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Up to approximately 70% of cancer survivors report persistent deficits in 
memory, attention, speed of information processing, multi-tasking, and mental 
health functioning, a series of symptoms known as “brain fog.” The severity 
and duration of such effects can vary depending on age, cancer type, and 
treatment regimens. In particular, every year, hundreds of thousands of patients 
worldwide undergo radiotherapy (RT) for primary brain tumors and brain 
metastases originating from extracranial tumors. Besides its potential benefits 
in the control of tumor progression, recent studies indicate that RT reprograms 
the brain tumor microenvironment inducing increased activation of microglia 
and astrocytes and a consequent general condition of neuroinflammation that 
in case it becomes chronic could lead to a cognitive decline. Furthermore, 
radiation can induce endothelium reticulum (ER) stress directly or indirectly 
by generating reactive oxygen species (ROS) activating compensatory survival 
signaling pathways in the RT-surviving fraction of healthy neuronal and glial cells. 
In particular, the anomalous accumulation of misfolding proteins in neuronal 
cells exposed to radiation as a consequence of excessive activation of unfolded 
protein response (UPR) could pave the way to neurodegenerative disorders. 
Moreover, exposure of cells to ionizing radiation was also shown to affect the 
normal proteasome activity, slowing the degradation rate of misfolded proteins, 
and further exacerbating ER-stress conditions. This compromises several 
neuronal functions, with neuronal accumulation of ubiquitinated proteins with 
a consequent switch from proteasome to immunoproteasome that increases 
neuroinflammation, a crucial risk factor for neurodegeneration. The etiology of 
brain fog remains elusive and can arise not only during treatment but can also 
persist for an extended period after the end of RT. In this review, we will focus 
on the molecular pathways triggered by radiation therapy affecting cognitive 
functions and potentially at the origin of so-called “brain fog” symptomatology, 
with the aim to define novel therapeutic strategies to preserve healthy brain 
tissue from cognitive decline.
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1 Introduction

Cancer-related cognitive deficits (CRCDs), also known as “brain 
fog,” are common among cancer patients (Hardy et al., 2023) and 
include difficulties in short-term and working memory, attention, 
processing speed, verbal fluency, and executive function (Jean-Pierre 
et al., 2012; McDougall et al., 2014; Prasad et al., 2015). Among the 
potential reasons for brain fog aside from psychological distress are 
chemotherapy-or radiation-related neurotoxicity (Hardy et al., 2023). 
However, the etiology of CRCDs remain still elusive as they arise 
during treatment but can also persist for an extended period after the 
end of chemo-or radio-treatment (Falleti et al., 2005; Eberhardt et al., 
2006; Ahles et al., 2012).

Brain tumors are one of the most aggressive and detrimental 
forms of cancer. In particular, for brain tumors and for brain 
metastasis originating from extracranial tumors, the standard 
treatment includes surgery, chemotherapy and radiation. Glioblastoma 
multiforme (GBM) represents the most common and aggressive brain 
tumor in the aging population and accounts for 58% of all gliomas in 
the elderly. The prognosis for patients with GBM remains dismal, with 
overall survival of 12–18 months. Notwithstanding, though GBM is a 
rare tumor with a global incidence of less than 10 per 100,000 people, 
its poor prognosis makes it a crucial public health issue. Early 
diagnosis and the type of treatment chosen do not affect GBM patient 
survival rate, making screening programs unhelpful. Long-term 
survival in GBM, defined as survival beyond 3 years, remains scarce, 
with estimates ranging from 3 to 5%. While extensive research is 
underway to develop novel therapies for extending survival, the 
impact of tumor and treatment on the cognitive status of survivors 
remains relatively understudied.

