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Introduction: Spatial representations in the entorhinal cortex (EC) and

hippocampus (HPC) are fundamental to cognitive functions like navigation

and memory. These representations, embodied in spatial field maps, dynamically

remap in response to environmental changes. However, current methods, such

as Pearson’s correlation coe�cient, struggle to capture the complexity of these

remapping events, especially when fields do not overlap, or transformations

are non-linear. This limitation hinders our understanding and quantification of

remapping, a key aspect of spatial memory function.

Methods: We propose a family of metrics based on the Earth Mover’s Distance

(EMD) as a versatile framework for characterizing remapping.

Results: The EMD provides a granular, noise-resistant, and rate-robust description

of remapping. This approach enables the identification of specific cell types and

the characterization of remapping in various scenarios, including disease models.

Furthermore, the EMD’s properties can be manipulated to identify spatially tuned

cell types and to explore remapping as it relates to alternate information forms

such as spatiotemporal coding.

Discussion: We present a feasible, lightweight approach that complements

traditional methods. Our findings underscore the potential of the EMD as a

powerful tool for enhancing our understanding of remapping in the brain and its

implications for spatial navigation, memory studies and beyond.

KEYWORDS

remapping, stability, place cell, grid cell, activity maps, optimal transport, spatial coding,

spatiotemporal

1 Introduction

The entorhinal cortex (EC) and hippocampus (HPC) have been shown to play a crucial

role in spatial navigation and memory (Chrobak et al., 2000; Frank et al., 2000; Lever

et al., 2002; Fyhn et al., 2004; Buzsáki and Moser, 2013). Cells in the EC-HPC circuit

encode a neural representation of the spatial environment and its associated contexts (Fyhn

et al., 2004; Hafting et al., 2005; Moser et al., 2017). This encoding results in a variety of

cell behaviors with different characteristics including, but not limited to, place cells, grid
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cells, object cells, and other vector or feature based coding (O’Keefe

and Dostrovsky, 1971; Steffenach et al., 2005; Lisman, 2007; Moser

et al., 2008; Solstad et al., 2008; Tsao et al., 2013; Diehl et al., 2017;

Hardcastle et al., 2017; Høydal et al., 2019; Iwase et al., 2020).

However, the spatial map generated from the coordinated activity

of these cell types is not necessarily stable. In fact, multiple studies

demonstrated that place cells are able to remap their activity flexibly

and in response to small changes in their environment (Wilson

and McNaughton, 1993; Anderson and Jeffery, 2003; Colgin et al.,

2008). Evidence suggests this remapping of firing activity patterns

enables dynamic encoding of different spatial representations, a

mechanism that underlies episodic memory (Ferbinteanu and

Shapiro, 2003; Leutgeb et al., 2004; Leutgeb S. et al., 2005). It is

therefore of particular interest to be able to quantify the degree of

remapping occurring in different spatial cell types and to be able

to characterize the spatiotemporal changes in a given firing rate

map. Such firing rate maps also need to be quantified outside the

EC-HPC circuit, such as in visual areas, and are not necessarily

restricted to position as a dimension.

Currently, spatial remapping has been segregated under two

categories thought to represent distinct environmental changes;

these are rate remapping and global remapping (Leutgeb S. et al.,

2005; Colgin et al., 2008). Rate remapping is observed when

testing animals in the same location but changing contextual cues

within the environment (e.g., object color) and is denoted by

a change in firing rate unaccompanied by a shift in place field

location (Leutgeb S. et al., 2005). Global remapping, however,

can involve both firing rate changes and shifts in firing fields

and can occur both when testing animals in different locations

and with certain salient cues (Bostock et al., 1991; Kentros et al.,

1998; Wood et al., 2000). As such the boundaries between the

mechanisms that give rise to global and rate remapping are not

strictly delineated with respect to the degree of change necessary

to trigger them. The underlying processes do however differ in that

rate remapping supports continuous information streams and has

been observed to occur gradually in response to environmental

changes such as morphing of different arena shapes (Leutgeb J. K.

et al., 2005; Wills et al., 2005), while global remapping is an abrupt

process where all fields for a given cell remap entirely without

intermediate steps (Leutgeb J. K. et al., 2005; Leutgeb S. et al.,

2005).

Although global remapping is all-or-none within a cell, this is

not necessarily the case for the broader population. The presence

of partial remapping suggests that global remapping is used to

transition between stable and unstable states thus supporting

continuous-like information streams through population responses

(Tsodyks, 1999; Wills et al., 2005). These differing subsets of

reference frames within global remapping need to be characterized

to understand how these transitions between states occur and

the environmental influences driving them. Additionally, global

remapping seems to be a product of both a rate component

and a spatial component where, in the former, firing rate is

altered and, in the latter, firing place fields can be translated,

rotated, scaled or otherwise reshaped. To better understand

the specifics of these spatial transformations we need to be

able to thoroughly characterize the transitions between states.

This requires disentangling the different components involved in

remapping. There are three main components that contribute to

the spatial maps involved in remapping studies. These are a rate

component, a temporal component and a spatial component. The

first is well-defined in remapping studies however, given that rate

coding is not the only information coding schema present in

EC and HPC spatial cells, it is important to be able to describe

remapping as it relates to alternate information forms such as

spatiotemporal coding.

The main methods to identify rate and global remapping are

based on Pearson’s r correlation applied to spatial bins on a firing

rate map (Leutgeb S. et al., 2005; Wills et al., 2005; Hussaini et al.,

2011). This approach is sufficient to identify linear relationships

in transitions between firing rate maps on different experimental

sessions or conditions. However, Pearson’s r is vulnerable to outliers

and cannot effectively capture non-linear transitions nor can it

allow for a segregation of remapping types beyond that of pure

rate remapping or joint rate-spatial remapping. This correlation

approach compares spatial bins at the same position across different

ratemaps for a given cell and is most informative when only linear

rate changes are occurring. Pearson’s r can quantify simple rate

changes but is unable to quantify global remapping beyond its

presence or lack thereof. Therefore, the profile for global remapping

incorporates both a change in firing rate and any type of non-

linear shift in the spatial map density that cannot easily be described

by a correlation metric. Pearson’s r also requires distributions to

be the same in size, owing to its bin to bin approach, which

restricts the information that can be carried in a sample of the

rate map. This can result in spurious correlations for fields with

different sizes and arenas with different shapes. The lack of explicit

characterization of the varied transformations observed in spatial

remapping is particularly problematic in disease models where

seemingly random distortions in fields are seen (Fu et al., 2017;

Mably et al., 2017; Jun et al., 2020; Ridler et al., 2020). We therefore

believe a more rigorous approach, focused on spatiotemporal

distances that capture non-linear rate transformations, is necessary

to further probe the complexities of remapping clearly visible in

spatial navigation and memory studies.

One such method that can complement Pearson’s r correlations

for rate remapping and extend our ability to identify and describe

both spatial and temporal transformations in global remapping

is the Earth Mover’s Distance (EMD). The EMD is a distance

computed on a pair of distributions (Vasserstein, 1969; Panaretos

and Zemel, 2019), often applied in computer science for image

analysis tasks (Rubner et al., 2000). This distance when computed

using unnormalized distributions can also be referred to as

the discrete Wasserstein distance; for normalized distributions it

reduces to the Wasserstein distance, but will be described as the

“normalized EMD” in this paper to avoid confusing the EMD

and Wasserstein distance as wholly separate metrics. The EMD

has been shown to be a highly robust spike train distance metric

when quantifying temporal similarity patterns in spike trains with

varying rate profiles, enabling us to probe the pure temporal

component of remapping (Grossberger et al., 2018; Sihn and Kim,

2019; Sotomayor-Gómez et al., 2023). However, the rate component

remains the primary source of evidence in current remapping

studies while the spatial component, as well as the joint spatio-

temporal component, remain poorly quantified.
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This study aims to address the challenges in characterizing

the remapping process of spatial cell types observed in navigation

studies, memory studies, and beyond, with particular focus

on non-linear transformations and transitions between states.

Current methods, such as Pearson’s r correlation, have limitations

in distinguishing simple rate changes from broader whole

field changes in rate and space. Therefore, we propose a

more rigorous and encompassing approach by employing

the Earth Mover’s Distance (EMD). The EMD quantifies

the minimum optimal transport distance between two 2D

firing rate distributions capturing non-linear non-overlapping

transformations and changes in shape and dispersion of fields.

We aim to explore how the EMD can enhance our understanding

of mechanisms underlying spatial cell remapping and provide

a valuable metric for quantifying remapping across different

experimental trials/sessions. We consider the use of such a metric

for neurodegenerative or otherwise impaired remapping studies by

exploring spatial sensitivity and noise robustness. We investigate

how generalized approximations of the EMD could be used to

manipulate spatial sensitivity properties and identify various cell

types associated with points, areas, or other mapped stimuli,

such as object and trace cells in the lateral entorhinal cortex

(LEC) or point-driven attention mechanisms in visual areas.

We also consider the feasibility of applying the EMD given the

computational cost by comparing the sliced EMD approximation,

which allows for efficient applications of the normalized and

unnormalized 2D EMD by computing the average of many 1D

EMD values along random image slices (Bonneel et al., 2015).

This approximation is used in all computations in this paper apart

from the single-point Wasserstein generalizations (see Section

2). We further assess the feasibility of applying the EMD given

the nature of stability and remapping data where rate effects are

varied, and rate changes commonplace. The EMD’s performance

is also assessed against the non-linear Spearman rank correlation

coefficient, and using real life data examples. Through this

comprehensive analysis, we underscore the superiority of the EMD

over traditional metrics, highlighting its unique ability to explain

complex spatiotemporal transformations, effectively distinguish

various global remapping patterns, and maintain robustness in the

face of noise, rate fluctuations, and other potential distortions.

2 Methods

2.1 Synthetic fields

Place cells and grid cells were modeled as gaussian blobs with

fixed standard deviation. Place cell centroids were restricted to

bins inside the square map. Place cells were modeled as (17,17)

ratemaps with standard deviation varying between 1 and 3 for

different figures where standard deviation was consistent. For

elliptical fields, two standard deviation parameters are used for

the y and x direction. These were set to 1 and 3, respectively. To

model remapping, we shift the location of the centroid on a wider

map (N*3, N*3) and slice the relevant portion to center the field

as needed.

