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Glioblastoma (GB) is a highly malignant primary brain tumor with limited

treatment options and poor prognosis. Despite current treatment approaches,

including surgical resection, radiation therapy, and chemotherapy with

temozolomide (TMZ), GB remains mostly incurable due to its invasive growth

pattern, limited drug penetration beyond the blood-brain barrier (BBB), and

resistance to conventional therapies. One of the main challenges in GB

treatment is effectively eliminating infiltrating cancer cells that remain in the

brain parenchyma after primary tumor resection. We’ve reviewed the most

recent challenges and surveyed the potential strategies aimed at enhancing local

treatment outcomes.
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Introduction

Glioblastoma is the most prevalent malignant primary brain tumor and recent
scientific and technical advances have allowed for a deeper understanding of the
etiologic relevance of the heterogeneity of GB. Based on the current classification
of the tumors of the central nervous system (CNS), among adult-type diffuse
gliomas, astrocytic tumors without mutations in the Isocitrate dehydrogenase (IDH)
genes are termed glioblastomas IDH-wildtype (Torp et al., 2022). The presence of
microvascular proliferation and/or necrosis and at least one molecular alteration
identified as predictive of tumor aggressiveness, such as Epithelial Growth Factor
Receptor (EGFR) amplification, Telomerase promoter (TERTp) mutations (Brás et al.,
2023) up-regulation of chromosome 7 and loss of chromosome 10 (Zhao et al.,
2023) allows for a diagnosis of glioblastoma IDH-wildtype CNS WHO grade 4
(since now, GB).
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GRAPHICAL ABSTRACT

Current treatment approaches for glioblastoma and glioblastoma recurrences.

Despite all the innovation that generates the “holistic
representation of the evolving disease” (Asleh et al., 2023), GB
remains mostly incurable, with a median survival of 14 months
and a 5-year survival rate of 5.7%, primarily due to its challenging
characteristics: (i) invasive growth pattern, making complete
surgical resection nearly impossible; (ii) localization beyond the
blood-brain barrier (BBB), which severely limits drug penetration;
(iii) resistance to conventional radiotherapy and chemotherapy
(Grochans et al., 2022).

Abbreviations: PLGA-PEG-PLGA, (D,L-lactic acid-co-glycolic acid)-b-
poly(ethylene glycol)-b-poly(D, L-lactic acid-co-glycolic acid); ADSC,
Adipose tissue-Derived mesenchymal Stem Cells; AMNPs, Allomelanin
Nanoparticles; ABC, ATP-binding cassette; AF, Auranofin; BBB, Blood-
Brain Barrier; CPT, Camptothecin; CCM, Cancer Cell Membrane; CBD,
Cannabidiol; CNS, Centra Nervous System; CTX, Cetuximab; CLIC1, Chloride
intracellular channel-1; CED, Convection Enhanced Delivery; Cy5, Cyanine5;
DABG, Dialdehyde O6 Benzylguanine; DTPA, Diethylenetriaminepentaacetic
Dianhydride; DOX, Doxorubicin; EGFR, Epidermal Growth Factor Receptor;
FDA, Food and Drugs Administration; FUS, Frequency Ultrasound; FUS-
BBBO, FUS combined with circulating microbubbles can temporarily open
the BBB; GA, Gambogic Acid; GB, Glioblastoma; GSCs, Glioma Stem
Cells; AuNRs, Gold nanorods; HSV-TK, Herpes Simplex Virus-Thymidine

Indeed, GB is strongly refractory to most anti-tumor
treatments, one of the main reasons lying in the difficulties
of tackling its cellular heterogeneity. In the tumor, in fact,
the cell population is represented by differentiated GB cells,
stem-like cells (GSCs) as well as by some elements of the
microenvironment milieu among which endothelial cells, vascular

