contained data

from more superficial layers, as Stringer’s dataset began recording

from 75 µm below the pial surface. Sequential acquisition of 10–12

planes was performed at a frequency of 3 or 2.5 Hz. For consistency,

we only used data from 11 imaging depths and from 3mouses: m31,

m32, and m33 which underwent both of the two different stimulus

experiments. Also, we used data from three mice that underwent

both drift grating and nature image experiments. We excluded two

groups of data for lack of data from 420 µm depth. We processed

the data using the methods outlined in the Stringer paper (Stringer

et al., 2019a), which included spontaneous components subtraction

and normalization.

2.2. Decoding and quantification of
decoding accuracy

For deciphering stimulus identity from neural reactions,

multiple decoders were applied to the calcium traces. Aiming to

evaluate the decoding accuracy across layers, the same decoders

were consistently used within each dataset. For the Allen dataset,

the techniques implemented included: (1) multi-class ECOC

(error-correcting output codes) SVM (support vector machines),
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(2) k-NN (k-nearest neighbor), (3) decision tree (4) naive Bayesian

(5) logistic regression. Regarding the Stringer dataset, we used SVM

for decoder consistency and used a basic nearest-neighbor decoder

according to Stringer’s work (Stringer et al., 2019a). The nearest-

neighbor decoder was based on pairwise correlations, assigning the

stimulus identity as that with the highest correlation. This decoder

suits datasets with a large number of neurons, as high-dimensional

correlations can overwhelm the effects of high-amplitude responses

that are unrelated to the stimulus exhibited by some of the neurons.

We employed almost identical data preprocessing methods

for datasets. The amplitude of df/f traces for each trial was

averaged to obtain a single value per stimulus, and then data were

normalized across neurons for both datasets. For SVM, if not

specially mentioned, we used 5-fold cross-validation with an 80/20

split to avoid selection biases. Decoding accuracy was defined as the

fraction of correctly labeled stimuli. For each decoder, the selection

of the neuron populations was repeated 15 times.

2.3. Quantification of neuron properties

To discern the properties influencing decoding accuracy among

layers, multiple factors were quantified. The orientation selectivity

index (OSI) measures a neuron’s preference for its preferred

orientation:

OSI =
Rprefer − Rorthog

Rprefer + Rorthog

Rprefer and Rorthog are responses of each neuron to the

preferred orientation and orthogonal orientation. OSI quantifies

the selectivity of a neuron’s response to visual stimuli with different

orientations and is calculated as the difference between the neuron’s

responses to the preferred and non-preferred orientations, divided

by the sum of the responses. A high OSI value indicates that the

neuron is highly selective for a particular orientation and not widely

tuned.

The direction selectivity index (DSI) measures a neuron’s

preference for its preferred direction of motion:

DSI =
Rprefer − Ropposite

Rprefer + Ropposite

Rprefer and Ropposite are the responses of the neuron to the

preferred direction of motion and the opposite direction of motion,

respectively. DSI quantifies the selectivity of a neuron’s response to

visual stimuli with different directions of motion and is calculated

as the difference between the neuron’s responses to the preferred

and opposite directions, divided by the sum of the responses. A

high DSI value indicates that the neuron is highly selective for a

particular direction of motion.

The reliability of neuronal responses measures the consistency

and repeatability of the neuron’s activity across repeated

presentations of the same stimulus. It is commonly quantified

using measures such as trial-to-trial correlation or reliability

coefficient.

Reliability =
2

T2 − T

T
∑

i=1

T
∑

j=i+1

ρ(fi, fj)

where fi is the df/f response of the i-th trial of a cell’s preferred

condition. A higher reliability value indicates the neuron’s more

reliable and consistent response to the stimulus. The definitions

of the above three properties were referenced from the neuronal

property descriptions provided by the Allen Institute MindScope

Program (2016).

The signal-to-noise ratio (SNR) is defined in this paper as the

ratio of the amplitude responses of a single neuron to the same

stimulus and the variance of the amplitude responses. The noise

component represents the variation in response of a single neuron

to the same stimulus. The SNR was calculated as:

SNR =

∑n
i=1 Ri

2 − nVar(signalnoise)

nVar(signalnoise)

Where Ri is the amplitude response of a single neuron to the ith

stimulus, signalnoise was defined as the unbiased estimation of the

mean-variance in the responses of an individual neuron to different

stimuli. Note that The SNR estimate is positive when a neuron

responds to stimuli above its noise baseline.