Grid cells consisted of multiple place fields with kernel size and

standard deviation parameters. They were organized in a hexagonal

pattern across a wider grid (N*8 + kernel * 2) with gapN bins

separating place field edges both horizontally and vertically. Slices

were taken across this wider grid to obtain (17,17) rate maps of grid

“cells.” To model remapping, we shift the initial sliced grid map by

N*N pairs (from 0 to N) on a wider map (N*8 + kernel*2) and slice

the relevant portion to shift the grid phase as needed.

In generating heatmaps, while place field centroids are shifted

across the map (left/right/up/down) and tested against a fixed field

at the center, grid fields are shifted right by 0 to N and down by

0 to N creating stepwise slices across the wider grid. These slices

are tested against the initial sliced grid map. Therefore, grid cell

examples are not shifted around the absolute center of the grid map

but rather moving away from the top left corner. Given that the

wider grid pattern is consistent and symmetrical, the information

provided by the results should be no different than if a single point

at the center of the grid map was chosen to shift around.

Both wider and tighter spaced grid modules were considered

by varying standard deviation and gapN parameters. Grid field

centroids were not necessarily inside the (17, 17) ratemap at all

slices taken and a part of the field excluding the centroid could be

included in the slice.

All fields were interpolated to (257, 257) for plotting only.

Additional examples of synthetic fields without interpolation are

provided in the Supplementary Figures 1–3.

2.2 EMD

The EarthMover’s Distance (EMD) is ameasure of dissimilarity

between two arbitrary un normalized distributions defined over a

metric space with a distance metric d(x, y). Intuitively, EMD can

be thought of as the minimum cost required to transform one

distribution into another, where the cost is proportional to the

amount of “earth” moved and the distance it is moved. The general

formula for the EMD is:

EMD(a, b) = min
f∈F(a,b)

∑

x,y∈D

f (x, y)d(x, y) (1)

In this equation, f (x, y) represents the flow from element x

to element y, and d(x, y) denotes the ground distance between

× and y. F(a, b) is the set of all feasible flows satisfying the

following constraints:

∑

y∈D

f (x, y) ≤ a(x), ∀x ∈ D

∑

x∈D

f (x, y) ≤ b(y), ∀y ∈ D

∑

x,y∈D

f (x, y) = min





∑

x∈D

a(x),
∑

y∈D

b(y)





These constraints ensure that the total flow from each element

in a does not exceed its value, the total flow to each element in

b does not exceed its value, and the total flow between the two

distributions is equal to the smaller sum of either distribution.

To compute the EMD, one must solve a transportation

problem, which is an instance of a minimum-cost flow problem.
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In the one- dimensional case, the EMD has a closed-form

solution that is much simpler to compute compared to the multi-

dimensional case.

Let P(x) andQ(x) be two one-dimensional distributions defined

over the same domain, with cumulative distribution functions

FP(x) and FQ(x). The EMD between them can be computed as:

EMD(P,Q) =

∫

∣

∣FP(x)− FQ(x)
∣

∣ dx (2)

In the discrete case, it can be calculated as:

EMD(P,Q) =

n
∑

i=1

∣

∣FP(i)− FQ(i)
∣

∣ (3)

where FP(i) and FQ(i) are the cumulative sums of the respective

distributions up to index 1. The one-dimensional EMD has

a closed-form solution because the optimal transport plan is

unique and easy to find. In contrast, the multidimensional

EMD, which extends the one- dimensional EMD algorithm

to multiple-dimensional signals such as images or videos,

does not have a closed-form solution. The optimal transport

plan is more complicated, and the problem becomes a linear

optimization problem. Common approaches to computing the

multi-dimensional EMD include the Hungarian algorithm or other

linear programming techniques, which can solve the problem in

polynomial time.

The algorithmic complexity of the multi-dimensional EMD

depends on the chosen method for solving the linear optimization

problem (Supplementary Figure 11). For the Hungarian algorithm,

the complexity is O
(

n3
)

, where n is the number of elements

in each distribution. The 1D Wasserstein however has a

closed form solution with runtime O(n). With the python

package SciPy’s optimized implementation this results in a

more efficient runtime than the Pearson’s r correlation function

(Supplementary Figure 11). For two dimensional distributions, the

complexity increases to O
[

(mn)3
]

, for a m × n distribution. For

example, rate-maps of size 16× 16 (n = 162 = 256) would require

166 = 16, 777, 216 operations and a 32× 32 ratemap would require

1, 073, 741, 824 operations. The computational cost can be reduced

in practice by using approximations. In this paper, we use the Sliced

Earth Mover’s Distance (Sliced EMD; Bonneel et al., 2015).

The Sliced EMD is an efficient algorithm to estimate the EMD

between multi-dimensional distributions, such as 2D distributions,

by leveraging the closed-form solution for the 1D case. The main

idea behind the sliced EMD is to project the multi- dimensional

distributions onto multiple one-dimensional lines (slices) and then

compute the 1D EMD on each of these slices. The average of

the 1D EMDs across all slices provides an approximation of the

multi-dimensional EMD.

The sliced EMD algorithm does the following steps:

• Choose a set of random directions (slices) in the 2D space.

• Project the 2D distributions onto each of these slices.

• For each slice, sort the projections of both distributions.

• Calculate the 1D EMD between the sorted projections using

the closed-form solution.

• Average the 1D EMDs across all slices to obtain the sliced

EMD.

The algorithmic complexity of the sliced EMD is determined by

the number of slices (L), the number of points in each distribution

(N), and the sorting complexity. Since sorting has an average

complexity of O(N logN), the total complexity of the sliced EMD

algorithm is O(LN logN). For a 16 × 16 ratemap and L = 103

projections would be 2, 048, 000. For a 32 × 32 ratemap, the

complexity scales to 10, 240, 000. The percent complexity of the

Sliced EMD compared to the EMD computed with the Hungarian

Algorithm for 16 × 16 and 32 × 32 ratemaps, respectively is 1.22

and 0.95%, respectively.

Compared to the Hungarian algorithm and other linear

programming techniques, the sliced EMD provides a much more

computationally efficient approximation for multi-dimensional

EMD, especially when the number of points in the distributions

is large. While the accuracy of the sliced EMD may not be as

high as the exact EMD computed using the Hungarian algorithm,

it often provides a very good balance between computational

efficiency and accuracy, making it suitable for various applications

where an exact EMD calculation would be too computationally

expensive. For two dimensional distributions, the sliced EMD

generally converges with between one hundred and ten thousand

projections (Supplementary Figure 11). Even at the upper bound of

10,000 projections, the sliced EMD is substantially more efficient

than Optimal Transport techniques. We used the sliced EMD

approximation with 10**4 slices to reproduce near-theoretical

EMD scores on all figures in our analysis except for field localization

figures (10**2).

2.3 Single point Wasserstein

In this paper, we primarily use the Sliced Earth Mover’s

Distance (EMD) to compare two distributions. However, there is a

special use case where the EMD complexity can be further reduced.

This use case arises when comparing a normalized ratemap with a

distribution that has all its mass concentrated at a single point.

In this case, the EMD formula simplifies to the sum of the

distances between the point of interest and each point in the

distribution, weighted by the normalized proportion of mass at that

point in the distribution. Specifically, let P be a normalized ratemap

and Q be a distribution that has all its mass concentrated at a single

point q. The EMD between P and Q is given by:

EMD(P,Q) =
∑

x∈D

‖x− q‖2 · P(x) (4)

Here, ‖x − q‖2 denotes the Euclidean distance between x and

q, and P(x) represents the proportion of mass at point × in the

normalized ratemap P. This formula reduces the complexity of

computing the EMD from O
(

n3\ log n
)

to O(n), where n is the

number of elements in the distribution (Supplementary Figure 11).

This simplified EMD formula is useful for object remapping,

where one is interested in comparing a ratemap to a distribution

that represents a single object. For example, it can be used to

compare the ratemap of a rodent’s environment with a distribution

that represents the location of a reward or danger zone.
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2.4 Polymorphisms

Here, we outline specific polymorphisms of the EMD that we

compute for several use cases.

2.4.1 Whole map EMD
The whole map EMD is computed with two ratemaps. For

this use case, the Sliced EMD is used with between 102 and

104 projections.

2.4.2 Field EMD
The field EMD is a special use case where only firing fields are

considered. In this case, rates are imputed to zero outside of the

firing field while rates within the firing field are retained. The Sliced

EMD is then used to estimate the EMD on these masked ratemaps.

2.4.3 Binary EMD
The binary EMD is computed using ratemaps where one is

imputed for the bins inside the firing field and zero is imputed for

those outside the firing field.

2.4.4 Centroid distance
The centroid distance refers to the euclidean distance

between two points (e.g., field centroid-object or field centroid-

field centroid).

2.5 Reference quantiles

Optimal Transport (OT) metrics, encompassing both Earth

Mover’s Distance (EMD) and Wasserstein Distances, provide a

measure of the dissimilarity between two probability distributions.

However, due to their unbounded nature and susceptibility to

various external factors, it is often useful to standardize these

metrics for meaningful comparisons. To do this, we propose the

following steps to transform raw OT values into a relative scale, in

terms of their position within a reference distribution.

• Choose a counterfactual distribution to standardize the

OT metrics. For example, the counterfactual could be OT

metrics from a sampling of mismatched neurons within the

same ensemble.

• When the data is hierarchical (e.g., neurons from different

brain regions), it is advisable to compute quantiles separately

for each subgroup to ensure meaningful comparisons within

the hierarchy.

• For each observed OT metric value, compute the quantile q as

follows. Let N be the total number of samples in the counter-

factual distribution. Let n be the number of samples less than

the observed value. Let q = n/N. This results in a quantile value

between 0 and 1 for each observed OT metric.

OT quantiles can be used to assess neural stability and

remapping in two main ways. First, the quantiles themselves can be

interpreted as one-tailed p-values, gauging the likelihood that each

neuron’s observed stability level deviates significantly from what

could be expected by chance. The second major way of using OT

quantiles is to consider them as a standard scale for group-based

hypothesis testing. For example, differences in the representational

stability of neurons from two or more groups may be assessed using

an appropriate hypothesis test or regression model.