The current standard of care for Glioblastoma multiforme is the 
Stupp’s protocol, developed in 2005, which involves a two-stage 
approach: debulking surgery followed by a combination of 
radiotherapy (RT) and chemotherapy (Stupp et al., 2005). RT is the 
mainstay treatment (Marsh et  al., 2010; McDuff et  al., 2013; 
Owonikoko et al., 2014) due to its capability to uniformly penetrate 
both the brain and tumor parenchyma, overcoming resistant cells 
(McDuff et al., 2013). However, on the other side of the coin, cranial 
radiation may induce a cognitive decline, the most common radio-
correlated neurotoxic effect at any patient’s age observed also as a 
result of doses much lower than those that can cause radionecrosis 
(Makale et al., 2017).

Radiation therapy, an integral component of modern cancer 
treatment, holds particular significance for primary brain tumors. 
Often the sole modality that offers substantial survival and quality-of-
life benefits, RT plays a crucial role in the management of 
these malignancies.

Over the past few decades, radiotherapy for brain tumors has 
undergone significant technological advancements across all aspects 
of treatment, including patient immobilization, imaging, treatment 
planning, and precise delivery. This includes better imaging, planning, 
and delivery methods. These advancements, especially in imaging and 
radiation technology, allow for more precise targeting of tumors and 
less damage to healthy brain tissue (Scaringi et al., 2018). In particular, 
the intensity-modulated radiation therapy (IMRT) and volumetric 
modulated arc therapy (VMAT) “shape” the radiation beams to closely 
fit the tumor’s unique shape, minimizing harm to healthy tissue and 
reducing side effects while maximizing the treatment’s effectiveness 

(Scaringi et al., 2018; Kotecha et al., 2021). Stereotactic irradiation 
represents an advanced iteration of conventional external beam 
radiation therapy (CRT). It uses special headgear to hold patients 
perfectly still, allowing incredibly precise targeting of the tumor with 
submillimeter accuracy. This reduces the amount of healthy brain 
tissue exposed to radiation, potentially lowering the risk of long-term 
side effects. The treatment can be given in one or multiple sessions, 
still delivering high doses to the tumor. Another relatively new 
technique is FLASH RT, defined as a single ultra-high dose-rate RT 
(higher than 40Gy/S), based on the proton’s capacity of deliver little 
energy with the highest energy release in the target volume, leading 
no dose leakage and reducing damage on healthy tissue (Hughes and 
Parsons, 2020; Huang and Mendonca, 2021; Lin et al., 2022).

RT has established itself as one of the three mainstays of GBM 
treatment, alongside surgery and chemotherapy (Orth et al., 2014). 
Beyond its direct and indirect DNA damage-induced local control of 
target lesions in cancer cells, recent preclinical and clinical evidence 
suggests that RT may also modulate antitumor immune responses by 
inducing immunogenic cell death and reconfiguring the tumor 
microenvironment (TME). In particular, GBM is characterized by 
high inter-and intra-tumor heterogeneity and a very complex TME, 
composed not only of neoplastic cells but also of nervous cells (i.e., 
astrocytes and neurons), stem cells, fibroblasts, vascular as well as 
varieties of host and infiltrating immune cells. This has led many to 
evaluate RT as a partner therapy to immuno-oncology treatments, a 
research field very relevant in brain tumors, where the blood–brain 
barrier (BBB) significantly limits the penetration of antineoplastic 
drugs into the brain and consequently the achievement of therapeutic 
sufficiently high concentrations. While RT offers potential benefits in 
treating brain tumors, it is also associated with a common 
complication: cognitive decline. Despite the prevalence of this issue, 
the underlying mechanisms responsible for this dysfunction remain 
largely unclear. Consequently, there are currently no effective 
preventive measures or treatments available.

This review aims to shed light on this critical yet 
understudied issue.

