
Frontiers in Cellular Neuroscience 01 frontiersin.org

The case for neuregulin-1 as a 
clinical treatment for stroke
Jessica M. Noll 1,2, Arya A. Sherafat 1, Gregory D. Ford 3 and 
Byron D. Ford 4*
1 Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, 
United States, 2 Nanostring Technologies, Seattle, WA, United States, 3 Southern University-New 
Orleans, New Orleans, LA, United States, 4 Department of Anatomy, Howard University College of 
Medicine, Washington, DC, United States

Ischemic stroke is the leading cause of serious long-term disability and the 5th 
leading cause of death in the United States. Revascularization of the occluded 
cerebral artery, either by thrombolysis or endovascular thrombectomy, is 
the only effective, clinically-approved stroke therapy. Several potentially 
neuroprotective agents, including glutamate antagonists, anti-inflammatory 
compounds and free radical scavenging agents were shown to be  effective 
neuroprotectants in preclinical animal models of brain ischemia. However, 
these compounds did not demonstrate efficacy in clinical trials with human 
patients following stroke. Proposed reasons for the translational failure include 
an insufficient understanding on the cellular and molecular pathophysiology 
of ischemic stroke, lack of alignment between preclinical and clinical studies 
and inappropriate design of clinical trials based on the preclinical findings. 
Therefore, novel neuroprotective treatments must be  developed based on a 
clearer understanding of the complex spatiotemporal mechanisms of ischemic 
stroke and with proper clinical trial design based on the preclinical findings 
from specific animal models of stroke. We and others have demonstrated the 
clinical potential for neuregulin-1 (NRG-1) in preclinical stroke studies. NRG-1 
significantly reduced ischemia-induced neuronal death, neuroinflammation 
and oxidative stress in rodent stroke models with a therapeutic window of >13  h. 
Clinically, NRG-1 was shown to be safe in human patients and improved cardiac 
function in multisite phase II studies for heart failure. This review summarizes 
previous stroke clinical candidates and provides evidence that NRG-1 represents 
a novel, safe, neuroprotective strategy that has potential therapeutic value in 
treating individuals after acute ischemic stroke.
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1 Introduction

Stroke remains one of the most devastating diseases in modern healthcare. Previously 
ranked as the third leading cause of death, stroke has since decreased to fifth but maintains 
first in cause of adult disability in the United States (U.S.) (Adams et al., 2007; Powers et al., 
2015; Benjamin et  al., 2017; Tsao et  al., 2023; Martin et  al., 2024). There are two major 
classifications of stroke: ischemic, which is the occlusion or blockage of an artery within the 
brain, and hemorrhagic, which is rupture of an artery within the brain and subsequent 
bleeding into the surrounding tissue. According to recent reports from the American Heart 
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Association (AHA), the global incidence of stroke was 11.71 million 
in 2020 with 7.59 million as ischemic strokes. There were 3.48 million 
deaths from ischemic stroke and 0.35 million deaths from hemorrhagic 
stroke worldwide (Tsao et al., 2023; Martin et al., 2024). From 2010 to 
2020, the age-adjusted stroke mortality rate in the US (38.8 per 
100,000) decreased 0.8% and the actual number of stroke deaths 
increased 23.8%.

Ischemic stroke is caused by occlusion of blood flow to the brain 
resulting in  localized areas of neuronal death called infarcts. This 
initial area of brain injury (the infarct core) occurs within minutes and 
is characterized by low cerebral blood flow, energy failure, 
excitotoxicity, and edema [for reviews, Barone and Feuerstein, 1999; 
Dirnagl et  al., 1999; Wu et  al., 2018]. Ischemia results in cellular 
energy depletion, neuronal overstimulation and excessive glutamate 
release from neurons leading to glutamate-induced excitotoxicity and 
necrotic neuronal death. Necrotic neurons in the ischemic core 
produce danger-associated molecular patterns (DAMPs) which are 
deemed as alarm signals by the innate immune system and lead to a 
delayed apoptotic neuronal death (Patel, 2018).

Neuronal death in the infarct core is believed to be irreversible 
and triggers the production of inflammatory molecules and oxidative 
stress in neurons, glia, and in the cerebral vasculature, which 
endangers brain cells in a larger, surrounding area known as the 
ischemic penumbra (Stoll et al., 1998; Dirnagl et al., 1999; del Zoppo 
et  al., 2000; Iadecola and Alexander, 2001; Touzani et  al., 2001; 
Iadecola and Anrather, 2011). In the penumbra blood flow is reduced 
but neurons can survive for several hours following stroke onset, 
suggesting that the therapeutic window for neuroprotective stroke 
treatment may be quite prolonged. In the penumbra, inflammatory 
cytokines, such as interleukin-1β (IL-1β), are induced in the ischemic 
brain of animal models and in human stroke as well. These cytokines 
increase the expression of downstream pro-inflammatory molecules, 
oxidative stress genes and adhesion molecules that promote delayed 
neuronal injury in the penumbra. Interventions that inactivate 
cytokines or that block cytokine receptors reduce ischemic damage in 
animal models of stroke.