Kinase; HIFU, High Intensity Focused Ultrasound; HA, Hyaluronic Acid;
HQ, Hydroquinidine; ICAM-1, Intracellular Adesion Molecule 1; LNPs,
Lipid Nanoparticles; LIPU, Low-Intensity Pulsed Ultrasound; M1NVs,
Macrophage-Derived Nanovesicles; MRI, Magnetic Resonance Imaging;
MPDA, Mesoporous Polydopamine; MB, Microbubbles; HePc, Miltefosine;
anti-EphA3-TMZ@GNPsTMZ), Monoclonal antibody anti-EphA3 – TMZ-
loaded gold nanoparticles; MDR, Multidrug resistance; OLA, Olaparib;
p-gp, p-glycoprotein; PTX, Paclitaxel; PDX, Patient-Derived Xenograft;
PARP, Poly (ADP-ribose) polymerase; PLGA, poly lactic-co-glycolic acid;
PCL, Polycaprolactone; PGA, Polyglutamic Acid; PDEARGs, Prognostic
differentially expressed angiogenesis-related genes; PD-1, Programmed
Cell Death Protein 1; PD-L1, Programmed Death-Ligand 1; ROS, Reactive
Oxygen Species; SiO2, Silicate; SIACI, Superselective Intra-Arterial Cerebral
Infusion; TMZ, Temozolomide; TrxR1, Thioredoxin Reductase 1; TRAC,
Tissue-Reactive Anchoring of Click groups; TfR, Transferrin Receptor; TAM,
Tumor-Associated Macrophages; TILs, Tumor-Infiltrating Lymphocytes;
ZIP14, Zrt- and Irt-like (ZIP) proteins transporters.
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pericytes, macrophages, and other types of immune cells (Zhao
et al., 2023). Sequencing technology advances and transcriptional
stratification has further corroborated the complexity of this
picture contributing to further subdivide GB in proneural, classical
and mesenchymal subtypes. In this scenario, the developmental
dynamicity of GSCs add another layer of complexity to the
heterogeneous nature of the tumors. GSCs are indeed considered
at the top of hierarchic lineage of cells holding stem cell-like
regeneration ability (Lathia et al., 2015) but share several common
molecular markers with normal adult neural stem cells and
progenitor cells, originating some ambiguity regarding their
definition and identification (Zhang G. et al., 2023). Recently,
single-cell RNA sequencing (scRNA-seq) on patient derived
samples suggest that GBM cells do not exist as separate populations
but rather evolve from stemness to differentiation (Yan et al., 2023).
These findings are hardly good news, as GSCs have been found to
be deeply implicated in tumor progression, drug resistance and
tumor recurrence (Guo et al., 2023). The attention of researchers
therefore turns to this class of cells and their plastic nature in
search for new regulatory protein to be pharmacologically targeted
as Achilles’ heel of tumor cells survival. In this scenario, new
homeostatic regulatory proteins were identified: for example, the
ZIP14 (SLC39A14) protein, which mediates the cellular uptake
of manganese, iron and zinc, has been indicated as a possible
mediator of cellular ferroptosis-related cell death (Zhao et al., 2022;
Zhang Y. et al., 2023). Similarly, the chloride intracellular channel-
1 (CLIC1) is known to be instrumental for tumor proliferation
in several solid tumor including GB and his overexpression on
GSCs is inversely associated with patient survival (Setti et al.,
2013), suggesting CLIC1 to be a potential target and prognostic
biomarker (Randhawa and Jahani-Asl, 2023). Accordingly, a novel
class of biguanide-based derivatives used as CLIC1-inhibitors has
been recently developed and holds promises for the treatment of
CLIC1-expressing glioblastomas (Barbieri et al., 2022).

Interestingly, the presence of stem cells in the bulk of
glioblastomas has been also strongly associated to cancer multidrug
resistance (MDR) (Mattei et al., 2021), which remains a serious
challenge in GB therapy as it seriously limits the effects of different
chemotherapeutic drugs (Tian et al., 2023). Indeed, as MDR has
been often associated with the expression of p-glycoprotein (p-
gp), an ATP-binding cassette (ABC) transporter that promotes
efflux of chemotherapeutics from tumor cells, this protein has been
recently suggested as a druggable therapeutic target (Hasan et al.,
2023). Indeed, the p-gp inhibitor reversan, in association with
magnetic nanoparticle-mediated hyperthermia, was able to increase
the cytotoxic effect of Doxorubicine treatment to eliminate bulk
tumors along with the GSC population (Hasan et al., 2023).