2.6 Firing blob extraction

Firing fields were estimated as in Fyhn et al. (2007). The peak

firing rate was chosen as any bin in the rate map with the largest

value (rate). Firing fields were determined as a contiguous region

where the firing rate was above 20% of the peak rate. Therefore the

top 80% of bins were considered and a blob extraction procedure

was then used to extract contiguous regions.

2.7 Correlation measures

Pearson’s r correlation coefficients were computed using the

python package SciPy. Correlations were computed between the

raw and normalized 2D gaussian distributions by comparing the

value at each bin in the N×N ratemap. Spearman-rank correlation

coefficients were computed in the same way using the spearman

function instead.

2.8 Data processing

Pre-processing steps for medial lateral entorhinal cortex (MEC)

and HPC recordings of mouse models in the lab. Processing steps

are also provided for an open-source place cell dataset from the

HPC of mice.

2.8.1 MEC and HPC examples
Ratemap dimensions were set to 32 × 32. Firing rates were

determined by dividing spike number and time for each bin of

the two smoothed maps. Cell recordings were done in rectangular

arenas with someHPC cells tested in alternating sessions of circular

and rectangular arenas. Spatial information scores were computed

as per the Skaggs’ formula which quantifies the information about

animal location carried in a spike as bits per spike (Skaggs

et al., 1992). Computation of grid and border scores was done as

described previously (Langston et al., 2010; Bonnevie et al., 2013).

The largest border score of the four available borders was chosen.

2.8.2 Place cell dataset
Place cells from hippocampal CA1 two-photon microscopy

recordings in mice running across a virtual linear track were

obtained from a published dataset (Grijseels D. et al., 2021).

Deconvolved spike trains from Suite2P outputs were used directly

as cumulative spike counts and converted to 1D firing rates. 1F/F0
fluorescence values were computed and preprocessed in the way
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described by the authors (Grijseels D. et al., 2021). The authors

included a normalization step involving 15 s intervals. As such

we averaged activity within 15 s intervals (112 frames) to better

demonstrate the peak firing rate trend. Given that our current EMD

use is not adapted to support negative values, this helped reduced

the count of cells that had to be rejected given negative fluorescence.

No other filtering was applied and this resulted in 752 unique cells

(including spatial and non-spatial cells).

2.9 Code

All analyses were done in python using custom code on

Jupyter notebooks. All plots were made using matplotlib. Sliced

Wasserstein distances on whole maps and field restricted maps as

well as binary EMD distances were computed using the python

optimal transport package (ot). Map to point distances were

computed using custom single-point Wasserstein functions. All

functions are integrated as part of our custom analysis toolkit

NeuroSciKit (NSK). A prototype to analyze remapping under

different EMD metrics for whole map to whole map cases,

object/quadrant cases, field to field cases, and specific session

grouping cases is provided and being developed as part of this

toolkit.

3 Results

In order to understand why EMD outperforms Pearson’s r, we

need to explore remapping concepts with fine-grained control of

spatial fields.We therefore opted to synthetically generate examples

of field maps where manipulations would allow us to vary (1)

field size (stdev), (2) field noise (stdev), (3) field shape (ellipse

or circle), (4) field count (1, 2, or grid), and most importantly,

(5) field location (x,y) (see Section 2). We did this by modeling

fields as gaussian blobs with centroid coordinates (x,y) on a square

map of size N and a standard deviation parameter to vary the

field intensity. When necessary and wherever specified, we added

normally or uniformly distributed noise across the ratemap. These

synthetic fields allow us to approximate certain cell types and

different firing field situations that come about in experimentally

recorded data. We use these synthetic fields to demonstrate how

EMD outperforms Pearson’s r in single, dual and multi-field cases.

3.1 EMD captures linear and non-linear
transformations resulting in
non-overlapping fields

While single field maps can be thought of as a modeling of

place cells, the insights derived from the EMD in such situations

are applicable to any type of single field map. Therefore, to first

compare the Earth Mover’s Distance (EMD)metric to the Pearson’s

r correlation coefficient, we considered the simplest remapping

case which involves two maps with one identical field in each, but

at different locations. This would approximate the simplest case

of spatial remapping where every aspect of a field is unchanged

except the position on a map. More importantly however, this

manipulation allows us to consider remapping transformations

that result in non-overlapping fields, a case that Pearson’s r would

quantify as no correlation (p = 0). Such cases are critical to quantify

since remapping resulting in non-overlap still has a biological

significance and/or a driver beyond that of having remapped or

not. These non-overlapping transformations are often seen in cases

of global remapping, and particularly in studies making use of

changing arena shapes. In fact, this can be thought of as an analog to

testing remapping across two non-identical arenas where a cell field

may move to a now non-overlapping region outside of the initial

arena shape (e.g., circular then square arena).

Our synthetic place fields were modeled as 2D-gaussian

distributions (σ = 1) with a single centroid (center bin) in

the middle of a square map. To allow for a single point that

is at the true center of the square map, we used N = 17 bins

for height and width as opposed to the more traditional (16,16)

ratemaps. While one ratemap had its field, and centroid, fixed to

the middle of the map, the other was translated across the square

such that the centroid had visited every possible bin in the (N ×

N) ratemap. At every point in a bin, the remapping scores were

computed between the fixed and translated rate map. Weights

from the ratemap were normalized resulting in a normalized EMD

score (Wasserstein distance). As such, we tested remapping across

all possible transformations resulting in a field, at least partially,

still in the map but not necessarily overlapping with the fixed

field. In doing so, we demonstrate that the EMD metric shows

greater sensitivity to spatial transformations than the Pearson’s r

correlation coefficient (Figure 1). Specifically, the EMD metric is

able to capture all possible linear and non-linear transformations

resulting in either overlapping or non-overlapping receptive fields.

We show that, for a given pair of identical receptive fields, circular

or elliptical, the EMD score is non-zero for all possible place field

centroids whereas, as one place field from the pair is gradually

translated outside the field of the other, the Pearson’s r coefficient

accelerates to 0 (Figure 1). In fact, Pearson’s r is unable to quantify

any remapping that results in wholly non-overlapping receptive

fields (r = 0) while the EMD is non-zero at all possible centroids.

Therefore the coverage of information provided by Pearson’s r is

restricted to remapping that results in overlap between fields and

varies depending on the size and placement of the field in a map.

Experimentally however, single field cells are not the only

observation and various cell types exhibit multiple fields. One such

prominent example is the observed pattern in grid cells where

multiple fields are laid out in a hexagonal pattern. Combinations

of these grid cells coordinate as grid modules with various

orientation, spacing and other properties that enable advanced

spatial processing using the overlap of multiple grid cells (Hafting

et al., 2005; Fyhn et al., 2007). As such, we then considered the

case of overlapping grid modules, both tight and wide in their

spacing. In the wide case, we modeled n = 3 grid fields with

σ = 2 and 10 bins of separation. In the tight case, we consider

N = 3 grid fields with σ = 1 and only six bins of separation.

Given that the map size was N = 17, and the requirement to

not overlap fields in a grid cell, the decrease in bin separation

from 10 to 6 is non-trivial and leads to significantly less spacing
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FIGURE 1

Identical place field translation. Stepwise horizontal linear translation of identical, overlapping place fields (N = 17, σ = 3) moving from the center to

the right (A, C). EMD score is shown on the left while Pearson’s r is shown on the right (top panel—EMD vs. Pearson). Twelve steps are shown and

scores are rounded for display. Scores from remapping tested at all possible centroids along a single row on the rate map (bottom panel). EMD and

Pearson’s r scores tested at all possible centroids in the rate map (N*N) (B, D). Scores for horizontal and diagonal translations along the rate map are

shown for all rows (N = 17) (top panel). Heatmap showing the gradient of scores for both raw and inverted EMD (left and center) and for Pearson’s r

(right) (bottom panel).

between grid fields. In both cases we follow a similar procedure as

above and shift the grid module horizontally and vertically for N*N

pairs of positions creating a map of EMD and Pearson’s r scores

(Figure 2). We demonstrate that EMD also surpasses Pearson’s r

in its sensitivity to phase transitions. Specifically, we see that both

EMD and Pearson’s r suitably capture the transition from in phase

to out of phase but EMD provides a more specific quantification

of this boundary. For ease of comparison, we inverted the color

scheme of the EMD heatmaps so that hotter colors represent

similarity and colder colors represent dissimilarity in a way aligned

with how Pearson’s r shows up on comparable heatmaps. In doing

so we see that the inverted EMD heatmap demonstrates a broader

range of EMD values which allow for a narrower determination of

the phase crossing boundary (thinner shaded region at boundary

crossing). Additionally, Pearson’s r also results in 0 correlation

scores when grid modules are completely non-overlapping, EMD

however can still quantify these regions of no overlap. Therefore,

EMD also offers more spatial sensitivity in the case of grid fields.

The EMD is especially useful in cases of no overlap

where global remapping transformations struggle to be defined

with Pearson’s r. The application of the EMD on place

cell transformations resulting in non-overlap demonstrates this

(Figure 1, Supplementary Figure 4). We see reflective properties

in that all four corners of the square rate map show the same

EMD score gradient. Similarly, the top, bottom, left and right

(N,S,W,E) locations show highly similar EMD values. This suggests

that the EMD can facilitate the characterization of complex

non-linear transformations involving rotations of fields, both

overlapping and non-overlapping. This can also be extended

to object fields, object trace fields, border fields and any other

point or area driven field remapping. Additionally, given that the

distribution of EMD scores extends outside the area covered by

the gaussian field, this metric may be able to describe remapping

and distortions of the underlying field, either in the form of

simple scaling or complex degeneration of fields. The increased

spatial sensitivity demonstrated by the EMD is also reflected in the

elliptical and circular nature of place fields being captured in the

underlying EMD distribution (Figure 1, Supplementary Figure 4).