To date, only one drug is FDA-approved for acute ischemic 
stroke treatment: tissue plasminogen activator (tPA), also known 
as alteplase (The National Institute of Neurological Disorders and 
Stroke rt-PA Stroke Study Group, 1995; Kleindorfer et al., 2008; 
Lees et al., 2010; Powers et al., 2015). The FDA approved the use 
of tPA for the treatment of acute ischemic stroke in 1995, but not 
without considerable restrictions of use due to side effects. Early 
clinical trials exhibited high rates of intracerebral hemorrhage but 
found clinical benefit when administered within 3 h of stroke (The 
National Institute of Neurological Disorders and Stroke rt-PA 
Stroke Study Group, 1995). A later study utilized data from four 
major stroke clinical studies with tPA: ECASS III, Alteplase 
Thrombolysis for Acute Noninterventional Therapy in Ischemic 
Stroke (ATLANTIS) Neurological Disorders and Stroke (NINDS), 
Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) 
and determined that tPA yielded beneficial outcomes when given 
up to 4.5 h but not beyond, and the earlier patients are treated, the 
better the outcome (Lees et al., 2010). Due to the hemorrhagic 
risk, only 1.8–2.1% of U.S. ischemic stroke patients are treated 
with tPA per year with only an approximate annual 0.04–0.09% 
increase in this treatment number (Kleindorfer et al., 2008). While 
thrombolytic agents that break down existing clots can result in 

neuroprotection, these agents primarily target the cerebral 
vasculature, rather than neuronal cells, and so are considered 
indirect neuroprotectants.

Several potentially neuroprotective agents, including glutamate 
antagonists, anti-inflammatory compounds and free radical 
scavenging agents were shown to be effective neuroprotectants in 
preclinical animal models of ischemia (Muir and Grosset, 1999; 
O'Collins et al., 2006; Fisher et al., 2009; Saver et al., 2009; Chen 
and Wang, 2016; Bosetti et al., 2017). Unfortunately, after nearly 
200 clinical trials, all attempts at neuroprotection for ischemic 
stroke clinically have failed. The Stroke Treatment Academic 
Industry Roundtable (STAIR) first met and published 
recommendations in 1999 specifically to address stroke preclinical 
studies intended to increase success of stroke therapeutics brought 
to clinical trials (Fisher et al., 2009; Albers et al., 2011; Lapchak 
et  al., 2013). STAIR meetings consist of academic physicians, 
industry representatives, and regulators that have met multiple 
times since the initial 1999 meeting to provide updates to the 
STAIR criteria, adapting to continuing stroke clinical trial 
outcomes (Fisher et al., 2009; Saver et al., 2009; Albers et al., 2011). 
The STAIR criteria were created as preclinical study 
recommendations with the purpose of enhancing the success of 
stroke treatments, neuroprotective specifically. Current STAIR 
recommendations and updates designed to be utilized as an outline 
for preclinical stroke studies are summarized below (Fisher et al., 
2009; Lapchak et al., 2013):

 1. Adequate dose–response curve: The minimum and maximum 
tolerated dose should be defined as well as proof that the target 
organ is reached. There should also be a “reasonable prospect” 
of clinical benefit within this dose in human administration.

 2. Define the time window in a well-characterized model: Address 
the therapeutic window relevant to your model in relation to 
humans, specifically regarding thrombolytic and 
neuroprotective drugs.

 3. Randomized and blinded studies:

 a. Report animals excluded from analysis
 b. Allocation concealment occur and should be described
 c. Conduct full power analysis and sample size calculations

 4. Histological and functional outcomes assessed acutely and 
long-term (update): both histological and behavioral outcomes 
should be  assessed, ensuring studies take place at least 
2–3 weeks after stroke onset to demonstrate sustained benefit.

 5. Permanent occlusion then transient in most cases (with 
physiological monitoring update): During both permanent and 
transient occlusion, ensure basic physiological parameters are 
being monitored (blood pressure, temperature, blood gases, 
blood glucose, etc.) with important attention to cerebral blood 
flow via Doppler.

 6. Initial rodent studies, then consider gyrencephalic species 
(Multiple species update): Establish treatment efficacy in at 
least 2 species. Rodents and rabbits can be initial tests, but 
secondary species is ideally gyrencephalic (primate, 
cat, etc.).

 7. Efficacy in two or more laboratories (Reproducibility update):
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 a. Eliminate randomization and assessment bias
 b. Define inclusion/exclusion criteria
 c. Further studies in females, aged animals, and co-morbid 

conditions such as hypertension, diabetes, 
and hypercholesterolemia

 8. Disclose potential conflicts of interest
 9. Consideration of route of administration (to administer 

intravenous or not)
 10. Consideration of sex differences

STAIR has released additional recommendations on multiple 
focus areas including: rapid administration, increasing the therapeutic 
window, and adjuvant treatment (Fisher et al., 2009; Saver et al., 2009; 
Albers et al., 2011; Lapchak et al., 2013; Jovin et al., 2016). When 
designing preclinical trials for a potential stroke therapeutic, it is 
suggested that one should address each of the 10 STAIR 
recommendations listed above as well as additional STAIR 
recommendations directly related to the specific study focus.

This review will: 1) discuss previous stroke neuroprotective drugs 
tested unsuccessfully clinical trials; 2) introduce NRG-1 as a novel 
strategy to treat ischemic stroke; and 3) describe lessons learned from 
the design of successful stroke clinical trials (e.g., tPA and endovascular 
thrombectomy (EVT) to inform clinical trial design for NRG-1. These 
findings could support the development of clinical studies using 
NRG-1 alone or in conjunction with other therapies, such as 
thrombolysis and EVT, for the treatment of patients with acute stroke.