2 The relationship between RT and 
brain fog

2.1 RT and neuroinflammation: mastering 
the duality of a double-edged blade

Our current understanding of the mechanisms underlying 
radiation-induced brain injury centers on the immediate depletion of 
neural stem cells and the subsequent disruption of hippocampus-
mediated functions, including learning and memory. Indeed, different 
studies have documented that stress leads to a reduction of dendritic, 
spine, and synaptic material in the hippocampus and prefrontal cortex 
(Wager-Smith and Markou, 2011). Additionally, a single 10-min 
session of swim stress has been shown to cause dendritic length loss 
in the infralimbic cortex (Izquierdo et al., 2006). In the context of RT 
effects and cancer, it is well known radiation ability to induce an 
“immunogenic hub” of great relevance for the local (bystander effect) 
and remote (abscopal effect) antitumor effects, as described for several 
solid tumors by different groups (Formenti and Demaria, 2013; Baskar 
et al., 2014; Klammer et al., 2015; Marín et al., 2015). However, RT 
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could have a hidden side in the brain. Indeed, in addition to its direct 
cytotoxic effect on neuronal cells, RT may negatively impact on the 
cells of TME directly or by inducing the release of inflammatory 
mediators such as adenosine triphosphate (eATP), interferons, and 
chemokines to the extracellular space (Greene-Schloesser et al., 2012; 
Herrera et al., 2017) potentiating glioma cell growth and invasion or 
contributing to build up an immunosuppressive milieu (Wang and 
Haffty, 2018).

The same glioma cells are known to increase oxidative stress and 
stimulate the release of immunosuppressive molecules such as 
interleukin-6 (IL-6), IL-10 and tumor growth factor beta (TGF-β), 
which in turn reprogram the immune components of TME such as 
microglia to a pro-tumorigenic phenotype (Alghamri et al., 2021). 
This condition can lead to the loss of BBB integrity, exposing the brain 
to adverse substances from the periphery, and to host immune cells, 
that can disrupt the homeostasis of the CNS (Alghamri et al., 2021). 
In support of this, the impact of myeloid cells on TME is compared by 
Buonfiglioli and Hambardzumyan to “the mythological evil three-
headed dog, Cerberus,” that guards the underworld as well as 
microglia cells play a triple protecting and supporting role on tumor. 
In fact, these myeloid cells promote tumor growth, modulate immune 
suppression, and exacerbate cerebral edema (Buonfiglioli and 
Hambardzumyan, 2021).

Furthermore, several works showed that irradiated microglia may 
induce astrogliosis, release of neurotoxic factors, compromising the 
BBB integrity with consequent immune cells invasion and neuronal 
cell death (Hwang et al., 2006; Wilson et al., 2009; Liddelow et al., 
2017). The induction of a reactive state in microglia following cranial 
irradiation treatment have been shown to be associated with deficits 
in neural precursor, neuronal cell population maintenance and 
neurogenesis, in synaptic structure and function, and myelin plasticity. 
During development and under normal physiological conditions, 
microglia play a crucial role in shaping neural circuit refinement by 
eliminating excess dendritic and synaptic connections (Stevens et al., 
2007; Schafer et  al., 2012). Moreover, these cells exhibit complex 
branching patterns and display remarkable mobility in response to 
injury or disease, rapidly migrating to the affected area to engulf 
cellular debris. Activated microglia are also observed in various 
neurodegenerative disorders, such as Alzheimer’s disease (AD) (Hong 
et al., 2016) and Parkinson’s disease (PD) (Lecours et al., 2018), where 
microglial activation contributed to aberrantly increased synaptic 
pruning. Notably, microglia and astrocytes are overexpressed in the 
brain until 140 days post-irradiation in rats (Desmarais et al., 2015). 
In addition, microglial cells were found in an activated status with a 
classic amoeboid phenotype, harboring few ramifications and 
increased body volume in the area near the irradiation focus, while 
showing a steady state morphology with extended processes in the 
distal area (Constanzo et al., 2020). It is also known that microglia 
exhibit remarkable plasticity, adopting a spectrum of activation states 
ranging from fully inflamed, characterized by the release of 
pro-inflammatory cytokines, to alternatively activated, distinguished 
by the secretion of anti-inflammatory cytokines or neurotrophins. 
Consequently, microglia can transit from a homeostatic, neurotrophic 
state to a neurotoxic state (Luo and Chen, 2012). In vivo experiments 
on rats and mice demonstrated a dose-dependent reduction in 
hippocampal neurogenesis following ionizing irradiation, with higher 
radiation doses resulting in more pronounced impairments in both 
proliferating precursor cells and newly formed neurons (Tada et al., 