Corr =

∑n
i=1(R1i − R̄1)(R2i − R̄2)

√

∑n
i=1(R1i − R̄1)2

√

∑n
i=1(R2i − R̄2)2

where R1 and R2 are the trial-averaged responses of the two groups.

The Pearson correlation coefficient between responses on the two

repeats was used for the simple NN decoder. It measures the

stability of population responses to the same stimulus.

2.4. Statistical analysis

Statistical evaluations in this research utilized two-sided

Wilcoxon rank sum tests for distinct data and signed rank tests

for paired observations. Significance levels were denoted as *p ≤

0.05, **p ≤ 0.01, ***p ≤ 0.001, and ns, for p ≥ 0.05, indicating

no significant difference. Importantly, the Wilcoxon rank sum tests

did not presuppose a Gaussian distribution and were suitable for

non-parametric data analysis. Outcomes with a p-value of≤ 0.05

were deemed statistically significant. Unless specifically mentioned,

all summarized data were presented as mean ± SEM. No outliers

were discerned in the data points, ensuring their inclusion

in the statistical assessments. In the graphical representation,

relationships of no significance or relevance remained unlabeled.

3. Result

3.1. Di�erences in decoding accuracy
across cortical layers of the visual cortex

Firstly, we examined Allen’s dataset to discern the decoding

accuracy among neural groups in varying layers of the mouse

visual cortex (Figure 1A). The neural traces of the dataset were

extracted based on the temporal and spatial components of the

neurons (Figure 1B). Employing a range of decoders, we were

able to predict the stimulus identity of each trial from the neural

responses (Figures 1C, D). Decoding accuracy signified the ratio of

accurately identified stimuli.
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FIGURE 1

Diagram of pipeline for decoding visual stimuli in mice. (A) Experimental setup showcasing the recording of neuronal activity in the visual cortex of

head-fixed mice via two-photon calcium imaging at varying imaging depths. The primary analysis was on VISp neuronal population. (B) Algorithms

utilized for neuron activity extraction, detailing the segmentation of neurons and the extraction of activity traces. The scale bar denotes 40 µm (left),

10 s (right, horizontal), and 1 df/f (right, vertical). These respectively indicate the field of view, and temporal and amplitude scales. (C) Overview of

input data (neuronal response) and output labels (stimulus identity) formulation. Input data is derived from the trial inner average per cell for each

stimulus, while output labels showcase corresponding stimulus identities. Unless otherwise specified, 5-fold cross-validation with an 80/20 train-test

split was applied. (D) Stimulus identity decoding from neural responses via multiple simple decoders like SVM, kNN, decision tree, logistic regression,

naive Bayesian, and simple nearest neighbor correlation classifier. Data normalization was conducted across neurons, and 5-fold cross-validation

was applied for data augmentation. The neuron selection process was repeated 15 times to address biases. The color gradient in the visualization

signifies the number of samples.

3.1.1. Decoding neuron populations across
cortical layers

The visual cortex exhibits a sequential order of sensory

information transfer, along with variations in the distribution and

projections of different neurons across its layers (Figure 2A). Such

factors can lead to variability in decoding precision among the

layers studied. To mitigate disparities due to neuron count in each

test, we normalized the number of neurons utilized for precision
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FIGURE 2

Di�erences in decoding accuracy of grating stimuli across di�erent layers of the mouse visual cortex. (A) Illustrative scheme of the neuronal

dendrites field across layers, spanning ∼600 µm from the pial surface to the white matter. (B) Decoding accuracy analysis of VISp’s various cortical

layers using an SVM with the ECOC model. Focus was on neuronal populations within layers: L2/3, L4, L5, and L6. Notable di�erences in decoding

accuracy are highlighted. (C, D) Inter-layer decoding variability investigation with diverse neuron population sizes using SVM. Neuron selection was

iterated 10 times, with averaged results. L4 consistently maintained the highest decoding accuracy with neuron numbers more than 32, while L5 had

the lowest accuracy. (E) Inter-layer decoding variability investigation with diverse neuron population sizes using SVM. Neuron selection was iterated

10 times, with averaged results. The decoding accuracy of L4 was significantly higher than L5, while the di�erences in decoding accuracy among the

other layers were not statistically significant. *p ≤ 0.05, ***p ≤ 0.001.

assessment. Utilizing SVM for grating orientation decoding, we

noticed fluctuating precision across neuron groups from disparate

VISp layers, even with equivalent neuron counts (Figure 2B).