2 Previous preclinical and clinical 
stroke neuroprotection studies

2.1 Excitotoxicity/glutamate antagonists

The well-established role of excess glutamate in neuronal death, 
excitotoxicity, after ischemia and traumatic brain injury (TBI) led to 
the theory of neuroprotection via blocking the effects of glutamate 
excitotoxicity (Simon et al., 1984; Novelli et al., 1988; Faden et al., 
1989). Excitotoxicity neuroprotective agents primarily target the 
N-methyl-D-aspartate (NMDA) glutamate receptor due to its 
demonstrated role in glutamate-induced cell death (Novelli et  al., 
1988). However, NMDA receptor antagonists have left a wake of failed 
clinical trials including, Selfotel, Aptiganel, Eliprodil, Licostinel, and 
Gavestinel. Many were tested in TBI and stroke clinical trials from 
Phase I to Phase III. Animal trials exhibited positive neuroprotective 
results, but most of the studies administered the drug prior to injury 
and did not consider a clinically relevant therapeutic window for 
stroke (Meldrum, 1990; Birmingham, 2002; Ikonomidou and Turski, 
2002). In addition, later animal studies indicated that the NMDA 
receptor antagonist, MK-801, did not provide direct neuroprotection, 
but rather created a hypothermic environment that resulted in 
neuronal sparing (Buchan and Pulsinelli, 1990; Buchan and Pulsinelli, 
1991). As a result, failure to test a clinically relevant therapeutic 
window and understand the chosen drug’s mechanism of action led 
to poorly designed clinical trials for glutamate antagonists. Trials from 
Phase I-III with all NMDA antagonist resulted in: 1) no benefit seen; 
2) speculated or confirmed increase in severe adverse effects and 3) 

speculated or confirmed increase in mortality (Albers et al., 1999; 
Morris et al., 1999; Davis et al., 2000; Albers et al., 2001; Sacco et al., 
2001; Birmingham, 2002).

2.2 Anti-inflammatory agents

A significant and prolonged inflammatory response is initiated 
during ischemic injury, beginning from core damage, and believed to 
play an important role in the progression of penumbral damage. 
Microglia are activated early on in the inflammatory response, leading 
to the release of reactive oxygen species, nitric oxide, cytokines [such 
as IL-1β and tumor necrosis factor-α, (TNF-α)] and chemokines, 
which later contribute to continued inflammation via invading 
immune cells such as leukocytes (Liu et al., 1993; Buttini et al., 1994; 
Betz et al., 1996; Barone et al., 1997; Jin et al., 2010; Graeber et al., 
2011). Neuroprotection became a target for anti-inflammatory agents 
by focusing on the evolution of the inflammatory response in 
ischemia, including, neutrophil inhibition, anti-ICAM-1, IL-1 
receptor inhibition, CD11b/CD18 inhibition (targeting neutrophil 
adhesion), and induction of E-selectin tolerance among others. Agents 
that were involved in stroke clinical studies include Enlimomab (anti-
ICAM-1), neutrophil inhibitory factor, Interleukin-1 receptor 
antagonist (IL-1ra), and minocycline. In preclinical rodent studies, 
ICAM-1 knockout animals demonstrated reduced infarct volume in 
transient ischemic stroke model, but not in a permanent model, 
showing that neuroprotection is only present when followed by 
reperfusion (Connolly et al., 1996; Kitagawa et al., 1998; Prestigiacomo 
et al., 1999; Soriano et al., 1999; Kanemoto et al., 2002). Rats treated 
with a combination of tPA and anti-ICAM-1 or anti-CD18 antibody 
demonstrated reduced infarct and neurological deficit compared to 
tPA treatment alone when treated <4 h after reperfusion (Zhang et al., 
1999a,b). However, Enlimomab studies for stroke were terminated at 
Phase III trials due to worse long-term outcome seen at 90 days, a 
higher mortality, and more severe adverse effects with treatment 
(Investigators, 2001).

UK-279,276 (neutrophil inhibitory factor) successfully 
demonstrated reduced neutrophil infiltration and infarct volume in a 
transient rat middle cerebral artery occlusion (MCAO) stroke model 
and in combination with tPA in a thromboembolic rat stroke model 
when administered <4 h (Jiang et al., 1998; Zhang et al., 2003). Acute 
Stroke Therapy by Inhibition of Neutrophils (ASTIN) clinical studies 
with neutrophil inhibitory factor for stroke were terminated at Phase 
II as patient recovery did not improve but no serious side effects were 
seen (Krams et al., 2003; Grieve and Krams, 2005; del Zoppo, 2010). 
IL-1ra preclinical trials repeatedly demonstrate neuroprotection in rat 
stroke models in multiple administrative methods (i.v. bolus, i.v. 
infusion, and s.c.) with sustained infarct reduction at 24 h and 7 days 
post-injury (dpi) with respect to treatment administration <3 h 
(Loddick and Rothwell, 1996; Relton et al., 1996; Mulcahy et al., 2003; 
Clark et al., 2008; Greenhalgh et al., 2010). IL-1ra clinical trials were 
first associated with no clinical benefit and were terminated after 
Phase II (del Zoppo, 2010; Smith et al., 2018). It was subsequently 
shown that initial rodent models lacked studies using systemic 
administration, delayed treatment, and comorbid animal studies 
(Sobowale et al., 2016).