Mounting evidence has also been gathered to clarify the role
of proteins of the tumor micro-environment (TME) mediating the
regulation of cell adhesion and migration (Caverzán et al., 2023;
Khan et al., 2023). In this view, TME becomes the scenario of
the dynamic dialogue between tumor cells and tumor infiltrating
immune system elements, mostly tumor-associated macrophages
(TAMs), monocytes, T cells and resident microglia (Eisenbarth
and Wang, 2023). TAMs indeed provide a major contribution to
cancer growth and immunosuppression, causing resistance even to
the most effective immunotherapies, ultimately paving the way to
tumor recurrences (Zhang L. et al., 2023). Moreover, in aggressive
brain tumors, TME host tumor associated hyper-vascularization.

Indeed, the malfunctioning of the tight junctions in the endothelial
cells of the tumor associated vascularization may favor the
buildup of fluid in the tumor district leading to edema and
increased intracranial pressure, partially restored with steroid anti-
inflammatory therapy (Cenciarini et al., 2019).

Blood-Brain Barrier’s pericyte’s disruption and hypoxia sustain
small vessel proliferation and, in the small vessels district, the
dialogue between cancer cells proteins such Nestin and CD133
and endothelial biomarkers such as CD34 proteins facilitates brain
metastasis, sustaining tumor cells circulation and subsequent tissue
infiltration (Schiffer et al., 2018). More recently, the development of
vascularization in GB was also described using genomic analytical
tools, to create a risk prediction model for GB, where prognostic
differentially expressed angiogenesis-related genes (PDEARGs)
become potentially druggable prognostic biomarkers of regulatory
networks and provide valuable insight to tackle the role of
neovascularization in these tumors (Wan et al., 2023).

Recurrent tumors also exhibit changes in the
microenvironment composition, characterized by higher levels
of tumor-infiltrating lymphocytes (TILs), macrophages, and
increased expression of Programmed Death-Ligand1 (PD-L1) and
Programmed Cell Death Protein1 (PD-1) compared to primary
tumors (Karschnia et al., 2023; White et al., 2023). This suggests
a strong relationship between tumor heterogeneity, immune
system involvement in recurrences (Hoogstrate et al., 2023;
White et al., 2023) and supports the potential use of peritumoral
microenvironmental markers for patient stratification (Riahi
Samani et al., 2023). Furthermore, these findings may drive
the development of novel precision immunotherapeutic tools
(Pornnoppadol et al., 2023; White et al., 2023).

Importantly, a key challenge in GB treatment is effectively
targeting and eliminating infiltrating cancer cells that persist in
the brain parenchyma after primary tumor resection. Current
treatment approaches involve a complex combination of surgical
resection, radiation therapy, and concurrent chemotherapy using
temozolomide (TMZ) (Fisher and Adamson, 2021). However, the
anti-tumor efficacy of TMZ is significantly hindered by its limited
ability to cross the BBB (reaching only 20% of blood concentration)
(Grochans et al., 2022) and various cellular mechanisms conferring
therapeutic resistance. Following the surgical removal of the
primary tumor, a lower residual tumor volume is positively
correlated with a more favorable prognosis. In this context, it
is crucial to identify the microscopic tumor margins hidden
within the brain parenchyma and prevent loco-regional recurrence
(Bütof et al., 2022). Thus, the quest is to develop effective
treatments capable of intercepting residual cells, possibly tumor
stem cells, beyond the BBB while potentially countering the
activity of favorable microenvironmental elements sustaining
tumor invasiveness (Garcia-Diaz et al., 2023).

Here, we aimed at highlighting various strategies employed to
overcome the challenges posed by the BBB. Nanomaterial-based
delivery systems will be discussed, emphasizing their ability to
enhance drug penetration into the brain and improve treatment
efficacy and the use of nanomaterials loaded with single drugs
or combination therapies. The focus will be centered on how
these approaches can enhance the therapeutic effect by targeting
multiple pathways or mechanisms involved in tumor growth
and progression. Moreover, the review will delve into targeting
druggable microenvironmental factors that contribute to the
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development of recurrent tumors. Finally, we will explore the
potential of local drug delivery strategies for drug repurposing
will be examined. Understanding and targeting these factors may
help preventing the growth of residual cancer cells and reduce the
risk of recurrence.