EMD is equally sensitive and informative in the case of non

identical place fields, where field shape is varied, as seen with

the circle-ellipse pair and the rotated ellipse-ellipse pair further

suggesting that the EMD may be used to capture complex

changes in the field shape, size and distribution on a rate map

(Supplementary Figure 4).
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FIGURE 2

Identical grid field translation. Stepwise horizontal linear translation of identical, overlapping grid fields (N = 3, σ = 1) moving from the top left corner

to the right and/or downwards on a rate map (N = 17) (A, C). EMD score is shown on the left while Pearson’s r is shown on the right. Twelve steps are

shown and scores are rounded for display (top panel—EMD vs. Pearson). Grid maps were sliced from a larger map with su�cient fields and bins to

support N*N steps. Initial grid maps were chosen by taking a slice from the wider map. Scores from remapping tested across N*N di�erent shifts

from the initial grid map (0 to N combinations) (bottom panel). EMD and Pearson’s r scores tested at N*N di�erent centroid positions on the wider

grid (B, D). Scores for horizontal and diagonal translations along the rate map are shown for all rows (N = 17) (top panel). Heatmap showing the

gradient of scores for both raw and inverted EMD (left and center) and for Pearson’s r (right) (bottom panel).

These complex changes and field distortions are commonplace

in neurodegenerative studies such as the observed progressive

degeneration of spatial maps in AD mouse models during

spatial memory and navigation tasks (Fu et al., 2017; Mably

et al., 2017; Jun et al., 2020; Ridler et al., 2020). Despite the

impairments to the underlying spatial map, the remapping of

such a map still needs to be quantified to assess differences in

stability, learning and memory in these disease states. Additionally,

inactivation studies, such as those involving muscimol to inactivate

medial septum (MS) or hippocampal input to EC resulting

in impaired grid cells and grid cell disappearance respectively

(Brandon et al., 2011; Bonnevie et al., 2013), are commonplace

and assessing the stability of spatial maps post inactivation is

important. Optogenetic methods have also shown similar findings

with altered place and grid cell behavior (Miao et al., 2015,

2017). To confirm the benefit of using the EMD in cases of

impaired cell maps, we considered two more remapping scenarios

involving no translations to the field centroid but rather in-place

transformations on the field itself resulting in noisy or degenerate

spatial maps.

3.2 EMD is more stable to noise and field
degeneration

In the first case, we considered a scaling remapping of the place

field where a gradual increase in the standard deviation of the

gaussian field on a fixed (33 × 33) map results in an increasingly

large field (σ range = 0 − 6). We found that while Pearson’s r

was poor at quantifying spatial scaling and insensitive to minor

changes, the EMDmaintained its spatial sensitivity, and symmetry,

allowing for a quantification of both scaling up and scaling down

of place fields relative to a single fixed field (σ = 3; Figure 3).

The EMD is therefore sensitive across a broader range of standard

deviations than Pearson’s r which can only really distinguish large

shifts in scaling magnitudes. Pearson’s r is also skewed such that

larger standard deviations are less distinguishable than smaller ones

while the EMD is robust in both directions. This susceptibility to

field size restricts the information Pearson’s r can provide without

additional testing. For example, Pearson’s r would indicate greater

stability for larger field sizes, but this might simply be due to the

increase in correlation bins. Larger field sizes have been associated
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with disease models such as in AD mice (Cacucci et al., 2008).

Therefore, applying Pearson’s r directly would not necessarily be

indicative of true stability and would require that the field sizes be

normalized before making comparisons, as was done in a previous

study (Hussaini et al., 2011). EMD doesn’t suffer from this problem

and has been shown in Figure 3A to outperform Pearson’s r.

In the next case, we considered a more complex “remapping” of

place fields (17 × 17 pixels) involving progressive degeneration of

spatial maps as commonly seen in spatial memory studies of disease

models (Fu et al., 2017; Jun et al., 2020). To model this progressive

degeneration of a spatial map and the increased “noise” associated

with this degeneration, we added 17 × 17 pixel noise maps in a

stepwise manner. The noise fields were sampled from a normal

distribution (µ = 0) with increasing standard deviation. We did

this for two pairs of place fields (σ = 1), non-overlapping and

partially overlapping place fields (Figure 3). For each we computed

the whole map EMD, the Pearson’s r correlation coefficient and

a field-restricted EMD following blob extraction based on 20%

of the peak firing rate as in Fyhn et al. (2007). In the former

non-overlapping case, we see significant deviation of the Pearson’s

r correlation coefficient from the baseline remapping value of

−0.0454 computed at no noise. The value is close to 0 since there

is no overlap between the fields and bins outside the field are

close to 0. We see however that as we increase the added noise,

Pearson’s r score accelerates away from the true score and begins

to plateau around r = 0.8 to 1, solely due to extraneous noise. The

distribution of Pearson’s r scores evolving asymptotically is also

evident in the overlapping case but with a larger base correlation

given the initial overlap (base: 0.339, µ: 0.814, σ : 0.190).

The whole map EMD on the other hand remains more stable

relative to the initial no-noise score and deviates fewer times and

at larger standard deviations. This trend is seen in the overlapping

(base: 0.208, µ: 0.369, σ : 0.171) and non-overlapping (base: 1.17,

µ: 1.29, σ : 0.247) cases. We also find that the whole map EMD

is more stable at larger standard deviations than the field EMD.

In the overlapping case the field EMD shows a greater standard

deviation than the whole map EMD despite a similar base and

mean (base: 0.183, µ: 0.369, σ : 0.222). This contrasts with the non-

overlapping case where the field EMD shows a smaller standard

deviation than the whole map EMD (base: 1.04, µ: 1.03, σ : 0.202).

These differences in the field EMD and whole map EMD can

be understood through the interference of added noise on the

detection of firing fields based on peak rate (see Section 4). Even

so, we find that the EMD metrics are overall more robust to noise

and stay closer to the baseline score for larger deviations of noise.

As such the EMD scores provide a more stable metric to describe

remapping stability than Pearson’s r.

Given that Pearson’s r is so sensitive to outliers and these

ratemaps were un-smoothed and un-normalized post added noise,

we repeated the procedure by smoothing ratemaps with a gaussian

kernel (size= 5, σ = 1) and normalizing post smoothing

(Supplementary Figures 5, 6). In doing so, we demonstrate that

the observed trend holds and the normalized EMD (Wasserstein

distance) again proves to be a more robust metric. We first find

that the non-linear trend of Pearson’s r scores across noise standard

deviations seen in the unnormalized case remains but shifts tomore

linear in the smoothed-normalized case. We observe this for both

the non-overlapping and partially overlapping scenarios. EMD on

the other hand is again a more stable choice and deviates less

from the baseline score for overlapping and non overlapping fields.

The whole map EMD scores also have noticeably fewer outliers

in that there are fewer large peaks away from baseline. We see

similar trends in a third test with normalized but unsmoothed

ratemaps where Pearson’s r is unchanged from the unnormalized

case owing to the inherent normalization procedure of computing

Pearson’s r. Therefore, EMD is less sensitive to degeneration for

both unnormalized and normalized ratemaps, with or without

smoothing, emphasizing the use for it in identifying regions of

low remapping for particularly noisy or disease-driven degenerate

spatial maps

We therefore demonstrate that the EMD computed between

two ratemaps is robust to noise and degeneration while Pearson’s

r is not. The emphasis however is on a robust distance between

two non-identical ratemaps (two different cells/sessions) in the

presence of increasing noise. While remapping stability is often

assessed between different cells or a single cell across different

sessions, this is not the only case that can benefit from informed

stability analyses. In fact, the EMD should also maintain this

noise robustness in a within-cell or within-session comparison as

opposed to an across cell/session comparison. This is an important

property in order to confidently localize a field on a map and

describe regions of high or low remapping as they relate to spatial

locations of different objects, points or even other centroids/fields

on that same map.

3.3 EMD distributions extend field
localization and capture remapping relative
to a point

To test such within-session stimulus/location-relative stability,

we opted to compare the performance of the EMD to Pearson’s r as

well as to established field localizationmethods based on peak firing

rates (Fyhn et al., 2007). Specifically, we sought to understand if the

EMD could be used to locate fields and, by extension, to identify

specific regions of interest in stability analyses. To do this, we use an

adjusted EMD metric computed between the true whole map and

a pseudo-map where all the density has been placed in a single bin

(single point Wasserstein distance). This process is repeated across

all possible bins in the 17× 17 spatial map such that a map of EMD

scores should be lowest (least dissimilar/most similar) at the region

of lowest remapping. In the case of place fields or other single field

cells, the point of lowest remapping is presumed to be at or near the

centroid of the field. We do this for a rate map with low and high

standard deviations of added noise. Correlations are computed

between the whole map and point map while field extraction is

done on the whole map. To account for border and numerical

issues that reflect the scores, we pad the ratemap with N = 2 bins

(Supplementary Figure 8). To reduce the influence of outliers on

Pearson’s r and firing rates, we smooth the ratemaps after adding

noise (Supplementary Figure 8). We note that smoothing primarily

recovers Pearson’s r’s accuracy but not the EMD which remains

robust without smoothing (Supplementary Figure 8). We also find

that, as the amount of noise is increased, the EMD is more robust

to noise than Pearson’s r and the peak firing rates, with the spatial
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FIGURE 3

Incremental field degeneration. Stepwise nonlinear translation of overlapping fields (N = 33) relative to a fixed field at σ = 3. Twelve steps are shown

with six scaling down and six scaling up relative to the fixed field (A). EMD score is shown on the left while Pearson’s r is shown on the right (left

panel). Scores from remapping tested across a range of standard deviations for the scaling field (right panel). Incremental field degeneration for a pair

of fields, non-overlapping and overlapping (B, C). Left panels show the stepwise degradation in the rate map due to randomly sampled normally

distributed noise with varying standard deviations. Noise standard deviations are shown above the rate map plots. The distribution plots show the

computed remapping score between the pair of fields for the overlapping and non-overlapping cases. Both cases have values for the EMD (red), field

EMD (green), and Pearson’s r scores (blue) displayed (right panels).

bins holding the top 20% of EMD scores being less spread out and

less sparse than the spatial bins holding the top 20% of Pearson’s

r scores or firing rates (Figure 4, Supplementary Figures 7, 8). This

is particularly evident on noise heavy maps where Pearson’s r and

peak firing rates lose their specificity toward the region of lowest

remapping while EMD retains it. That is, the scores become less

specific and therefore less sensitive as a tool to determine the true

centroid of a field, locate that field on a map and quantify any

associated changes.