Minocycline is a tetracycline antibiotic that has demonstrated 
anti-inflammatory, anti-apoptotic, and neuroprotective effects in 
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animal stroke models leading to multiple clinical trials. In acute 
treatment, minocycline treatment demonstrated significant reduction 
of infarct size and inflammation in the rat ischemia model when 
administered <5 h (Wang et al., 2003; Xu et al., 2004; Nagel et al., 2008; 
Fagan et al., 2010). Delayed and prolonged treatment, beginning at 
24 h and continuing for 14 days, improved neurological functioning 
and survival while preventing ischemic brain tissue atrophy 
(Hayakawa et al., 2008). This effect was supported when treatment was 
delayed to 4 dpi and prolonged to 4 weeks, with demonstration of 
significant decrease in activated microglia (Hewlett and Corbett, 2006; 
Liu et  al., 2007). Additionally, minocycline demonstrated success 
when used in combination treatment with tPA, including reducing 
tPA related hemorrhage, MMP-9 levels, and blood–brain barrier 
(BBB) injury (Murata et al., 2008; Machado et al., 2009). Minocycline 
was successfully brought to clinical trials for ischemic stroke as oral 
monotherapy in 2007 (Lampl et al., 2007). This trial had a therapeutic 
time window of 6–24 h and measured endpoints as neurological 
recovery at 7, 30, and 90 days on the modified Rankin Scale (mRS), 
Barthel Index, and NIH stroke scale (NIHSS) (Lampl et al., 2007). 
Results found benefit in using the NIH Stroke Scale (NIHSS) scale at 
1-day, Modified Rankin Scale (mRS) at 2 days, and Barthel Index at 
7 days. No difference was determined related to ischemic location, 
magnitude of focal deficits, or medical cause. However, there was no 
difference in mortality, recurrent strokes, or hemorrhagic 
transformations. A later dose study in 2010 aimed to determine both 
the dose-limiting toxicity of minocycline and its safety when 
administered with tPA (Fagan et al., 2010). This study found that 
minocycline was well-tolerated intravenously when administered with 
tPA with mild adverse effects, up to 10 mg/kg, and no cases of severe 
intracerebral hemorrhage were observed. A subsequent study also 
showed that patients with acute ischemic stroke had significantly 
better outcome with minocycline treatment as compared with those 
administered placebo (Padma Srivastava et al., 2012). However, a later 
pilot study of a small sample of acute stroke patients showed that 
intravenous minocycline was safe but not efficacious (Kohler et al., 
2013) and during a recent multisite clinical trial for minocycline, the 
data and safety monitoring board recommended ending the trial for 
futility after determining that it was highly unlikely for minocycline 
to show significant efficacy over placebo in improving functional 
outcomes at 90 days (Singh et al., 2019).

2.3 Oxidative stress/free radicals

Following ischemic brain injury, large amounts of reactive oxygen 
free radicals are produced and released, leading to progressive cellular 
damage (Cheng and Sun, 1994). Drugs have been developed in hope 
of counteracting this process as free-radical scavengers. Three drugs 
will be  discussed under this category: Tirilazad, Citicoline, and 
NXY-059. A meta-analysis reviewed the study quality and study 
outcome measurements of 18 pre-clinical studies involving 
neuroprotection of Tirilazad in animal models of stroke (Sena et al., 
2007). This analysis found outcome measurements were infarct 
volume and/or neurological score with average findings that Tirilazad 
reduced volume by 29.2% and improved neurobehavioral score by 
48.1%. The studies exhibited that Tirilazad did demonstrate efficacy 
in animal models, but with study quality median of 5/10, this 
conclusion presents possible presence of bias (Sena et  al., 2007). 

Tirilazad was brought to stroke clinical trials in the U.S. because 
studies in Europe, Australia, and New  Zealand reported reduced 
mortality and good recovery with treatment (Haley et  al., 1997). 
However, when Tirilazad underwent clinical trials in the U.S., it 
resulted in a considerable lack of efficacy (Haley et al., 1997; Haley, 
1998). This was suspected to be due to a low dose in female patients. 
A follow-up study with higher doses including male and female 
patients was done, but was prematurely terminated due to safety 
questions in a parallel study (Haley, 1998). Results were still published 
from this study and determined that the drug was well-tolerated with 
no evidence of harm, but consideration that there may be a difference 
in patient admission characteristics, management protocols, or use of 
anticonvulsant medication that could have led to variable results 
(Haley et al., 1997; Haley, 1998).

Citicoline followed a similar pattern. A meta-analysis assessed 14 
studies utilizing citicoline as a neuroprotectant in animal stroke 
models (Bustamante et al., 2012). This analysis found on average that 
citicoline reduced infarct volume by 27.8% and improved neurological 
deficit by 20.2% in ischemic occlusive stroke models with higher 
efficacy in proximal occlusion and in combination treatment with tPA 
(Bustamante et  al., 2012). However, this analysis noted that these 
studies had an absence of co-morbidities, females, old animals, or 
strain differences, which notes failure to fulfill STAIR criteria 
(Bustamante et al., 2012). This drug demonstrated beneficial effects in 
both rodent and non-U.S. clinical stroke trials with significant 
functional and neurological improvement (Clark et  al., 1997). 
However, a follow-up trial in the U.S. determined that citicoline was 
safe but ineffective for improving the outcome for mild stroke patients 
and suggested it be tested in moderate to severe stroke patients (Clark 
et al., 1999). A large, international trial was conducted to pool the 
results found from various trials with treatment of patients with 
moderate to severe ischemic stroke considering citicoline was 
approved in multiple countries but has yet to show significant efficacy 
(Dávalos et al., 2012). This trial was terminated at the third interim as 
citicoline was still not found to be efficacious in treatment of moderate 
to severe ischemic stroke (Dávalos et al., 2012).