Specifically, when decoding the drifting grating stimulus, we

observed that L4 neurons exhibited significantly higher decoding

accuracy compared to neurons in L2/3 and L5 (p ≤ 0.001 for L4,

Wilcoxon rank sum test) and the decoding accuracy of the neuron

population in layer 5 was significantly lower than that of L2/3 and

L6 (p ≤ 0.05, Wilcoxon rank sum test).

Additionally, decoding performance was assessed by

comparing sets of randomly selected neurons—ranging from 4 to

256—in each cortical layer experiment. Notably, L4 consistently

maintained a high decoding accuracy for identical neuron

counts, while L5 recorded the minimum accuracy (Figures 2C, D;

Supplementary Figure 1A). Given the limited neuron count in the

Allen dataset (Supplementary Table 1) and the observation that

128-neuron groups’ decoding accuracy was non-saturating, we

chose a uniformly sized group of 128 randomly chosen neurons for

subsequent analyses.

Further, we executed decoding evaluations on natural image

stimuli derived from the Allen dataset. For decoding 119 natural

images, we compared decoding accuracy using 64 and 128 neurons

across different layers. The results highlighted a significantly higher

decoding accuracy of L4 compared to L5 (p ≤ 0.05) (Figure 2E).

3.2. Decoding performance of di�erent
decoders and cortical areas across layers

3.2.1. Decoder type influences performance
Firstly, we employed various decoders to analyze the decoder

performance of neuron populations from VISp with different
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FIGURE 3

Analysis of the e�ects of di�erent decoders and brain regions on decoding accuracy variations in the drift grating task across layers. (A) Deployment

of multi-class ECOC model for SVM, kNN, binary decision tree, logistic regression, and naive Bayesian classifier for decoding. SVM showed superior

decoding accuracy for stimulus identity. (B) Examination of the influence of varying train/test ratios on decoder performance. The test set ratio was

finalized at 0.2 for subsequent evaluations. (C) Decoding accuracy di�erences for drift grating orientations decoding across di�erent layers within

various brain regions of the visual cortex. For VISp, accuracy was significantly higher for L4 than for L2/3 and L6 (p ≤ 0.05, p ≤ 0.001). In the VISl brain

region, the decoding accuracy of L5 is significantly lower than the other cortical layers (p ≤ 0.05). The decoding accuracy of VISpm was lower than

the other two brain regions, with L4 decoding significantly less accurately than L2/3 layers (p ≤ 0.05). (D) Di�erences in the accuracy of drift grating

temporal-frequency decoding for di�erent layers within di�erent brain regions of the visual cortex. Compared with the decoding of grating drift

orientations, the decoding accuracy of the L6 was lower. For VISp, accuracy was significantly higher for L4 than for other layers (p ≤ 0.05, p≤ 0.01, p

≤ 0.001). The decoding accuracy of VISpm was lower than the other two brain regions, with L4 decoding significantly less accurately than L2/3 layers

(p ≤ 0.05). All the significant markers were observed in VISp, indicating that the di�erences of interest between the other two brain regions will be

addressed in the aforementioned descriptions. (E–H) The relationship between decoding accuracy and four factors: reliability, OSI, DSI, and SNR.

Decoding accuracy showed a significant positive correlation with reliability. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 (Wilcoxon rank-sum test).

neuron numbers (Figure 3A). Notably, the logistic regression and

SVMdecoders outperformed others for up to 64 neurons. However,

as neuron counts grew, SVM sustained its superior accuracy.