Overcoming the BBB

The BBB poses a significant challenge for the systemic delivery
of chemotherapeutic agents to treat intracranial diseases. It is
composed of endothelial cells, pericytes, astrocytes, microglia,
and neurons, forming a structural barrier that restricts the
passage of molecules into the brain (Sprowls et al., 2019).
Endothelial cells lining the brain’s capillaries express tight junctions
that seal the gaps between adjacent cells, preventing the free
movement of molecules between the blood and the brain.
Additionally, these cells lack fenestrations and pinocytic activity,
further impeding the passage of substances. Pericytes, closely
associated with endothelial cells, regulate capillary diameter and
cerebral blood flow while supporting microvascular stability
and the BBB’s structural integrity. Astrocytes play a crucial
role in maintaining the barrier function through their foot
processes, which establish a direct interface between vascular and
neuroglial compartments.

Under normal physiological conditions, the BBB’s specific ion
channels and transporters maintain an optimal microenvironment
for brain function, regulating the levels of neurotransmitters,
controlling ionic homeostasis, and protecting against neurotoxins.
Water-soluble nutrients, metabolites and small lipid-soluble
molecules can passively diffuse through the BBB and enter the brain
(Kadry et al., 2020).

Blood-Brain Barrier’s tight junctions and membrane
transporters stringently control the exchange of molecules
and ions between the blood and the brain. Limited penetration is
observed for small lipophilic molecules or those agents that can
actively enter by binding to carrier proteins such as transferrin
receptor (TfR), epidermal growth factor receptor (EGFR), glucose,
or immunoglobulins (Triguero et al., 1989; Arora et al., 2020; Cui
et al., 2023; Pornnoppadol et al., 2023).

Concentrating systemic treatment
at tumor site

Traditionally, the possibility of overcoming the BBB to
concentrate systemically administered treatments (Thombre et al.,
2023) and diagnostic tracers into the brain (Bae et al., 2023;
Figure 1A) is achieved through temporary opening and partial
disruption of tight junctions by physical interaction of focused
high/low-frequency ultrasound (FUS) (Johansen et al., 2023; Mehta
et al., 2023) as well as by using osmotic gradients (Cosolo et al.,
1989; Figure 1B). Less conventional methods also include the use
of isoflurane (Noorani et al., 2023) to increase the permeability of
the brain to small hydrophilic molecules.

Extracranial magnetic resonance imaging (MRI) guided
application of focused ultrasounds (FUS) in combination with
circulating microbubbles (MB) has shown promise for the

treatment of CNS diseases, including GB. High-intensity focused
ultrasound (HIFU) can be used for cell and tissue-specific thermo-
ablation, directly targeting GB cells (Johansen et al., 2023).

Low-intensity FUS has been FDA-approved for the treatment
of untreatable tremors in Parkinson’s disease (NCT03608553). This
technique can ameliorate the symptoms in patients. On the other
hand, the use of low-intensity FUS combined with circulating
MB can temporarily open the BBB (FUS-BBBO) enabling the
delivery of anticancer molecules into the brain that may have
been ineffective when administered systemically. For example, the
intracranial concentration of Panobinostat, administered intra-
peritoneally in combination with ultrasound/Magnetic Resonance
Imaging (FUS/MRI), was significantly increased compared to sole
intraperitoneal injection (Martinez et al., 2023). This led to a
significant reduction in tumor volume and extended survival in a
patient-derived xenograft (PDX) orthotopic model.

FUS has also been beneficial in the delivery of newly designed
conjugates, such as hyaluronic acid (HA) with camptothecin
(CPT) and doxorubicin (DOX) (Sun et al., 2022). The flexibility
of the polymer in these conjugates facilitates BBB crossing.
Similarly, FUS application increased the tumor penetration of a
new sensitizer system constituted using a polymeric block, the
pH-sensitive polyglutamic acid (PGA) and the chemotherapeutic
agent and sonosensitizer DOX, camouflaged with human U87-
MG cell membranes administered systemically. This nano-system
effectively delivered doxorubicin into U87-MG cells, resulting
in tumor growth reduction and overcoming of drug resistance
(Chen et al., 2023).