Disodium 2,4-disulfophenyl-N-tert-butylnitrone (NXY-059) acts 
as a free radical trap that demonstrated neuroprotection following 
cerebral ischemia and reduced infarct volume in animal models but 
failed to follow-through in clinical trials. Initially, NXY-059 was hailed 
as a stroke neuroprotectant success, fulfilling significant results in 
pre-clinical STAIR criteria including BBB permeability, efficacy in two 
or more laboratories, neuroprotection, functional improvement, 
functionally adjuvant with tPA, and randomized, blinded studies. The 
first clinical trial with NXY-059 (SAINT I) significantly improved 
neurological function 3 months following stroke. However, the 
subsequent SAINT II trial showed no functional benefit of NXY-059. 
No significant sustained improvement in cognitive function, reduction 
of infarct size, or reduction of hemorrhage from tPA adjuvant 
treatment was exhibited (Shuaib et al., 2007; Bath et al., 2009). Closer 
analysis demonstrates that NXY-059 did not fulfill the STAIR criteria 
to the extent many believed and should have been evaluated more 
critically before advancing into clinical trials. Initial rodent studies 
utilizing the MCAO stroke model were found not to record the 
cerebral blood flow (CBF) during stroke via doppler. These studies 
displayed a mean average of 25% neuroprotection and approximately 
50% of animals did not have a stroke, but results were still included as 
“neuroprotection” (Ginsberg, 2007; Savitz, 2007). Neurological 
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improvements, although seen, were not sustained at 48 h after 
reperfusion, which does not fulfill the STAIR criteria (Savitz, 2007). 
In studies using the marmoset, NXY-059 treatment was administered 
5 min after occlusion and preclinical animal models were performed 
primarily within one academic laboratory (Savitz, 2007). The findings 
showed a 28% reduction in overall infarct size that was not statistically 
significant, though neurological improvement was noted.

2.4 Nerinetide (NA-1)

Nerinetide (also known as TAT-NR2B9c and NA-1) is a 
neuroprotective peptide that ameliorates neuronal excitotoxic 
damage by preventing the activation of neuronal nitric oxide 
synthase (nNOS) which reduces overstimulation of NMDA receptors 
(Ballarin and Tymianski, 2018). In rat and mouse permanent and 
transient MCAO stroke models, Nerinetide reduced infarct volume 
and restored motor functions (Sun et al., 2008; Zhou et al., 2010; 
Bach et  al., 2012). Nerinetide was also shown to reduce infarct 
volumes and preserved neurological function in a nonhuman 
primate cynomolgus macaque MCAO model (Cook et al., 2012a) 
and reduced the number and the volume of micro strokes in 
macaques injected with the polystyrene spheres (Cook et al., 2012b). 
In a Phase II clinical trial (ENACT; NCT00728182) patients were 
given 2.6 mg/kg of nerinetide immediately after the aneurysm repair 
and found that the number of lesions was significantly reduced by 
nerinetide treatment, but with no changes to lesion volume (Hill 
et al., 2012). In a Phase III clinical trial for nerinetide (ESCAPE-NA1; 
NCT02930018) efficacy in ~1,100 patients experiencing ischemic 
stroke undergoing rapid EVT was examined (Hill et  al., 2020). 
Nerinetide was administered within 60 min from imaging and 
randomization. Nerinetide did not improve the clinical outcomes 
after EVT compared with patients receiving placebo. However, there 
was a promising signal of potential efficacy in the subgroup of 
patients who were not treated with t-PA.

3 Rationale for neuregulin-1 clinical 
studies for stroke

Neuregulins are a family of structurally related proteins that have 
diverse functions in the nervous system and have shown promise in 
treating stroke. Neuregulin-1 (NRG-1) belongs to a family of 
multipotent neuroprotective and anti-inflammatory growth factors 
that include acetylcholine receptor inducing activities (ARIAs), glial 
growth factors (GGFs), heregulins and neu differentiation factors 
(NDFs) (Holmes et  al., 1992; Wen et  al., 1992; Falls et  al., 1993; 
Marchionni et al., 1993; Ho et al., 1995). The effects of NRG-1 are 
mediated by erbB tyrosine kinase receptors which include erbB2, 
erbB3 and erbB4 (Meyer et al., 1997). NRG-1 acts through homo-or 
heterodimerization of erbB receptors. The erbB receptors become 
phosphorylated upon ligand binding and activate a variety of signal 
transduction pathways including mitogen-activated protein kinase 
(MAPK), phosphatidylinositol 3-kinase (PI3K) and cyclin-dependent 
kinase-5 (CDK5) (Li et al., 2003; Croslan et al., 2008; Sawe et al., 2008; 
Cui et  al., 2013, 2023). Studies from our laboratory showed that 
neuroprotection by NRG-1 can be mediated by the PI3K/Akt signaling 
pathway. NRG-1 prevented neuronal death in an in vitro ischemia 

model of neuronal oxygen glucose deprivation (Croslan et al., 2008). 
Akt was activated after NRG-1 treatment and pharmacological 
inhibition of the PI3K/Akt pathway prevented the NRG-1 mediated 
neuroprotective effect.

3.1 Neuroprotective effects of NRG-1 in 
ischemic stroke

Work from our laboratory and others demonstrated that NRG-1 
reduced ischemia-induced neuronal death and inflammation in 
rodent focal stroke models by up to 90% (Shyu et al., 2004; Xu et al., 
2004; Guo et al., 2006; Xu et al., 2006; Li et al., 2007, 2008, 2009; Guan 
et al., 2015; Wang et al., 2015; Simmons et al., 2016; Ji et al., 2017; 
Surles-Zeigler et al., 2018; Wang et al., 2018; Noll et al., 2019; Cui et al., 
2023). These finding have been demonstrated by seven independent 
laboratories. Acute neurological and functional recovery with NRG-1 
treatment was seen in multiple MCAO studies. Several of the studies 
continuously monitored a combination of the following physiological 
parameters and published the outcomes and exclusion criteria: 
cerebral blood flow, heart rate, respiratory rate, SpO2, temperature, 
blood pressure, blood glucose, blood gas (Shyu et al., 2004; Xu et al., 
2004, 2006; Li et al., 2007; Wang et al., 2015; Ji et al., 2017; Surles-
Zeigler et al., 2018; Noll et al., 2019). We showed that NRG-1 has a 
therapeutic window of at least 12 h after 1.5 h of ischemia and 
reperfusion in a transient MCAO model (Xu et al., 2006). NRG-1 
administration resulted in a significant improvement of neurological 
function when administered 3 days following ischemia, suggesting a 
role in neuronal repair (Barone, 2010; Iaci et al., 2010, 2016).