We also varied the proportions of training and test sets,

maintaining a consistent total dataset size. This revealed a decline

in decoding accuracy with decreasing training set proportions.

However, this decrease did not affect the differences in decoding

accuracy among cortical layers (Figure 3B).

3.2.2. Di�erence in decoding performance varied
across cortical areas

In addition to VISp, we assessed decoding accuracy in other

areas like VISl and VISpm. Within VISp, L4 neurons displayed

notably superior accuracy for grating orientation against other

layers (p ≤ 0.001), while the decoding accuracy of L4 in VISl was

not outstanding. In contrast, the decoding accuracy of VISpm’s

L4 was relatively lower compared to its L2/3 (p ≤ 0.05). Also,

VISpm’s decoding performance lagged behind the other two

regions (Figure 3C).

Moreover, we observed that the decoding performance for

temporal frequency was generally poorer compared to that for

grating orientation even for just 5-class classification. Specifically,

when decoding temporal frequency in VISp and VISl region,

L6’s decoding accuracy markedly trailed that of L4 (p ≤

0.05). Within the VISpm area, L4’s decoding accuracy for

temporal frequency was noticeably lower compared to L2/3 (p ≤

0.05) (Figure 3D).

3.2.3. Influential factors on decoding accuracy
To explore the factors contributing to decoding disparities,

we investigated the relationships between OSI/ DSI/

reliability/ SNR and decoding accuracy. We observed a

significant positive correlation between decoding accuracy

and reliability (Figure 3E). Yet, no discernible correlations

were found between decoding accuracy and OSI, DSI,

or SNR (Figures 3F–H). Although there is no significant

linear relationship, the SNR of the neuronal population in

Layer 4 is significantly higher than that of Layers 2/3 and

5 (Supplementary Figure 1B). Therefore, we delved deeper into the

relationship between these neuronal characteristics and decoding

accuracy.
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FIGURE 4

E�ects of di�erent stimuli and imaging depths on decoding accuracy. We analyzed the Stringer dataset to investigate the impact of diverse stimuli

and imaging depths on decoding accuracy across di�erent cortical layers. The dashed line represents the chance level. (A, B) Analysis of the drifting

grating stimulus data with 11 imaging depths ranging from 70 to 420 µm (n = 3). We used NN and SVM to decode the 32 orientations. The colors

correspond to di�erent mice. (C, D) For the natural images stimulus data, we analyzed 11 imaging depths ranging from 70 to 420 µm (n = 3) (***p ≤

0.001). The dashed line represents the chance level. (E–H) There are di�erences in DSI across layers, but the pattern is inconsistent. The SNR is higher

in the middle layers and lower in the shallower or deeper locations. We filtered out OSIs > 5 to ensure the validity of the statistics. Also, the p-values

of linear regression for DSI with all the decoding accuracy are larger than 0.05. (I–L) The relationship between SNR and decoding accuracy for

di�erent decoders and tasks are depicted in the figures, with corresponding R-square values and p-values displayed on the graphs. Except for OSI

and SVM decoding in the DG task, all other results not mentioned on the graph have p-values > 0.05. The sample size is 33 for three mice and 11

cortical layers.

3.3. E�ect of stimuli and imaging depth
variability on decoding accuracy

Due to the limitation of fixed imaging depth datasets,

which do not allow comparison of SNR, OSI, and DSI

across different depths within the same experiment, we

utilized another 11-plane scanning imaging dataset (Stringer

et al., 2019a). The dataset from Stringer permitted the

examination of SNR, OSI, and DSI at multiple depths, providing

additional insights into the neural properties in different

cortical layers.