In fact, with greater noise, the quality is sufficiently degraded

to result in multiple fields being detected despite there being

a single place field on the original map. These often smaller

fields that are outside the region encompassed by the top

20% of EMD scores would be removed experimentally if

they were below a certain area threshold. However, it is not

uncommon for noise blobs (noise fields) to cross this threshold

and the number/shape can often vary with ratemap smoothing

parameters that are part of the field detection process (Grijseels

D. M. et al., 2021; Supplementary Figures 9, 10). As such blob

detection algorithms based on a percentage threshold of the

peak firing rate may be more robust than other existing

methods but can result in too many fields being detected

(Supplementary Figures 9, 10). In the case of single fields, the

EMD is a more robust metric to measure remapping relative to

a point than the Pearson’s r score and may complement field

localization by filtering/validating extracted fields in cases of noisy

rate maps.

In the case of dual fields however, the top 20% of EMD

values span a contiguous region that includes the area spanned

by both fields. While EMD is still robust here, we can see that

it does not capture the separate nature of each field at high

noise (Figure 5). In fact, while the top 20% of EMD scores are

robust to field shape at low standard deviations, this is not the

case for larger standard deviations where the map is sufficiently

distorted for the EMD to miss the dual field relationship. Despite

this we still observe that the relative positioning of the highest

EMD region is more consistent and less degenerate at higher

standard deviations (Figure 5). We see that the EMD peak regions

are dependent on the placement of fields on the map. With

multiple fields, the lowest EMD region will be located at a weighted

average of all fields, which is the lowest point of remapping,

and requires the least amount of work in order to shift all the

density to that point as opposed to any other point on the

rate map.

As such, the map-to-point EMD approach is still informative

in the case of multiple fields and the distribution of EMD
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FIGURE 4

Single field localization. Field localization plots across two di�erent noise levels (rows: low noise 0.1 and high noise 0.5). For each row in a plot, the

first column shows the ratemap post added noise with padding, smoothing and normalizing. The second column shows the EMD distribution on the

padded rate map with scores being relative to a point map with all the density placed in the bin at which the EMD score is found. The third column

shows the same map to point computation for Pearson’s r scores. The fourth column shows the 80th percentile scores for the EMD (red) and

Pearson’s r distributions (blue). The fifth column shows the top 20% firing rates in the cell. The last column (sixth) holds the extracted blobs (fields)

from the padded ratemap with the centroid of each blob shown in red. The circle represents the true field centroid. The star represents the centroid

computed on the peak EMD scores. The triangle is the centroid computed from the peak Pearson’s r scores. The diamond is the centroid from the

peak firing rates. The red dots are the centroids of a given field.
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FIGURE 5

Dual field localization. Field localization plots across two di�erent noise levels (rows: low noise 0.1 and high noise 0.5). For each row in a plot, the first

column shows the ratemap post added noise with padding, smoothing and normalizing. The second column shows the EMD distribution on the

padded rate map with scores being relative to a point map with all the density placed in the bin at which the EMD score is found. The third column

shows the same map to point computation for Pearson’s r scores. The fourth column shows the 80th percentile scores for the EMD (red) and

Pearson’s r distributions (blue). The fifth column shows the top 20% firing rates in the cell. The last column (sixth) holds the extracted blobs (fields)

from the padded ratemap with the centroid of each blob shown in red. The circle represents the true field centroid. The star represents the centroid

computed on the peak EMD scores. The triangle is the centroid computed from the peak Pearson’s r scores. The diamond is the centroid from the

peak firing rates. The red dots are the centroids of a given field.

values generated by comparing remapping at every possible

point allows for a localization of remapping regions. This

can be used to identify the region, or quantile, of remapping

relative to a known stimulus region (e.g., object location) and

could even help filter out detected fields that fall far outside

of the contiguous regions of lowest remapping. We also see

that this distribution is sustained through increasing noise

providing a robust metric to assess spatially correlated and/or

driven remapping.

3.4 EMD captures object or trace cells and
other position/rotation driven remapping

The noise robustness of the EMD using the map-to-point

approach, coupled with the symmetrical properties shown and

a quantile reference distribution, lends itself to the investigation

of specific entorhinal and hippocampal cell types. Specifically,

the EMD map-to-point approach involving a quantile reference

distribution can be used to track remapping relative to a stimulus
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point (object location), both current and past (object and object-

trace), relative to a stimulus region, both general (N,S,E,W) and

specific (single point or multi-location), and relative to current

position, both discrete (place cell with single preferred x,y location)

and continuous (stepwise sliding window). With the findings of

object, location, and stimulus encoding playing a central role in

EC-HPC circuitry, it is critical that we are able to quantify such

remapping to understand its role in episodic memory and changes

associated with impairments in this role (Tsao et al., 2013; Wilson

et al., 2013a,b; Chao et al., 2016; Wang et al., 2018). Additionally,

point driven remapping is especially important given theories of EC

functioning and mounting evidence for relative temporal tracking

of stimulus locations and identities in LEC (Tsao et al., 2013;

Wilson et al., 2013a; Wang et al., 2018). Such point remapping

is also found in visual areas where remapping of pointers is

suggested to underlie an attention mechanism (Cavanagh et al.,

2010). This evidence further supports the notion of attention-

modulated stimulus tracking in the LEC where relative changes in

cell responses need thorough characterization to understand their

functional role.

In the case of object location tracing, we can provide both

relative and specific information. In the relative case, we make

use of a distribution of map-to-point EMD quantiles generated by

computing distances between a cell field and a series of randomly

sampled locations. We can then compute distances to known

object locations and describe, relative to the reference distribution,

which one leads to the lowest quantile. For more specific tracking

involving a distance threshold from the object, we can use a

combination of the whole map-to-point map EMD and centroid

distances (Euclidean distance between field centers). Specifically,

for a given NxN ratemap, we compute the EMD between the

true rate map and a pseudo rate map where a single bin (object

location) holds all the density. We can do this relative to the

current session/trial or a previous session/trial. We consider a

model experiment setup where an object is shifted across four

possible locations and a synthetic object “cell” traces the current

location of the object with the placement of its field (N = 17,

σ = 1; Figure 6). At each object “session,” we compute the

centroid distance between the field and all four possible locations

as well as map-to-point EMD values. We leave the EMD as a

distance instead of a quantile since our setup guarantees the

object location is at the minimum quantile and we only test four

points. We see that these values are at their lowest when the

field is overlapping with the object location and identical when at

opposing yet equidistant locations to the current field. Centroid

distances enable us to impose distance requirements and provide

more specific localization. In practice, they also provide additional

information regarding field shape/dispersion such as when the

EMD quantile may be lowest at one object location while the

centroid may be closer to another location. Thus, the single point

EMD (Wasserstein) can be used, along with centroid distances,

to determine the object location that requires the least amount of

work in moving the field. This demonstrates that we can quantify

remapping toward the current object location on a trial, previous

trial location or even future trial location (if we suspect the subject’s

cell of predicting the change). In doing so, the EMD enables us

to identify object, object-trace, and/or other types of cell tracking

mechanisms.

Importantly however, we again notice the reflective property of

the EMD where two possible object positions share the same EMD

value despite having different centers. The location of the objects

on the map and the vector transformations from the field centroids

toward these different locations allow us to differentiate between

them despite the similarity in EMD scores. Therefore, a substantial

shift in centroid location associated with a low remapping value

can be indicative of rotational remapping for a map/field. We

can see that this property is not present with Pearson’s r scores

which are unable to quantify any rotational remapping or object

tracing resulting in non-overlap with r = 0 at all points outside

of current object location (N = 33, σ = 3 for rotating field;

Figure 6). Identifying rotational remapping and describing the

angle and direction of a rotation is important to understand how

these rotations come about and the specific influences that may be

driving them or that they may be driven toward. These rotations,

either whole map or for a specific field on a map, have been

observed experimentally in different contexts including, but not

limited to, grid cell rotational realignment in entorhinal cortex

(Fyhn et al., 2007) and place cell cue-driven rotations (Muller and

Kubie, 1987; Fenton et al., 2000).

EMD is evenmore suitable to quantify these rotations and other

stimulus driven remappings as it can be computationally simplified

for the point map case. Specifically, we show that the properties

seen in the whole map to single point map EMD computation are

held in cases where the object location is poorly defined or when

we are restricted to a field. In the former case, we computed the

EMD between only the field on a map and a general quadrant

encompassing—of the square arena and including the current

object location. In the latter, we computed a simplified, normalized

EMD (single point Wasserstein) between only the field on a map

and a singular point rather than the entire point map. In both cases

the reflective property that supports complex remapping involving

rotations and/or tracing is maintained. Therefore, the concept

of a whole-map to point-map approach can be generalized to

any combination of whole-map/field-map to point-map/quadrant-

map/single-point remapping.

The generalization of the whole map—point map EMD into a

whole map—single point Wasserstein reduces computation time

and provides a simpler and more flexible way to apply the EMD

computation. This is highly useful for less specific remapping

cases involving no object locations but broader environment

differences spanning multiple spatial bins. For example, EMD can

also be used to characterize rotational remapping of border cells

or remapping toward/driven by entire quadrants/regions of an

arena/environment. EMD is also unrestricted by non-overlapping

rotational remapping. If we consider remapping in the form of

field rotation for a pair of overlapping place fields, we see that

Pearson’s r cannot effectively describe rotations. We show that the

angle of rotation or presence of a different angle of rotation cannot

effectively be distinguished. We find that Pearson’s r is close to 0

for around 100–250◦ of rotation and is blown up below and above

those limits. EMD on the other hand is much smoother across

all tested angles demonstrating its effectiveness both for rotational
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FIGURE 6

Complex non-linear field remapping. Stepwise nonlinear translation of overlapping fields (N = 33) relative to a fixed field at σ = 3 (A). Twelve rotation

steps are displayed and EMD score is shown on the left while Pearson’s r is shown on the right (top panel). Scores from remapping tested across a

broader range of rotation angles (bottom panel). Four corner point driven remapping with top left, top right, bottom right and bottom left tested (B).