Using MRI, we  demonstrated that NRG-1 attenuated the 
expansion of the ischemic infarct into the cortical penumbra over a 
48-h time span as measured by diffusion weighted imaging (DWI) and 
T2-weighted imaging (T2WI) following permanent MCAO (Wang 
et al., 2015). The DWI-defined infarcts were large at 3 h after MCAO 
and grew with time in the vehicle-treated control animal. Infarct 
expansion was prevented by a single i.a. administration of NRG-1 
despite continued MCA occlusion for 48 h in the MCAO model. 
Subsequent studies from our lab using diffusion tensor imaging (DTI) 
showed that NRG-1 also protected white matter from ischemic injury 
(Wang et  al., 2018). Preliminary findings using PWI showed that 
NRG-1 prevented the expansion of infarct damage into the ischemic 
penumbra. We developed a novel non-human primate MCAO stroke 
model in Rhesus macaques that will be used to examine the efficacy 
of NRG-1  in a gyrencephalic species using MRI, histology, 
neurobehavioral and other studies (Rodriguez-Mercado et al., 2012; 
Li et al., 2018).

Neuroprotection by NRG-1 was also observed in mice when 
administered i.v. (100 μg/kg) in both male and female mice. NRG-1 
was neuroprotective using heterozygous NRG-1 knockout mice 
(NRG-1 +/−) compared with wild-type (WT) littermates (Noll et al., 
2019). NRG-1−/− mice are embryonic lethal, but NRG-1 +/− mice, 
which have reduced NRG-1 expression (Erickson et  al., 1997; 
Sandrock et al., 1997; Gerlai et al., 2000; Noll et al., 2019), displayed a 
six-fold increase in cortical infarct size compared to WT mice (Noll 
et al., 2019). Similar results were shown with erbB4 knockout mice 
following stroke where neuroprotection by NRG-1 against cerebral 
ischemia was prevented in the mice with erbB4 deleted in parvalbumin 
(PV)-positive interneurons (Guan et al., 2015).
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3.2 BBB permeability of NRG-1

We previously examined the pharmacokinetics and ability of 
NRG-1 to cross the BBB after i.a. administration to rats (Li et al., 
2012). Plasma maximum concentration (Cmax) values after 
administration was 2050 ng/mL, and time to maximum concentration 
(Tmax) was 0.17 h (10 min). The plasma elimination half-life (t1/2) was 
calculated at 0.14 h (8 min) and NRG-1 was undetectable after 20 min. 
We detected no NRG-1 in brains of control animals while animals 
treated with exogenous NRG-1 had detectable levels at 20 min after 
administration that remained constant for up to 4 h post-injection. In 
the brain, Cmax was 25.0–30.2 pg./mg; Tmax did not vary significantly 
from 20 min to 4 h post-NRG-1 injection. Similarly, many previous 
studies demonstrated that NRG-1 crosses the BBB and blood-spinal 
cord barrier in mice (Pan and Kastin, 1999; Kastin et  al., 2004; 
Carlsson et al., 2011; Kato et al., 2011; Mahar et al., 2011; Rösler et al., 
2011; Cui et al., 2013; Depboylu et al., 2015). Most of the injected 
NRG-1 reached the brain parenchyma rather than being retained in 
the cerebral vasculature. Systemically administered NRG-1 also 
induced erbb4 phosphorylation in those areas after injection, 
indicating that it is biologically active and reaches neuronal targets in 
the brain (Rösler et al., 2011).

3.3 Anti-inflammatory effects of NRG-1

NRG-1 demonstrated strong anti-inflammatory effects after 
ischemia. NRG-1 prevented macrophage/microglial activation, 
reactive astrogliosis, apoptosis, and cytokine expression following 
stroke (Xu et al., 2004, 2005, 2006; Li et al., 2007). NRG-1 treatment 
significantly reduced the expression of many pro-inflammatory and 
oxidative stress genes, including IL-1β, COX2, CD36, HSP-70, and 
MCP-1 (Xu et al., 2005; Simmons et al., 2016). A number of in vitro 
studies of macrophage/microglia cells including N9 microglial cells, 
BV-2 murine microglia, EOC murine microglia, RAW 263.7 murine 
macrophages, rat primary astro-microglia mixed, U937 monocytic 
cells showed that NRG-1 prevented the stimulation of downstream 
molecules by pro-inflammatory stimuli (Xu et al., 2005; Mencel et al., 
2013; Simmons et al., 2016; Alizadeh et al., 2017). We showed that 
NRG-1 attenuated lipopolysaccharide (LPS) induced 
pro-inflammatory factors in microglia cells by modulating the nuclear 
factor kappaB (NFkB) pathway (Simmons et al., 2016). NRG-1 has 
been shown to associate with the NFkB-inducing kinase (NIK) that 
activates the alternative/non-canonical NFkB pathway to produce 
anti-inflammatory factors (Chen et al., 2003), Figure 1 summarizes 
mechanisms used by NRG-1 to protect neurons and prevent 
pro-inflammatory responses in ischemia and other conditions.