1999). The deficit in neurogenesis is due mainly to radiation-induced 
perturbations in the neurogenic niche, rather than cell-intrinsic effects 
on the precursor cells (Monje et al., 2002, 2003). The IL-6-mediated 
inhibition of neuronal differentiation caused by radiation-activated 
microglia was postulated to be  the central element in this 
microenvironmental disruption (Monje et al., 2002). In preclinical 
models, the direct contribution of radiation-induced microglial 
inflammation to cranial irradiation-mediated memory impairments 
is strongly supported by the evidence that anti-inflammatory drugs 
targeting microglia or depletion of microglia (Monje et al., 2003) using 
CSF1R inhibitors (Acharya et  al., 2016) restore hippocampal 
neurogenesis and enhance cognitive function following irradiation. 
Finally, a recent study employing a glioma mouse model underscores 
the significance of non-tumor factors in memory impairment 
following cranial irradiation. The study suggests that microglial 
activation triggered by radiation exposure plays a more prominent 
role in memory dysfunction than tumor growth itself (Feng et al., 
2018). While the applicability of these findings to humans warrants 
further investigation, the specifics may differ across glioma subtypes.

Furthermore, irradiated brain tissues show pathologic features 
resembling aging-associated neurodegeneration, including reduced 
neurogenesis, chronic oxidative stress and inflammation (Mrak, 2009; 
Wang et al., 2014). In response to radiation exposure and subsequent 
DNA damage accumulation, cells can undergo various cell type-specific 
responses, one of which is cellular senescence (Eriksson and Stigbrand, 
2010). Notably, senescent cells, despite their inability to replicate, may 
evade clearance and accumulate in tissues, persistently releasing 
inflammatory factors that contribute to tissue damage (Tripathi et al., 
2021). Consequently, radiation-induced cellular senescence has 
emerged as a crucial mediator of tissue dysfunction, fueling chronic 
inflammation and exacerbating radiation-induced side effects. 
Moreover, a burgeoning body of research suggests that astrocyte 
senescence and astrocyte-derived neuroinflammation could 
be identified as potential contributors to radiation-induced brain injury. 
While astrocytes perform numerous neuroprotective functions, 
including the production of neurotrophic factors, they may also 
promote neurodegeneration in certain diseases, such as AD, which is 
thought to be associated with the induction of a senescence-associated 
secretory phenotype (SASP). In addition, animal models of radiation-
induced brain injury have revealed the presence of hypertrophic 
astrocytes that persist for at least 12 months following radiation 
exposure (Suman et  al., 2013; Turnquist et  al., 2016). Notably, a 
significant proportion of these enlarged astrocytes exhibit senescence, 
a crucial pathological feature that likely extends to other brain disease 
processes. Following brain injury, astrocytes undergo proliferation as 
part of reactive astrogliosis, a process that can lead to replicative 
senescence (Pekny and Pekna, 2014; Herranz and Gil, 2018). Elevated 
secretion of the SASP cytokines, IL-6 and IL-1β has been observed in 
animal models of radiation-induced brain injury and is suspected to 
impede neurogenesis, thereby contributing to cognitive decline 
(Haveman et al., 1998; Monje et al., 2003; Rola et al., 2004; Lee et al., 
2010; Yang et  al., 2017). Therapeutic interventions that target and 
mitigate neuroinflammation using anti-inflammatory drugs have 
demonstrated enhanced neurogenesis in radiation-induced brain injury 
(Marmary et al., 2016). In fact, in animal models, IL-6 has been shown 
to exacerbate radiation-induced senescence, further emphasizing the 
crucial role of chronic neuroinflammation in promoting radiation-
induced brain injury (Turnquist et al., 2019). It is also been reported that 
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the inhibition of full-length p53 regulates p21, RAD51, and IL-6, each 
of which has been shown to be important in radiation-induced injury 
and neurotoxicity. The same study also provided compelling evidence 
suggesting that the p53 isoform ∆133p53 holds therapeutic potential in 
preventing astrocyte senescence and mitigating astrocyte-mediated 
neuroinflammation. In addition, astrocyte dysfunction, even in the 
absence of neuronal or other cellular damage, can lead to memory loss. 
These abundant brain cells (not by chance, some gliomas more closely 
resemble cells of the astrocyte lineage) do play crucial roles, while their 
contribution to neurocognitive disorders such as dementia remains 
incompletely understood. A recent work by Licht-Murava et al. (2023) 
showed that abnormal immune activity in astrocytes is sufficient to 
cause cognitive deficits in dementia. In particular, the authors found 
that patients with AD or frontotemporal dementia have aberrant 
accumulation of TAR-DNA binding protein-43 (TDP-43) in 
hippocampal astrocytes. In Alzheimer’s disease mouse models, inducing 
widespread or hippocampus-targeted TDP-43 accumulation in 
astrocytes resulted in progressive memory loss and localized alterations 
in antiviral gene expression. Furthermore, Disruptions in astrocytic 
TDP-43 function contribute to cognitive decline through abnormal 
chemokine-mediated signaling between astrocytes and neurons (Licht-
Murava et al., 2023).