In recent developments, MB-FUS systems are being
used actively in drug delivery for cancer immunotherapy.
FUS-induced bursting of MB generates an acoustic emission-
dependent expression of the proinflammatory marker ICAM-1.
Simultaneously, MB-FUS enhances local delivery of anti-PD1
agents and promotes infiltration of T lymphocytes in the tumor
microenvironment (Lee et al., 2022).

Other authors combined charged MB with the negatively
charged Gambogic Acid (GA) (an active component of a
traditional Chinese medicine effective as antiproliferative
and tumor infiltration agent) loaded polymeric nanoparticle
(GA/PLGA) to form a GA/PLGA-charged MB complex (Dong
et al., 2022). Similarly, FUS application benefits the distribution
and long-term accumulation of 89Zr labeled/cetuximab, an anti
EGFR antibody in a preclinical mouse model (Sacks et al., 2018).

In an innovative strategy, intracranial drug depots for
small molecules were implanted in mice using bio-orthogonal
click chemistry technology, which exploits extracellular matrix
molecules to anchor tissue-reactive anchoring of click groups
(TRAC). FUS and MB played a crucial role in enabling the non-
invasive loading of these drug depots, allowing prolonged and
spatially controlled treatment (Moody et al., 2023).

A phase 2 clinical trial (NCT03744026) has been designed
for the use of a low intensity pulsed ultrasound (LIPU) device
implanted into the skull of patients at the time of primary tumor
surgical removal. A different trial (NCT04528680) combined LIPU
with injected MB to efficiently increase the delivery of systemically
infused albumin-linked paclitaxel in patients with recurrent
glioblastoma. LIPU-MB is also being tested in combination with
other therapies, such as albumin-bound paclitaxel and carboplatin
(Sonabend et al., 2023).
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FIGURE 1

Overcoming BBB with systemically delivered therapies. (A) Superselective Intra-Arterial Cerebral Infusion (SIACI) and intravenous injection (I.V) are
often administered in conjunction with by temporary opening of the BBB to facilitate delivery to the brain. (B) Focused ultrasound (FUS) and
Osmotic forces are little invasive methods to temporary disrupt the tightly ordered pavement of the blood vessels constituting the BBB allowing
blood-brain exchanges.

Overall, the application of FUS in combination with MB
holds great potential for the treatment of CNS diseases, including
glioblastoma. It allows for targeted treatment, enhanced drug
delivery, and potential synergies with immunotherapy approaches.

In situ delivery of treatment

Maximizing the safe resection of tumor mass upon diagnosis
is crucial for treatment, as the extent of residual volume directly
correlates with patient survival. However, even after resection,
there are often residual cells hidden within the uneven margins
of the resected area, which can lead to tumor recurrence over
time. In situ post peri-surgery applications aim to concentrate
treatments to maximize the chances of killing these remaining
cells. However, the presence of surrounding neurons necessitates
minimizing functional deficits (Figure 2).

Currently, in situ delivery is obtained by convection-enhanced
delivery (CED) (Sperring et al., 2023; Thompson et al., 2023)
(Clinical Trial: NCT03043391) achieved by gently pushing drugs
into the tumor (Figure 2A). Similarly, the intra-arterial delivery
of chemicals, with or without the assistance of osmotic gradient
(Chu et al., 2022; Wang et al., 2023) can result in effective
intracranial treatment. However, the deposition of biocompatible
drug-enriched injectable matrices (Figure 2B) that locally release
active treatments seems to be the most promising strategy
for intracranial controlled release. When resection is possible,
patients are surgically implanted with a polymeric matrix for
the semi-controlled release of carmustine, the FDA-approved
Gliadel R©. However, this implant has a degree of rigidity that
limits its use. With the development of innovative biomaterials
such as smart materials, polymeric matrices and hydrogels
it will be possible to design more adaptable materials able
to adhere to the surgical resection margins of the cavity
(Gu et al., 2022; Figure 2C).