3.4 NRG-1 improves BBB integrity

The BBB plays a critical role in stroke acutely and chronically via 
maintenance and resolve. After ischemic injury, there is an increase in 
BBB permeability leading to and an increase in edema, active resident 
microglia, and peripheral immune cell infiltration (Jickling et  al., 
2014). An efficient neuroprotectant drug could also act on the BBB, to 
reduce permeability and increase integrity. In a TBI mouse model, 
acute BBB permeability was measured NRG-1 intravenous treatment 

given 10 min after trauma (Lok et al., 2012). Evans blue extravasation 
measured 2 h after trauma exhibited 35% reduction. Studies from our 
laboratory showed that NRG-1 improved BBB integrity in a model of 
experimental cerebral malaria (Liu et al., 2018).

3.5 Neuroprotective effects of NRG-1 in 
hemorrhagic stroke

The major concern in treatment of stroke with t-PA is the 
increased risk of intracranial hemorrhage. Therefore, a putative 
neuroprotective drug would at minimum not increase cerebral 
bleeding, but ideally would also reduce injury following intracranial 
hemorrhage. Recent studies showed that NRG-1 prevented neuronal 
injury, improved BBB integrity and improved neurological deficits in 
animal models of subarachnoid hemorrhage (SAH) (Yan et al., 2017; 
Qian et  al., 2018). ErbB4 knockdown with siRNA prevented the 
neuroprotective effects of NRG-1 after SAH. The tight junction 
proteins Occludin and Claudin-5 were significantly reduced after 
SAH, but NRG-1 treatment reversed both protein expressions almost 
back to baseline (Qian et  al., 2018). Therefore, NRG-1 could 
potentially offer a treatment to both ischemic and hemorrhagic stroke 
as well as extend the therapeutic window of tPA by reducing BBB 
permeability and hemorrhagic transformation.

4 Ongoing NRG-1 clinical trials for 
heart failure

Recent clinical studies demonstrated the efficacy and safety of 
NRG-1/Neucardin in human patients with congestive heart failure 
(Gao et al., 2010; Jabbour et al., 2011). Recombinant human NRG-1/
Neucardin was used in phase II clinical trials investigating its safety 
and efficacy in patients with chronic heart failure in the 
U.S. (ClinicalTrails.gov identifier: NCT01251406), China (Chinese 
Clinical Trial: ChiCTR-TRC-00000414), and Australia (Australian 
New  Zealand Clinical Trials Registry: ACTRN12607000330448). 
Patients received NRG-1/Neucardin at a dose of 0.3–1.2 μg/kg/day or 
placebo i.v. for 10 days, in addition to standard of care therapies. 
Acutely, cardiac output increased by 30% during a 6-h NRG-1/
Neucardin infusion (Jabbour et al., 2011). During a follow-up period 
11–90 days after study initiation, NRG-1/Neucardin significantly 
improved cardiac function in patients and the effective doses were 
shown to be  safe and tolerable (Gao et  al., 2010). Two additional 
clinical trials to determine the ability of NRG-1/Neucardin to improve 
cardiac function after heart failure have been initiated in the 
U.S. (ClinicalTrails.gov identifiers NCT02664831; NCT01258387).

NRG-1/Cimaglermin is the full-length extracellular domain of 
NRG-1β3, also known as glial growth factor 2 (GGF2), which has been 
used in clinical development for chronic heart failure. A phase 1, double 
blind, placebo-controlled, single ascending dose study examined the 
safety, tolerability, and exploratory efficacy of intravenous infusion of 
recombinant NRG-1/Cimaglermin alfa, in patients with heart failure 
(Lenihan et al., 2016). Forty patients with symptomatic heart failure were 
randomized to NRG-1/Cimaglermin or placebo in 7 ascending dose 
cohorts (0.007 mg/kg, 0.021 mg/kg, 0.063 mg/kg, 0.189 mg/kg, 0.378 mg/
kg, 0.756 mg/kg, and 1.512 mg/kg). There was a dose-dependent 
improvement in left ventricular ejection fraction lasting 90 days following 
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infusion. NRG-1/Cimaglermin treatment was generally tolerated except 
for transient nausea and headache and a dose-limiting toxicity was noted 
at the highest planned dose. There were no acute adverse effects leading 
to termination of drug infusion. A number of additional studies have 
shown that NRG1 can repair the heart after myocardial infarction, 
cardiomyopathy, atherosclerosis, and other cardiovascular diseases 
(Hertig et al., 1999; Geisberg and Lenihan, 2011; Galindo et al., 2014; 
Wang et al., 2022).

5 Conclusion and discussion

The failed translation from animal experimental stroke studies to 
clinical studies has created a great deal of pessimism over the 
neuroprotection hypothesis. Although animal stroke research has not 
directly yielded new clinical drugs, it has provided important 
mechanistic insights into the complex pathophysiology of ischemic 
stroke which will pave the way for future therapies. NRG-1 has 
demonstrated promise as an acute neuroprotectant and anti-
inflammatory agent in preclinical animal stroke models. These effects 
have been seen in multiple cerebral injury models, using various 
administration methods with clinically relevant doses, and verified by 
several independent laboratories. Importantly, NRG-1 is a peptide that 
can cross the intact BBB in animal models and activate its target 
receptors in the brain. Other neurotrophic and neuroprotective factors, 
such as glial-cell line derived growth factor (Kastin et al., 2003b), platelet 

derived growth factor (PDGF) (Kastin et al., 2003a), TGFα (Pan et al., 
1999) and transforming growth factor β (TGFβ) (Kastin et al., 2003c) 
do not cross the BBB, therefore NRG-1 is an intriguing candidate for 
therapeutic treatment of CNS disorders due to its accessibility to the 
brain parenchyma. Taken together data from our laboratory and others 
show that NRG-1 has fully or partially fulfilled many of the STAIR 
criteria including, 1) randomized and blinded studies; 2) permanent 
occlusion and transient ischemia models; 3) histological outcomes 
assessment (along with MRI); 4) defined time window; 5) efficacy in 
two or more laboratories; 6) consideration of clinically relevant 
administration route; and 6) consideration of sex difference. 
Additionally, NRG-1 clinical trials have been completed demonstrating 
safety and efficacy in human patients with heart failure using similar 
doses to those in preclinical stroke studies, potentially increasing the 
odds of success in ischemic stroke trial. Future animal and human 
studies will consider other factors including age differences, 
co-morbidity and pharmacological profile for NRG-1 treatment.