Fields were positioned so as to be fully encompassed by the rate map area. The first column shows the field location, four possible

object/point/stimulus locations (stars), and distances from the field centroid to each of the four positions. The second column shows the whole map

to whole map EMD scores with the full rate map and a pointmap (1 at object location, 0 everywhere else). The third shows a field restricted EMD

between a field and a quadrant of multiple bins. The fourth column shows an approximation to the whole map sliced EMD using only the field and

the single point object point (single point Wasserstein). The last column holds the Pearson’s r scores. Heatmaps demonstrate the scores in the four

possible corners.
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remapping that results in either overlapping or non-overlapping

fields (Figure 6).

3.5 EMD on spatial maps is robust to rate
changes

The feasibility of the EMD is not only supported by the various

simplifications of its computation (map to point, slicedmap, field to

field), but also by the rate robustness seen with the EMD in previous

studies (Grossberger et al., 2018; Sihn and Kim, 2019) and in our

results. Given that firing rate can vary within a session and even

more so across sessions separated by days, the EMD benefits from

having rate robustness properties which allow for a characterization

of spatiotemporal changes alongside the traditional rate remapping

quantifications. In the previous study, EMD was shown to be

rate robust for temporal coding by varying the total number of

spikes. The authors demonstrated that the variability of the EMD

across different firing ratios of spike trains was negligible whereas

the distance variability for varying degrees of temporal similarity

was not, thus allowing for a rate-robust pure-temporal spike train

distance (Grossberger et al., 2018; Sihn and Kim, 2019). We also

see this rate-robustness in our data where EMD values do not vary

significantly with different firing rate ratios using normalized EMD

distances. Additionally, it is common practice in field comparison

studies to discard low firing rates to reduce spurious correlations

caused by noise. While this can help reduce noise effects, there

is an inherent loss of information associated with the change in

computed firing distribution. Therefore having a rate robust metric

that can include all spikes with minimal impact from noise is

especially important.

As such, we propose the use of a binary EMD to describe

field dispersion regardless of the rate distribution. We demonstrate

this rate robustness using the binary EMD generalization alongside

normalized and unnormalized whole-map and field-map EMD

distances (Figure 7). To do this, we used the scaling of place fields

as a type of rate transformation.We can view this transformation as

an increase in field intensity where larger intensities indicate higher

firing rates while smaller intensities indicate lower firing rate. For

a fixed field, scaling its activity across sessions, we computed three

measures of EMD remapping involving whole map to map EMD,

field to field EMD and a binary EMD that imputes 0 outside a

field and 1 inside a field thereby silencing rate effects and varying

solely with density dispersion. In practice, one could compute

two separate “binary” metrics where one is field restricted and

imputes 0 or 1 as described while another spike density EMD

would use all raw spike positions (x,y for a given spike) directly

without distributing them into a weighted (N × N) firing rate

map (whole map dispersion). Since we synthesized our data for

these simulated cases, we can only apply the binary EMD and

not the whole map spike density EMD. We repeat the selected

EMD measures on our rate maps for normalized (Wasserstein)

and unnormalized (EMD) intensity changes (place field scaling;

Figure 7). Given that the binary EMD uses raw spikes rather than

firing rate maps, we find that the scores are the same in both

the normalized and unnormalized case. As such, the binary EMD

provides a rate robust metric to quantify the dispersion of rate

maps and/or the dispersion of the underlying field in the ratemap,

regardless of the rate distribution across the map/field. This binary

EMD approach can thus be used to describe remapping without the

influence of the rate distribution.

In the case of EMD measures including rate influences, we

test both the whole map EMD and the field restricted EMD. In

the normalized case, we see that the field EMD (Wasserstein) and

the whole map EMD (Wasserstein) show similar gradients/rates of

change across intensity scaling factors (standard deviations). This is

not the case when unnormalized where, as we increase the intensity,

the whole map EMD and field EMD increase their separation.

When compared to the normalized case, this is reflective of the

use of raw firing rate scores which, at larger standard deviations,

result in larger differences between whole map EMD and field

EMD. However, the use of the normalized and unnormalized

EMD results in similarly evolving trends for the distance metric

enabling a rate robust interpretation of the results. Therefore,

when comparing two identical spatial maps with varying firing rate

ratios, the raw EMD value itself is highly stable if using the binary

EMD or the normalized EMD but varies when using unnormalized

rates (Figure 7). These differences therefore allow the EMD to be

manipulated in such a way that rate effects can be separated from

spatiotemporal changes and the underlying shifts in shape and

dispersion described regardless of intensity changes. As such, we

can investigate remapping both with and without rate effects. We

can characterize remapping for reduced rate effects (normalized

EMD ==Wasserstein distance) and raw rate effects (unnormalized

EMD) and compare these to binary or spike density EMD scores to

separately quantify the contribution to remapping provided by rate

and/or spatiotemporal changes.

3.6 EMD outperforms linear and non-linear
metrics

While Pearson’s r was the primary metric tested alongside

EMD, owing to its popular use in remapping studies, it is not

the only plausible metric to apply. As such, we also thought it

relevant to compare the EMD and Wasserstein metric to another

common metric. Since Pearson’s r is a strong linear metric,

we opted for a non-linear metric found in the Spearman rank

correlation coefficient. We repeated all figures with the spearman

rank coefficient instead of the Pearson’s r coefficient and provide

a sample of key figures in Supplementary Figures 12–18. We find

that the EMD remains the superior choice as an overall more

sensitive and robust metric. Specifically, we see that Spearman-ρ

actually outperforms Pearson’s r in its spatial sensitivity but still

cannot effectively capture all transformations resulting in non-

overlap. While in the case of two overlapping circular fields of

identical shape Spearman-ρ is fully symmetric like the EMD, it does

not maintain this property across different field shapes with the

overlapping ellipse pair (same angle of rotation) only allowing for

a distinction of left and right as opposed to all four corners. In fact,

despite being a non-linear metric, Spearman-ρ cannot effectively

quantify all types of complex, non-linear transformations. This is
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FIGURE 7

EMD robustness to intensity changes. Incremental field scaling (increasing intensity) across a (17,17) ratemap with a field at the center (A). Field is

scaled from σ = 1 to σ = 5 (left). Intensity changes are considered using whole map EMD (red), field restricted EMD (green), and a binary EMD (blue)

using raw spike positions. Normalized (top right panel) and unnormalized (bottom right panel) weights are shown for both. EMD scores tested against

di�erent firing rate ratios for two identical fields (B). Ratios >1 and <1 were tested.

further seen in its inability to quantify overlapping identical fields

across different intensity scales. Spearman-ρ is however capable

of describing transformations such as rotations or, depending on

the field shape, single point/quadrant remapping. This however is

highly restricted by noise, as is the case with Pearson’s r. We find

that Spearman-ρ is not robust to noise and quickly degenerates

away from the baseline, no-noise Spearman score. Spearman-

ρ is therefore similarly susceptible to Pearson’s r despite the

added nonlinear sensitivity. Overall however, the EMD’s non-linear

selectivity is more encompassing, more robust and more effective

at quantifying and characterizing the spatial transformations

underlying remapping.

3.7 EMD applied to real spatial data

The effectiveness of the EMD spans a broad range of spatial

transformations seen in a variety of contexts, and with different

brain regions. Synthetic data alone however cannot recreate all

the intricacies present in spatiotemporal representations. As such,

we offer examples of the EMD’s increased spatial sensitivity using

activity maps from recorded cells. We offer a combination of

individual examples that depict specific cell types, or representative

maps, as well as an open-source place cell dataset from the

hippocampus (HPC; Grijseels D. et al., 2021).

In our individual examples, we share cells from both the

MEC and HPC of AD mouse models (Figure 8). We also provide

additional examples from the HPC of AD mouse models and

the MEC of non-AD models (Supplementary Figures 19, 20). We

compute the remapping distance, and correlation, between the

spatial map of matched cells on a first, reference session, and a

subsequent, shifting session.We shift the center of the latter session

map to all possible bins in the ratemap and recompute stability

measures to assess how the gradient of EMD and correlation values

support quantifying remapping. Given this approach, we anticipate

a smooth gradient of EMD values as the second session is shifted

further or closer from its center. As we shift the second map, we

add constant values of 0. However, for MEC examples only, we also

shift with wrapping such that no aspect of the map is replaced with

0s (Figure 8A). This is because of the grid symmetry in MEC where

it is more appropriate to treat maps as part of a wider grid module.
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FIGURE 8

Individual cell examples. Examples of ratemaps from the MEC and HPC of AD mouse models for a reference session and a shifting session. Gradient

of Pearson’s r scores tested at all possible map shift centers (N*N) is shown to the far right of each cell example with the EMD gradient immediately

to the left of it. For each MEC example, the top row demonstrates a shift with no wrap (0 padding) while the bottom row demonstrates a shift with

wrapping (A). For each HPC example, only the no wrap row is provided, and examples of matched cells across circular to rectangular arena

transitions are included (B).

We include both low noise and high noise maps and provide a

selection of high grid, high border and high spatial information

score examples (Figure 8, Supplementary Figures 19, 20).

In doing so we find multiple strengths of the EMD discussed

earlier. Primarily, we observe that the EMD is much more

effective at describing remapping and is not greatly influenced

by these small shifts, as evidenced by the smooth gradients of

EMD values. Pearson’s r on the other hand shows its lack of

spatial sensitivity. For high noise examples, we see that spurious

correlations can cover the entire map. For low noise examples,

as well as sparse firing, we see that 0 correlation scores can

cover significant regions of the map and prevent the true degree

of similarity from appropriately being quantified. In fact, when

map noise is particularly widespread or firing is especially sparse,

Pearson’s r gradients can be fragmented and misleading in the

information they carry. Correlation in practice is therefore too

“brittle” and non robust to minor spatial shifts. Given the focus

of correlation on bin to bin similarity, we show how these

minor shifts, commonplace in experimental data, can result in

similar maps obtaining a low correlation score. On the other

hand we also show how two dissimilar maps can incorrectly

be classed as highly correlated given widespread noise in the

ratemap. The distributional aspect of the EMD approach rescues

these effects.

Additionally, we see that Pearson’s r suffers from this bin to

bin approach in experiments involving changing arena shapes. We

apply the same approach to cells recorded from the HPC of AD

mouse models tested on alternating rectangular and circular arenas

(Figure 8B). We note that the EMD can be computed between

two distributions no matter the size difference while Pearson’s r

requires a bin to bin comparison and is therefore restricted by the

smaller distribution’s size. As such, while correlation values can be
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FIGURE 9

Place cell population decoding. Place cell population decoding using a reference template and a population of 1D rates across a 200 cm linear track.