Many of these formulations can incorporate nanomaterials
that are sensitive to environmental stimuli, including temperature
(such as thermogels) (Gu et al., 2022), chemical stimuli such as
acidity/CO2 (Younis et al., 2023), reactive oxygen species (ROS)
(Habra et al., 2022), magnetic force, or X-ray irradiation (Yun et al.,
2022). Additionally, the customization of different nanoparticles
(Idlas et al., 2023) and the loading of various molecules (Lin
et al., 2023) allow for unlimited potential therapeutic combinations.
In some cases, nanoparticles loaded with chemotherapeutics are
dispersed into gel matrices (Gu et al., 2022), which function as a
shelter to reduce molecule degradation and unwanted cytotoxicity
(Erthal et al., 2023). New formulations for in situ delivery aim
at optimizing the effects of first-generation anti-glioblastoma
agents such as carmustine and temozolomide, either alone or
in combination, to maximize their curative effects, for example
overcoming the resistance to TMZ using the O6 alkylguanine
DNA alkyltransferase inhibitor, dialdehyde O6 benzylguanine
(DABG), tested in xenograft (Chu et al., 2023) or intracranially
delivered, minimizing peripheral toxicity (Chen et al., 2022;
Iturrioz-Rodríguez et al., 2023).

In situ delivery also presents an opportunity for targeting the
tumor microenvironment and stimulating the tumor-suppressive
immune system. Recently, hyaluronic acid (HA) has been utilized
as an injectable delivery platform for combinatory treatments.
HA-Doxorubicin and HA-CpG, an agonist of Toll-like receptor
(Catania et al., 2023), were used to stimulate tumor-associated
macrophages (TAM). Similarly, DOX-loaded mesoporous
polydopamine (MPDA) nanoparticles were encapsulated
in macrophage-derived nanovesicles (M1NVs) and used as
immunostimulant effectors, while fibrin hydrogels serving as
in situ delivery vehicles (Zhang R. et al., 2023).

GB recurrence has been recently modeled, in preclinical
settings, by partially resecting the primary tumor. Bianco and
coworkers have successfully demonstrated this approach (Bianco
et al., 2017; Kubelt et al., 2023), and more recently, a minimally
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FIGURE 2

In situ and intranasal delivery. (A) Convection enhanced delivery (CED) and (B) injection of therapy solutions/gel directly into the parenchyma
normally after primary tumor resection. (C) Deposition of matrices (solid polymers and gels) and mini-devices (micro-needles on patches) in direct
contact with the after-resection cavity borders. (D) The intranasal route is a portal to the Central Nervous System as therapies inhaled or instilled on
the nasal mucosa can bypass the BBB travelling through the olfactory neurons and trigeminal nerves, effectively reaching the Olfactory Bulb and
from here different areas of the brain.

modified technique has been developed (Sun et al., 2023).
Live imaging is frequently used to monitor the inevitable
reappearance of the intracranial tumor due to residual cells and
the presence of glioma stem cells (GSCs). Following resection,
the cavity created in the brain tissue provides an opportunity for
delivering curative treatments. One promising approach involves
injecting a biodegradable thermosensitive triblock copolymer,
poly (D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-
poly(D, L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA), that
contain the anticancer therapy for sustained local release. These
formulations mostly include TMZ (Zhang R. et al., 2023); however
combinatorial treatment can be achieve also using less conventional

anti-GB agents such as curcumin (Liang et al., 2023). Intra-
tumor injection can also be performed with allosteric tissue
elements (Figure 2B). In a phase I trial, a suicide gene therapy
was attempted by injecting adipose tissue-derived mesenchymal
stem cells (ADSCs) carrying the herpes simplex virus-thymidine
kinase (HSV-TK) gene into patients with non-surgically removable
recurrent GB (Oraee-Yazdani et al., 2023). A notable innovative
therapeutic tool carrier has recently been developed (Sun et al.,
2022). This carrier consists of allomelanin nanoparticles (AMNPs)
loaded with a checkpoint inhibitor, CLP002, and camouflaged
with cancer cell membrane coatings (CCM). The delivery system,
named AMNP@CLP@CCM, can penetrate the BBB, interfering
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with immune activity, and sustaining photo-thermal ablation with
AMNPs. Ultimately, these combined effects will synergistically kill
tumor cells.