Finally, both in vitro and in vivo studies have demonstrated that 
the inflammatory response of microglia and astrocytes is mediated by 
PARP-1, with its activation triggering protein synthesis and 
proliferation (Gutierrez-Quintana et al., 2022). However, excessive 
PARP-1 activation can lead to detrimental consequences, including 
neuronal death, persistent microglial activation, and 
neuroinflammation. The most well-established mechanism by which 
PARP-1 contributes to neuroinflammation involves its regulation of 
pro-inflammatory transcription factors such as NF-κB, AP-1, and 
nuclear factor of activated T cells (Ullrich et al., 2001; Kauppinen and 
Swanson, 2005; Kauppinen et al., 2011; Martínez-Zamudio and Ha, 
2014; Stoica et  al., 2014; Raghunatha et  al., 2020) (Figure  1). In 
particular, several studies have reported that nuclear translocation of 
NF-κB requires PARP-1 function. NF-κB is one of the best-
characterized transcription factors, regulating the expression of 
multiple genes involved in immunity and inflammation. PARP-1 
activity is strongly linked to BBB disruption observed in 
neuroinflammatory diseases. While the precise mechanisms remain 
to be fully elucidated, several studies suggest connections between 
PARP activation, edema formation, and heightened infiltration of 
peripheral immune cells into the brain parenchyma (Chiarugi and 
Moskowitz, 2003). These observations led to the evaluation of PARP-1 
inhibitors as potential mitigators of neurotoxicity in animal models of 
CNS pathologies in which neuroinflammation plays a key role. 
Moreover, of particular significance for their potential applications in 
neuro-oncology, PARP inhibitors have demonstrated synergistic 
effects when combined with DNA-damaging agents like TMZ and RT, 
which together constitute the standard of care for GBM patients 
(Lescot et al., 2010; Wu et al., 2014; Rom et al., 2015).

2.2 RT induces ER stress-response leading 
to neurodegeneration

Although the correlation between RT and neuroinflammation is 
largely been discussed, the precise mechanisms of neurotoxicity and 

consequent neurodegeneration remain poorly understood at the 
molecular level (Friedl et al., 2022). We tried to address this issue 
investigating the interaction between RT and ER-stress response 
pathways, building upon existing evidence linking RT to ER stress and 
ER stress to neurodegeneration. This approach allowed us to formulate 
a hypothesis about the specific link between RT and neurodegeneration.