The first plot in a row shows a population map of linear firing rates. The second plot shows the distribution of EMD values, and the running average.

The third plot shows the population of correlation values, and the running average. The last plot shows the peak firing rate trend overlaid with the

running averages of each score distribution. Two sets of examples are provided with reference templates highest in density at the start (A) and in the

center (B). In each set, the first row of plots uses a reference map with all the activity in a single bin. The second row uses a map with the activity

spread out across 10 bins. The last row uses a 1D gaussian template with sigma = 5. Reference points, and windows, are plotted with a dashed black

line in the final plot of each row. Reference Gaussians are overlaid in the final plot of each row. Population decoding with quantiles instead of

distances. Quantiles are computed using the distribution of EMD distances from all other cells (C). Quantiles are computed using the distribution of

EMD distances from a given cell relative to random reference locations (D).

computed for every possible center point, certain post-shift maps

involve fewer bins with which to compute a correlation. Therefore,

we find a smooth gradient for EMD values while Pearson’s r

struggles to accurately capture the similarity between the two

distributions, particularly for center shift bins in the corners of the

map (outside circular arena).

Examples so far have focused on 2D spatial maps, often with

multiple fields. Pearson’s weaknesses however are not restricted

to 2D spatial maps, nor to multi-field cells, and also extend

into relative decoding. Specifically, results with synthetic data

suggest that Pearson’s cannot effectively support similarly between

a reference point, or set of reference points. In a further example, we

test the EMD on place cells obtained from head-fixed two-photon

recordings in mice running across a VR linear track (Figure 9,

Supplementary Figure 9). We use the deconvolved suite2p spike

outputs directly to compute 1D rates in each bin for each cell

in the dataset (Figure 9). We do not filter out specific cells based

on noise, firing rate, spatial information or any other metric.

Instead we offer the full dataset of linear ratemaps as a noise

heavy dataset including both place cells and non-spatial cells in the

hippocampus. For each cell, we compute the remapping distance

and correlation score relative to a pseudo-map where all the density

is placed in 1 bin, across a window of bins or distributed with a

gaussian template.

We consider two reference locations: the start and middle

positions of the linear track. In the former case, given that we sort

cells based on the peak rate, we expect a successful measure of

relative similarity (or dissimilarity) to capture the same trend as

the sorted peak firing rates. In the latter case, given the reference

point is in the middle, we expect a successful measure to decrease

in similarity (or increase in dissimilarity) as we move in either

direction away from the center point. Therefore, here we expect

a somewhat “v” shaped trend that peaks at the middle position.

We find that the EMD demonstrates this expected behavior on

both cases while the bin to bin approach of Pearson’s r is unable to

quantify relative differences in stability between each cell map and

the reference map. We also find that the EMD score is robust to the

size of the window, and does not vary greatly if a gaussian template

is used instead. Pearson’s r on the other hand shows more spurious

increases in similarity as the size of the window is increased.

We note that, in a preprocessing step to generate 1D linear

firing rates, we average deconvolved spikes across multiple frames

to reduce the number of bins. This creates a bin parameter to which

correlation and not EMD is vulnerable. This is again owing to the

distributional aspect of EMDwhich allows for stability despite these

hyperparameters while correlation’s bin to bin approach does not.

Given that the authors of the dataset used 1F/F0 values in their

analysis, we repeated these results with the fluorescence traces and

found that the same set of results holds (Supplementary Figure 21).

We also note that, in practice, EMD quantiles are superior

to EMD distances and enable for comparisons across animals,

contexts or other groups where behavioral effects can influence raw

EMDvalues.We therefore repeat this analysis using the single point

EMD with two sets of reference quantiles (Figure 9). In the first,

we demonstrate quantiles using across cell reference distributions.

That is, for a given cell map to reference map distance, the quantile

describes how many of the other cell distances are larger. This

would be suitable for a simple threshold technique (e.g., top10% =

Frontiers inCellularNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fncel.2023.1273283
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Aoun et al. 10.3389/fncel.2023.1273283

q < 0.1). This however describes across cell references for a

within cell analysis (relative to a reference map). If stability were

being assessed across cells (e.g., from one session to the next), an

across cell reference distribution would be more suitable if made

up of remapping distances computed on the incorrect cell-pairings.

Such a reference distribution would be more flexible, and could

be separated based on hierarchal data. For example distributions

can be computed for mismatched distances at the level of animals,

sessions, contexts or other.

Such reference groupings are not seen for within cell reference

quantiles. We provide such an example using random sampling of

locations within the firing map (Figure 9). In doing so, we create

a spatial reference distribution consisting of distances relative to

randomly sampled positions. While simple in 1D maps, sampling

techniques can vary for 2D maps. Given how the distribution

of EMD distances across a map looks (Figures 1, 2, 4), it is

appropriate to attempt an even sample across the map. To do

this we can use approaches such as rectangular sampling for

unmasked, square ratemaps or hexagonal sampling for masked,

circular ratemaps.

In our example, while based on different counterfactuals and

analyses, the different choices of across or within cell reference

distributions provide similar results. This is likely owing to the

simple task design however in practice, the choice of reference

distributions is important and can vary given different hypotheses.

It is also important to note the difference in raw quantile values.

In the within cell reference, quantiles are generally larger. This

is something also observed in 2D maps and can be explained by

the symmetrical, distributional approach of the EMD, as well as

the emergence of multiple fields or areas of noise. To reduce this,

we can sample locations at a certain distance from our reference

point. Additionally, in practice, it is often helpful to extract the

location of different fields and compute these metrics separately

for different fields on a map. The comparison of whole map to

field metrics is also informative and can explain observed quantile

distributions. Therefore, we show how, in practice, cell references

can be computed within and across cells depending on the use case,

expected counterfactual and other topic-specific knowledge.

While we acknowledge that previous studies have used

Pearson’s correlation coefficient to evaluate remapping using a

reference template (Masuda et al., 2023), or a set of gaussian

templates (Nagelhus et al., 2023), our results with synthetic and

real data demonstrate that the EMD is more robust to such

template choices. For example, in one study, a reference template

computed from the activity of cells in the baseline context was

used to compute similarity (Masuda et al., 2023). However, with

the bin to bin correlation approach, such a template could vary

in results given different parameters that shift, bin or smooth the

correlated bins. In another study with 2D ratemaps, this required

using multiple sets of gaussian templates spanning a range of

hyperparameters (Nagelhus et al., 2023). The distributional focus of

the EMD and the ability to describe dissimilarity regardless of size,

dimensions, and binning demonstrates its superiority to Pearson’s

r in practice. This is especially true for noise-heavy, multi-field, and

different-sized ratemaps that are either 1D or 2D and applies to

within cell dissimilarity and reference relative dissimilarity.

4 Discussion

Through these simulated and recorded cases of remapping,

we demonstrate that the Earth Mover’s Distance (EMD) is more

spatially sensitive in characterizing remapping than Pearson’s r

correlation coefficient and other plausible metrics like the non-

linear Spearman rank correlation coefficient. We find that both

Pearson’s r and EMD are suitable for cases of remapping where

fields are still overlapping from session to session. However, we

demonstrate that Pearson’s r is unsuitable in describing remapping

that results in non-overlapping receptive fields whereas EMD can

numerically quantify remapping at any point in the ratemap. This

EMD property is especially useful in experimental setups where

arena shape is varied as they result in specific map areas, where a

cell can reasonablymove to, that cannot be appropriately quantified

with Pearson’s r. For example, consider a field that remaps to the

corner of a square arena after having been in a circular arena with

diameter such that it is inscribed within the square. This field will

have 0 correlation when tested on the circle arena followed by the

square arena because of non-overlap at the four corners despite

the fact that transformations to such regions are non-identical and

can be distinguished from each other using the EMD. We show

that EMD holds its sensitivity for circular/elliptical place fields

and wide/narrow spaced grid fields. Additionally, we find that the

symmetry offered by EMD allows us to describe more complex

non-linear translations such as rotations and scaling of fields. In

fact, we find that Pearson’s r is less suitable than the EMD in

describing either scaling or rotations and does not offer the same

sensitivity that the EMD provides. More importantly however, we

show that this spatial sensitivity of the EMD to linear and non-

linear transformations is robust to noise and field degeneration. By

manipulating fixed fields across a range of standard deviations of

added noise, we find that, for both normalized and unnormalized

ratemaps, the EMD is more stable relative to the “true” EMD

score. That is, as we increase the standard deviation of noise, EMD

varies less frequently and at later standard deviations than the

Pearson’s r score. Notably, we see that the EMD performs similarly

in the normalized and unnormalized cases also demonstrating a

robustness to rate. While the raw EMD values change for the

normalized and unnormalized ratemaps, the distribution across

standard deviations evolves in the same ways, with fewer outliers

in the normalized and smoothed-then-normalized cases than the

unnormalized case, further demonstrating a type of robustness

to rate. The application of a binary EMD where all spikes are

considered with even weight by imputing 0 and 1 for outside

and inside the field respectively further disentangles rate effects

by exclusively describing the underlying dispersion of the field

or map, regardless of firing rate. This highlights the use of such

a metric in describing field or whole map distortions where the

spatial distribution of spikes can change separately to rate and even

the field centroid.

Such dispersion metrics can be thought of as purely spatial

and can be extended to include the entire distribution of raw

spike positions as part of a spike density EMD. This “pure

spatial” metric may be most useful in the case of linear tracks

with identical navigation structure across animals but can also
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be extended to arena navigation studies where coverage and

occupancy vary from animal to animal. In the latter, caution

should be taken to account for coverage where arena sizes may

be consistent but map exploration varies from animal to animal.