The murine model of intracranial resection of primary tumor
mass is frequently used for the preclinical investigation of treatment
against recurrences, filling the resection cavity with the local
therapy. “Smart” hydrogels, such as chitosan-based thermogels
enriched with SiO2-TMZ loaded nanoparticles, have proven
effective in reducing recurrences in a U87-MG recurrence model.
The use of silica particles as carriers represents an unconventional
but equally effective choice compared to the more commonly used
PCL-TMZ loaded nanoparticles (Gherardini et al., 2023). Similarly,
photosensitive polymeric matrices have been previously employed
to treat recurrences with paclitaxel (PTX) (Zhao et al., 2018).
A novel approach to target residual cells in GB involved the use
of polymeric microneedle patches designed to anchor within the
irregular margin. These patches were loaded with polymer-coated
nanoparticles containing either cannabidiol (CBD) or olaparib
(OLA). The uniqueness of the study lies in both the choice of the
carriers and the therapeutic agents (Muresan et al., 2023). OLA, a
PARP inhibitor, has been utilized in combination with TMZ in both
preclinical studies (Zampieri et al., 2021) and clinical trials (Lesueur
et al., 2019). However, there are only a few encouraging reports
on the use of CBD, the non-psychotropic component of cannabis,
showing tumor growth reduction (Lah et al., 2022) and increased
survival rates in glioblastoma patients (Likar et al., 2021).

The intranasal route

The intranasal route offers a direct pathway for active molecules
to reach the CNS, making it an attractive option for drug delivery to
the brain. This route serves two purposes: delivering drugs directly
to the brain (nose-to-brain) and increasing peripheral vascular
concentrations (nose-to-blood), similarly to pulmonary delivery
methods. The olfactory nerve pathways serve as the gateway to
the Olfactory Bulb, where drugs deposited on the nasal mucosa
can travel through the olfactory neurons and trigeminal nerves,
effectively reaching different areas of the brain (Figure 2D).

Through this way, active formulations can avoid first pass
(enzymatic degradation and clearance) metabolism, increasing
their bioavailability in the CNS, minimizing the occurrence of
peripheral side effects. However, it is important to note that local
damage of the nasal mucosa and brain tissue can limit the amount
of active drugs that can be delivered.

In general, highly lipophilic drugs or nanoparticles with
a low molecular weight are well-suited for intranasal delivery
strategies. These characteristics enable better penetration and
absorption through the nasal mucosa, facilitating efficient
transport to the brain.

Recently, the utilization of intranasal routes for treating GB
has been reviewed, focusing on the advantages and disadvantages
for patients (Goel et al., 2022). Furthermore, in the past
decade, the availability of tunable nanoparticles has stimulated
multidisciplinary research to design and test various promising
formulations (Montegiove et al., 2022). A recently completed
clinical trial (NCT04091503) examined the safety and effectiveness
of intranasal administration of TMZ in patients with GB and,

recently, nanocarriers have been specifically designed for intranasal
delivery. For instance, a monoclonal antibody anti-EphA3 was
utilized to target TMZ-loaded gold nanoparticles (anti-EphA3-
TMZ@GNPsTMZ) for photothermal therapy in nose-to-brain
delivery (Yu et al., 2022). Chitosan-coated PLGA nanoparticles
were optimized for nose-to-brain delivery of carmustine into
the healthy Albino rat brain, resulting in significantly increased
chemotherapeutic concentration compared to plasma levels.
However, no indication of efficacy against tumor growth in vivo was
reported (Ahmad et al., 2022).