3.3.1. Decoding performance across various
imaging depths in stringer’s dataset

We conducted a further investigation using Stringer’s dataset,

which included data acquired at different imaging depths. Two

types of stimuli were selected: drifting grating with 32 orientations

and 32 natural images. We employed our previously validated

optimal decoder, SVM, alongside the nearest neighbor (NN)

decoder derived from Stringer’s study. Upon analyzing data from

the Drift grating stimulus, we observed that decoding accuracy

exhibited a trend of being high in the middle layers and lower in

the superficial and deep layers (Figures 4A, B). When analyzing

the natural image data, we noted an increase in accuracy from

the shallow to middle layers. However, in the case of mouse2, a

decline in accuracy was noted from 210µmdown to 315µmbefore

showing a subsequent upward trend (Figures 4C, D). In summary,

the decoding accuracy of drift grating stimuli showed an increasing

trend with greater imaging depth from the pial surface down to 245

or 280 µm. Beyond this depth, the accuracy gradually decreased as

the imaging depth became deeper. Considering that the Stringer

dataset includes layers L2/3, L4, and L5, this finding aligns with

the results obtained from the Allen dataset, indicating that within

neuronal populations of the same size, L4 exhibits higher accuracy.

3.3.2. Validation of influential factors on decoding
accuracy

In the context of Allen’s dataset, the SNR across various layers

could be affected by both experimental conditions and inter-mouse

variability, especially considering that data from diverse layers

originate from separate experiments. This may seriously affect

the observation of the intrinsic stimulus-tuning characteristics of
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SNR. 3D scanning offers an advantage for data analysis across

different layers, as it enables the exploration of various layers under

identical experimental conditions. To explore potential reasons

for the observed decoding differences between drift grating (DG)

and natural image (NI) stimuli, we examined individual neuron

properties, including OSI, DSI, and SNR.

While OSI displayed limited variations across

layers (Figure 4E), DSI revealed pronounced disparities between

layers, albeit without a discernible distribution pattern (Figure 4F).

Furthermore, no substantial linear correlation was identified

between decoding accuracy across imaging depths and either

OSI or DSI (Supplementary Figures 2A–F). Additionally, SNR

values were elevated in the middle layers, compared to diminished

values in both shallower and deeper layers, consistent across

both stimuli (Figures 4G, H). Notably, there were significant

positive linear relationships between the mean SNR and the

decoding accuracy using both NN and SVM for DG orientations,

as evidenced by the R-squared values (R-square 0.7205 for NN/DG,

0.9133 for SVM/DG, 0.5596 for NN/DG, 0.6894 for NN/DG)

(Figures 4H–K). This finding suggests that SNR could be a

contributing factor to the differences in decoding accuracy. It’s

pertinent to mention that disparities in SNR across experiments

or layers cannot be ascribed to the recording technique, as

Stringer et al. (2019b) have previously tested electrophysiology

data using the same stimuli and obtained a similar distribution

of SNR. Furthermore, our analysis of the noise levels in calcium

signals across various neural layers did not mirror the trends

observed in decoding accuracy or the stimulus-associated

SNR (Supplementary Figures 2G–L).

4. Discussion

In our study, we contrasted the decoding accuracy of visual

stimuli identity across neuronal populations from varying cortical

layers within the mouse visual cortex. We assessed decoding

disparities among neuron populations, ensuring consistent neuron

numbers across layers. Additionally, we evaluated the performance

variations among different simple decoders employed for this task.

We employed 5-fold cross-validation to bolster our data, averaging

results through the iterative selection of a consistent neuron

number to balance discrepancies arising from neuron selection.

We chose simple structured decoders because they provide faster

computation speeds, better interpretability, increased robustness,

enhanced generalization capabilities, and reduced risk of overfitting

compared to complex models, making them highly suitable for

decoding neuronal population activities in neuroscience research.

SVM outperformed other decoders in accuracy as neuron numbers

increased. This is determined by the inherent characteristics of

SVM. Firstly, due to the high feature dimensionality of neuron

populations (e.g., larger than 100), SVM can find a hyperplane

to separate different classes. Also, considering the presence of

noise in neuron responses, the regularization technique of SVM

effectively mitigates overfitting and minimizes the impact of noisy

data on the classifier. Additionally, SVM based on the ECOC

model is designed for handling multi-class classification tasks by

decomposing the problem into multiple binary classifiers with

unique error-correcting codes, providing benefits such as effective

handling of complex datasets, reduced misclassification errors,

improved generalization, and interpretable classification process,

making it well-suited for our tasks.

Furthermore, we examined the decoding differences among

neuronal populations in different cortical layers across various

brain regions within the visual cortex. Our results indicated that

the decoding accuracy of neuron population in L4 VISp for grating

stimuli was higher than that of other layers with no significant

differences in L4 and L6, and lower accuracy was observed in L5.