Normalization of distances by coverage limits would reduce such

effects. Additionally, care should be taken in interpreting dispersion

metrics (binary and spike density) in the case of extremely biased

occupancy where most of the spiking distribution will fall in the

same area purely due to biased behavior. This argument also

extends to the use of EMD to assess temporal similarity profiles

as part of a “pure temporal” metric (Grossberger et al., 2018; Sihn

and Kim, 2019). These pure metrics may be best interpreted in

such a way where especially stable distances (binary/density or

temporal EMD) along with fair occupancy, and while accounting

for coverage limits, would be a non-trivial result, as would differing

trends among the rate, temporal, and spatial components of

remapping. In fact, given that rate remapping is well defined

and temporal remapping of firing profiles can be quantified

(Sotomayor-Gómez et al., 2023), we further suggest the EMD and

single point Wasserstein metric to describe the spatial component

in firing rate maps enabling a much more detailed and flexible

framework for remapping. Through various manipulations, this

would allow for an understanding of how different components of

neural coding interact by separately and concurrently considering

the rate, spatial, and temporal components.

We also see in these examples that the whole map EMD is more

suitable than the field-restricted EMD in capturing remapping

despite degeneration. The reason behind this is likely two-fold. The

first being that the field-restricted EMD does not capture noise

across the entire spatial map. Since, in our example, randomly

sampled normally distributed values are added at every position

in the ratemap (NxN noise), the specific subset added to the

indices of a given field may be particularly large/small relative

to the rest of the distribution. As such, from step to step (each

increase in std dev), restricting the EMD metric to the single field

can cause larger deviations than would be seen with the whole

map case. The second reason lies in the methods for detection

of gaussian fields and the sensitivity of these approaches to noise

and spatial degeneration. The best approach is often to select a

contiguous region from a given spatial map, with a minimum

size, where the firing rate is above a certain peak threshold

(Fyhn et al., 2007; Grijseels D. M. et al., 2021). Although this is

suitable in the cases of low noise, degenerate and noisy spatial

maps are often experimentally recorded and need more granular

characterization of place field centroids and area. Traditional field

characterization methods are sensitive to noise and often involve

smoothing of the ratemap as part of this procedure (Fyhn et al.,

2007; Grijseels D. M. et al., 2021). With minimal smoothing,

localization of place fields in a noisy map results in multiple

“noise” fields detected with centroids deviating from the true field

positions (Supplementary Figures 9, 10). With greater smoothing,

localization of place fields on a noisy map can result in too wide

an area being characterized as a field and multiple fields being

incorrectly merged (Supplementary Figures 9, 10). In the presence

of similar noise throughout the rate map, smoothing can even

result in a contiguous region crossing detection thresholds despite

being outside the fields of interest (Supplementary Figures 9, 10).

Therefore, the field EMD can be particularly susceptible to the

accuracy of the detected fields and by extension to the underlying

field detection process. However both the whole map EMD and

field EMD still offer more stable and robust alternatives to Pearson’s

r, especially in cases of high noise and for disease states.

While we find that the whole map to point map EMD does

not replace the map blobs (fields) detection approach, we show

that it can help inform classification of valid blobs by highlighting

the region of lowest remapping through a gradient of remapping

values. In the case of known single field cells (e.g., place cells), the

map to point EMD will identify the region of lowest remapping

which falls near the true field centroid and can therefore be used to

filter out extracted noise blobs that may have crossed the area/size

threshold but fall far from the region of lowest remapping. In the

case of dual fields, the EMD can only separately identify fields at

low noise levels and using the top 90% threshold as opposed to the

top 20% use for Pearson’s r or 20% peak firing rates. In fact, in the

case of dual fields, the EMD gravitates to the center point between

the two fields. This is the point that requires the least amount of

remapping. While it cannot be used for field detection in this case,

it may yet be used to filter out blobs that fall far from this region.

Therefore, the whole map to point map EMD approach is suitable

for localizing in the case of a known single field (e.g., place cell) or

to identify the region of lowest remapping in the case of multiple

fields. In fact, the EMD is not as susceptible to noise as Pearson’s

r and peak firing rates in that it performs more consistently and

with less degradation in either the case of unnormalized ratemaps

or smoothed then normalized ratemaps.

Moreover, the remapping quantiles that are generated across

the entire map for single and multi-field cases can be used as a

standard reference distribution for a given cell. That is, single point

EMD (Wasserstein) scores can be converted into a quantile below

which all values are smaller (easier point locations to remap to)

and above which all values are larger (harder point locations to

remap to). We see that these quantiles are a result of computing

remapping scores between the whole map and every possible

point on the rate map (Figure 4). In doing so, single point EMD

values, and by extension individual fields, can be localized on a

rate map through the “region” of lowest remapping that they fall

in. These quantiles may also enable comparisons across different

cells where raw EMD values cannot be directly compared. For

example, in practice, while arena size may be consistent, coverage,

and occupancy can vary, as can firing rates as a result of biased

exploration. Despite the rate robustness of the EMD, distances

can vary on different scales due to different behavior profiles.

In such a scenario, one might observe a comparable trend in

remapping within a cell’s own sessions, and even across the wider

population where all cells increase or decrease EMD values across

sessions. Yet, the raw EMD scores may not be comparable. For

example, two cells, each from a different animal, could both be

near a specific map-region but with very different raw distances

required tomove there because of exploration. Even with consistent

coverage of arenas, several experimental contexts make use of

changing arena shapes thus changing the total distance available

in the EMD computation and creating the same situation for cells

from the same animal across different sessions. Providing a quantile

alongside a remapping value allows for a standard scale to describe
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how far/close the computed remapping score is relative to all the

possible points of remapping in a rate map. If a position required

the least remapping (e.g., exactly at the object location for an object

cell or at the centroid of an individual field), then the quantile would

be sufficiently small such that most or all of the other possible

locations result in a larger remapping score. These quantiles are

unique to the EMD and can be computed across noise standard

deviations allowing for a quantification of remapping regions

despite degeneration, instability and substantial behavioral/rate

influences. These quantiles can also be used to describe spatial

remapping when raw distances cannot be directly interpreted.

The EMD’s viability as a remapping metric is bolstered

by the computational expediency of its simplified cases

(Supplementary Figure 11). The sliced EMD approximation

can adequately estimate the true EMD value. Using the sliced

EMD across varying numbers of projections, with 10**2 offering

a favorable balance of speed and accuracy, renders the EMD

an optimal choice for cell remapping analyses. Nonetheless, the

sliced EMD may still be computationally demanding in instances

involving exceptionally large rate maps (e.g., 256 × 256) and a

substantial number of cells. The modified map to single point

approach also allows for swift and adaptable application of the

EMD. This is particularly important in describing stability relative

to specific locations. While we acknowledge that previous studies

have used Pearson’s correlation coefficient to evaluate remapping

using a reference template (Masuda et al., 2023), or a set of gaussian

templates (Nagelhus et al., 2023), our results with synthetic and

real data demonstrate that the EMD is more robust to such

template choices. For example, in one study, a reference template

computed from the activity of cells in the baseline context was

used to compute similarity (Masuda et al., 2023). However, with

the bin to bin correlation approach, such a template could vary

in results given different parameters that shift, bin or smooth the

correlated bins. In another study with 2D ratemaps, this required

using multiple sets of gaussian templates spanning a range of

hyperparameters (Nagelhus et al., 2023). Therefore, with the linear

runtime of both the single point EMD approach and Pearson’s r,

it can be both more efficient and simpler to use the EMD metric.

Avoiding such choices is possible because of the distributional

focus of the EMD and its ability to describe dissimilarity regardless

of size, dimensions, and binning.

The EMD on two-dimensional maps is better equipped

to describe the spatiotemporal patterns seen than Pearson’s r

correlation coefficient. However, the temporal aspect of these maps

could be further characterized by applying the EMD in a stepwise

manner. In a basic example, one could take the spike train of a

given cell and iterate over time windows of activity to produce

a continuous string of EMD values describing remapping as it

evolves over an experimental session. While this approach is highly

unsuitable with Pearson’s r because of the need for same size

distributions, and the over-susceptibility to spurious correlations at

lower sample sizes, EMD has been shown in this paper to be more

robust, and in previous work to support continuous application

(Zhao et al., 2010). Given that the EMD can be applied on raw spike

positions (binary EMD) and does not require a rate map to describe

the pure spatial and pure temporal components, we further propose

it as a flexible tool for disentangling spatiotemporal components

in a continuous-like setup. Such a setup could be used to describe

remapping as it relates to specific temporal events/markers. With

sufficiently long experimental sessions and high sample rates, EMD

will support a characterization of remapping on smaller timescales

than separate sessions and can enlighten intersession and intertrial

remapping dynamics that are triggered or otherwise shaped by

time. For example, one can consider an experimental setup where

object location is rotated continuously or otherwise transformed

during the session, as was seen in previous work (Knierim et al.,

1995; Shapiro et al., 1997). In such a case, applying EMD across

a sliding window of spike activity can be highly informative in

identifying how remapping evolves over time for a given cell and

for the broader population. This can be especially useful given

the varying results seen in morph experiments where partial and

complete remapping are seen to occur in different ratios across

different studies (Leutgeb J. K. et al., 2005; Wills et al., 2005; Colgin

et al., 2010). Using EMD we can better describe the quantity of

remapping over time, the periods or triggers before/after which the

gradient of remapping increases or decreases, and the amount of

remapping across the population of cells (or ensembles of cells) at

specific points in time.

In summary, the Earth Mover’s Distance (EMD) offers a more

comprehensive and spatially sensitive approach to characterizing

remapping in comparison to the Pearson’s r correlation coefficient.

EMD’s ability to handle non-overlapping receptive fields and

intricate non-linear transformations, such as rotations and scaling,

renders it a powerful tool for understanding the complexities of

spatial navigation and remapping. Although Pearson’s r might

remain useful in specific cases with linear relationships and

overlapping fields, EMD’s versatility makes it applicable to a

broader range of scenarios. EMD estimators such as sliced EMD

are computationally expensive with respect to correlation metrics.

However, most modern computers can easily handle the additional

computational load and this should not be a hindrance to the

adoption of EMD in most use-cases. The application of EMD

in spatial remapping research has far-reaching implications in

the study of memory and neurodegenerative disorders, such as

Alzheimer’s Disease (Fu et al., 2017; Jun et al., 2020; Ridler et al.,

2020). By providing a more detailed analysis of spatial remapping,

EMD can shed light on the intricate relationships between

spatial representations, memory formation, and the influence of

various factors on these processes. The enhanced understanding

of remapping dynamics facilitated by EMD may contribute to the

identification of potential therapeutic targets for memory-related

disorders, thereby opening new avenues for Alzheimer’s Disease

research and treatment.
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