Decorating nanoparticles with transferrin to achieve targeting
of TfR appears to be an efficient approach for intranasal delivery, as
already demonstrated (Sandbhor et al., 2023). Lipid nanoparticles
(LNPs) were used for the co-delivery of paclitaxel (PTX) and
miltefosine (HePc), a proapoptotic agent, resulting in significant
tumor reduction and increased survival in mice after intranasal
treatment compared to systemic Taxol R© and nasal free drug
administration. The role of meningeal pathways and of the
lymphatic system in intranasal delivery has recently been studied
revealing reduced liposomal transport in GB (Semyachkina-
Glushkovskaya et al., 2022). The application of biocompatible
infrared photo stimulation of meningeal lymphatic vessels in
the cribriform plate could potentially enhance flux and delivery.
Finally, we highlight few rare examples of nanoparticle tracing after
intranasal delivery (Han et al., 2023) mapping their localization
in the tumor site, brain parenchyma and more significantly
intercepting accumulation in internal organs and overall body
districts (NIR and SPECT/CT imaging), which is crucial for
targeting and assessing off-target toxicity. Gold nanorods (AuNRs)
tested as a platform for delivery in CNS were functionalized by
adding the fluorescent dye Cyanine5 (Cy5) for optical imaging or a
metal chelator, diethylenetriaminepentaacetic dianhydride (DTPA)
hinged by PEG to 111Indium for nuclear detection, allowing
detection of the brain area distribution and the peripheral organ
distribution of the NP after entering the CNS (Han et al., 2023).

In conclusion, the nose-to-brain route holds great potential for
repurposing conventional drugs for novel therapeutic applications.

Drug repurposing

Drug repurposing is a cost-effective strategy for cancer
treatment, serving as an alternative to de novo drug discovery.
In the case of GB, candidate molecules for repurposing are often
identified through biomedical and biogenetic profiling of patients
and in silico docking simulations (McGowan et al., 2023; Roy et al.,
2023).

Among these candidates, FDA-approved drugs that are
currently used for treating other conditions have shown promise
(Jones et al., 2023; Moretti et al., 2023; Murali and Karuppasamy,
2023; Vítovcová et al., 2023). Recent preclinical examples include
Flubendazole, an inhibitor of microtubule growth that activates
autophagy and STAT3-dependent apoptosis, and auranofin (AF),
an inhibitor of TrxR1, used alone or in combination with the
prooxidant menadione (Szeliga and Rola, 2022). Hydroquinidine
(HQ) is another repurposing candidate (Yavuz and Demircan,
2023) to induce GBM cell death overcoming TMZ resistance that
could be a good candidate for in vivo study.
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Repurposing or repositioning anticancer agents that have
demonstrated efficacy in vitro but failed to produce therapeutic
effects in vivo, or those causing unacceptable off-target effects when
administered systemically, could find a second life through local
delivery. For example, intranasal administration of Temozolomide
(TMZ) (Clinical Trial: NCT04091503) or systemic administration
of Placlitaxel, in combination with albumin to induce osmotic
opening of BBB (NCT04528680) is under investigation, as
well as the intracranial deposition of Paclitaxel in OncoGel R©

NCT00479765 (Morales and Mousa, 2022) to elicit a stronger
antitumor effect. A single dose of intra-arterial mannitol should
facilitate the temporary opening of the BBB to allow superselective
intra-arterial cerebral infusion (SIACI) (Figure 1A) of a high
single dose of TMZ (up to 250mg/m2) to achieve a more efficient
tumor site targeting (NCT01180816). Similarly, SIACI protocol
with mannose osmotic pretreatment is attempted with Cetuximab
(CTX), targeting the Epidermal Growth Factor Receptor (EGFR) is
under study in a Phase I clinical trial to treat recurrent GB (Clinical
Trial: NCT02861898).

Conclusion

Recent advances in loco-regional treatment in GB focused on
overcoming the BBB and targeting microenvironmental proteins to
enhance therapeutic efficacy. “The Holy Grail,” “the Magic Bullet,”
“the Trojan Horse”: these are all metaphors that can be used to
define the goal to find a mythic nano-devise or a molecular tool
that could be able to overcome the BBB and deliver its anticancer
therapy for an effective personalized treatments to benefit GB
patients. On the other hand, strategies such as focused ultrasounds
with microbubbles, intracranial drug depots, and in situ delivery
using nanomaterials and biomaterials show promise in improving
drug delivery combating GB recurrence and improving patient’s
overall survival and quality of life.
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