The higher decoding accuracy of the neuronal population in L4

may be attributed to its direct reception of first-hand information

from the thalamus following sensory information processing (Sun

et al., 2016). Moreover, decoder logic indicates that the neuron

populations are more conducive for stimulus identity decoding if

responding to a wide range of stimuli or not responding to any

stimuli. Yildirim et al. (2019) utilized three-photon microscopy

to investigate the single-neuron response properties in different

cortical layers of the visual cortex in awake mice. Yildirim et al.

reported that neurons in L5 exhibit a broader orientation tuning

compared to neurons in other cortical layers. This finding was also

supported by multi-cortical electrophysiological recordings (Niell

and Stryker, 2008) and L5-specific two-photon studies (Lur

et al., 2016). The broader tuning of L5 neuronal populations

could explain the lower decoding accuracy observed in this

layer. Regarding the L6 neuronal population, despite a potential

deterioration in the signal-to-noise ratio with increasing imaging

depth, it still exhibited good decoding performance. This can be

attributed to the presence of a large number of cortico-thalamic

projection neurons in L6, which are known to possess a high

degree of orientation selectivity (Vélez-Fort et al., 2014). This

property of L6 also supports that the decrease in the number of

neurons has a relatively smaller impact on the decoding accuracy

of L6 compared to other cortical layers. While our study yielded

significant conclusions supported by multiple experiments, further

attempts with larger datasets and more microscopic data results

could strengthen our findings.

For other brain regions, Esfahany et al. (2018) study reported

higher OSI and DSI values for individual neurons in VISl. In our

validation, we observed comparable decoding accuracy between

VISl and VISp. This similarity could be attributed to the previously

mentioned relatively low correlation between population decoding

performance and OSI or DSI. Alternatively, it could be influenced

by the less redundant organization of excitatory neurons in

VISp (Latham and Nirenberg, 2005). On the other hand, the

neural population of VISpm exhibited lower decoding performance

compared to VISp, which could be attributed to the narrower and

broader stimulus preferences in VISp as supported byMarshel et al.

(2011) study. Additionally, it is important to note that the inter-

layer differences we demonstrated only suggest that L4 neuronal

populations of the same neuron number retain relatively more

information. It does not directly prove that all neurons within that

layer retain more information, as we did not obtain information

from every single neuron in each layer. Therefore, it is still possible

that neurons in other layers, such as L5 and L6, may exhibit sparse

distribution and potentially retain significant information.

Notably, while two-photon imaging offers the advantage of

high spatial resolution 3D imagery via tissue scanning, it demands

a trade-off in temporal resolution and necessitates intricate
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apparatus. Thus, we chiefly concentrated on data from the Allen

Brain Observatory, given its use of high temporal resolution

imaging and a larger group of experiments. However, as Stringer’s

dataset was acquired using 3D scanning, we can control the impact

of experimental conditions and individual differences among mice

on SNR. In our analysis of Stringer’s dataset, we found that

decoding with neurons in shallow layers (75µm under the pial

surface) may not be as accurate as with neurons in deeper

imaging depths (175–280 µm), despite previous demonstrations

that neurons in shallow layers decode better (Esfahany et al.,

2018). Additionally, we identified the signal-to-noise ratio as a

contributing factor to the variation in decoding accuracy, alongside

the OSI and DSI. The stimulus-related SNR and reliability serve as

a measure of response quality and stability, which holds significant

importance for any decoder, particularly the SVMandNNdecoders

utilized in our study. Also, NN performs particularly well when the

size of the neuronal population is large, making it highly suitable

for Stringer’s data.

Although there were some differences in the data analysis

compared to some of the previous studies, this research provided

new evidence for the hierarchical structure of information

processing in the mouse visual cortex. The results confirmed

the inter-layer differences in visual information processing. These

findings contribute to our understanding of the functional

organization of the visual cortex and have implications for

the development of the visual cortex. Further studies are

needed to explore the precise mechanisms underlying the

observed inter-layer differences in population decoding and

to investigate their potential relevance to visual perception

and behavior.
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