The STAIR criteria recommend that clinical trials with a 
neuroprotectant be designed as adjuvant treatment with tPA (Albers 
et  al., 2011; Jovin et  al., 2016). Clinical studies specifically testing 
effects of neuroprotective agents in addition to tPA and/or EVT are 
limited (Vos et al., 2022). We propose to use a combination therapy 
approach with NRG-1 alongside thrombolysis with tPA or EVT, which 
could produce synergistic protective effects through different 
mechanisms. Combination therapy with NRG-1 could potentially 
extend the current therapeutic time window of tPA and reduce 

FIGURE 1

NRG-1 activates multiple pathways through erbB receptors to inhibit inflammation and initiate neuroprotection. LPS activates the common 
inflammation pathway through the toll-like receptor (TLR) and canonical NFkB pathways, leading to the production of pro-inflammatory factors such 
as TNFα, IL-6, and IL-1. Danger-associated molecular patterns (DAMPs) activate apoptosis through Bax/Bak pathways. NRG-1 acts through erbB 
receptors to: (1) initiate the PI3K/Akt pathway which inhibits NFkB mediated pro-inflammatory responses, (2) activate nuclear factor kappaB-inducing 
kinase (NIK) which also inhibits inflammation by initiating the alternative/non-canonical NFkB pathway to produce anti-inflammatory factors such as 
IL-13, IL-5, and G-CSF, and (3) activate the MAPK and Akt pathways to inhibit apoptosis.
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adverse effects such as intracerebral hemorrhage. Preclinical studies 
are underway in our laboratory to determine the safety and efficacy of 
NRG-1 when used in conjunction with tPA. Based on studies of 
NRG-1 using models of subarachnoid hemorrhage, NRG-1 could 
potentially offer a treatment to both ischemic and hemorrhagic stroke 
as well as potentially extend the therapeutic window of tPA by 
reducing BBB damage and hemorrhage. The role of NRG-1  in 
reducing BBB damage and increasing integrity may also play a part in 
its anti-inflammatory role. These findings suggest that NRG-1 treatment 
would not induce hemorrhagic transformation after ischemia and could 
protect patients from t-PA mediated toxicity.

ENACT and ESCAPE-NA1 provided some evidence that 
neuroprotection in stroke patients is indeed feasible. Interestingly, 
tPA was shown to reduce plasma concentration of nerinetide, and 
it was suggested that nerinetide contains amino acid sequences 
known to be cleaved by plasmin resulting in a possible drug–drug 
interaction (Hill et al., 2020). This further confirms the need to 
conduct neuroprotection along with thrombolysis and/or 
EVT. Subsequent analysis of the ESCAPE-NA-1 trial indicated 
that infarcts in a new territory (INT), are common and known 
complications of EVT for acute ischemic stroke associated with 
poorer outcomes (Singh et  al., 2023). INT is defined by an 
imaging-proven infarct in a vascular territory outside that of the 

original target occlusion before EVT. These are caused by distal 
microemboli that travel downstream from the EVT site. Thus, 
strategies to reduce INTs are a treatment target for improving 
outcomes for patients with stroke due to EVT. In the ESCAPE 
NA-1 trial, 10% of the subjects were found to have INT on 
postprocedural MRI (Singh et al., 2023). The follow-up ESCAPE-
NEXT clinical trial (NCT04462536) will examine the efficacy of 
nerinetide on the incidence of INT in subjects who undergo 
endovascular treatment. We propose to use INT frequency as an 
outcome measure of NRG-1 efficacy following ischemic stroke in 
combination with EVT and/or tPA to protect the brain from 
distal micro emboli that could lead to INT.

Taken together, we  demonstrate that NRG-1 has outstanding 
potential as a clinical treatment for stroke. Findings from our 
laboratory and others further indicate that NRG-1 has fulfilled many 
STAIR criteria that already place it in advantage over NXY-059 and 
comparable to nerinetide that has reached clinical trials (Figure 2). 
NRG-1 has shown success in completion of the STAIR criteria where 
NXY-059 did not, robust neuroprotection in rodent models, blinding 
and randomization, extended time windows in clinically relevant 
stroke models and reproducibility in multiple laboratories (Savitz, 
2007). Nerinetide has shown some hope for neuroprotective strategies 
for stroke and NRG-1 is on track to similarly fulfill the STAIR criteria. 

FIGURE 2

NRG-1 potential as a clinical treatment for stroke. Findings from our laboratory and others further indicate that NRG-1 has fulfilled many STAIR criteria 
that already place it in advantage over NXY-059 and comparable to nerinetide that have reached clinical trials NRG-1 has shown success in completing 
of the STAIR criteria where NXY-059 did not, robust neuroprotection in rodent models, blinding and randomization, extended time windows in 
clinically relevant stroke models and reproducibility in multiple laboratories. Nerinetide has shown some hope for neuroprotective strategies for stroke 
and NRG-1 is on track to similarly fulfill the STAIR criteria.
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In consideration of these findings, we  suggest that NRG-1 move 
toward clinical trials based on lessons learned from previous stroke 
clinical trials, including NXY-059 and nerinetide studies.
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