Approximately one-third of all proteins undergo post-translational 
modifications, folding, and trafficking within the endoplasmic 
reticulum (ER) (Black et al., 1981; Kim et al., 2008) and cells maintain 
a state of proteostasis through a complex network of signaling 
pathways that regulate protein synthesis, folding, trafficking, and 
degradation (Read and Schröder, 2021). In response to specific 
physiological or pathological conditions, the demand for protein 
synthesis can surge, overwhelming the protein-folding capacity of the 
ER lumen. This results in the accumulation of partially folded, 
misfolded, or unfolded proteins, a state known as ER stress (Gutierrez-
Quintana et al., 2022). Mild ER stress is typically managed by the 
unfolded protein response (UPR). However, prolonged or persistent 
ER stress triggers constitutive UPR activation, which ultimately leads 
to the activation of cell death pathways. Disruptions in these processes 
can lead to the accumulation and aggregation of misfolded proteins 
within cells, triggering pathological consequences, just as 
neurodegeneration (Ren et al., 2021).

In particular, radiation can induce ER stress either directly or 
indirectly through the production of reactive oxygen species (ROS). 
In some cases, cancer cell clones that survive radiation therapy may 
do so by activating compensatory survival signaling pathways, such as 
the UPR. In particular, under radiation-induced ER stress, specific 
signaling by PERK, ATF6, and IRE1 may be activated, and augment 
the upregulations of UPR-related genes to recover and recycle 
misfolded proteins (Chatterjee et  al., 2018). However, excessive 
activation of UPR in the surviving cell fraction resident in the 
irradiated field, was showed to cause either radioresistance in tumor 
cells (Urra et al., 2016) and induce an anomalous accumulation of 
misfolded protein in neuronal cells exposed to radiation, paving the 
way to the pathogenesis of neurodegenerative disorders (Wang et al., 
2018). Indeed, neuronal cells are particularly susceptible to protein 
misfolding compared to non-neuronal cells. In non-neuronal cells, cell 
division helps to mitigate the effects of ER stress by repeatedly diluting 
unfolded peptides. In contrast, not-dividing post-mitotic neurons rely 
solely on the UPR for survival. Therefore, if the misfolding is not 
resolved and normal cellular functions are not restored, the UPR can 
trigger selective neuronal death or neurodegeneration due to the 
accumulation of aberrant proteins. This strongly supports the crucial 
role of ER stress in the pathogenic neuronal response (Hetz and 
Saxena, 2017; Wang et al., 2018). Thus, various neurodegenerative 
diseases display specific types of misfolded proteins (Lindholm et al., 
2006; Remondelli and Renna, 2017). For example, AD, PD, 
Huntington’s disease (HD), and ALS are characterized by a clinically 
silent period, during which aberrant proteins progressively aggregate 
and accumulate in the brain, leading to impaired synaptic function 
and ultimately neurodegeneration (Ciechanover and Kwon, 2015; 
Remondelli and Renna, 2017). These pathological conditions affecting 
the peripheral and CNS are also called “protein misfolding diseases.”

In support of this, chronic ER dysfunction was showed to be highly 
associated with memory and cognitive impairment observed in different 
neurodegenerative diseases, like AD (Duran-Aniotz et al., 2014) and PD 
(Ryu et al., 2002; Colla et al., 2012). In addition, there is some evidence 
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that PERK and IRE1, central in UPR signaling pathways, are important 
in neurodegenerative diseases due to their impact on synaptic functions 
and their capability to attenuate the effects of chronic ER stress. It has 
been shown that selectively lowering PERK expression in AD mice 
models prevents the aberrant phosphorylation of eIF2α and 
consequently improves synaptic plasticity and spatial memory 
consolidation (Costa-Mattioli et al., 2009) (Figure 2).

In addition, lowering of PERK expression in AD mice models 
prevent the aberrant phosphorylation of eIF2α and consequently 
improved synaptic plasticity and spatial memory consolidation 
(Costa-Mattioli et al., 2009). Moreover, suppression of eIF2α kinases 
alleviates AD-related plasticity and memory deficits (Ciechanover and 
Kwon, 2015). These findings, taken together, further support the 
hypothesis that UPR pathways are implicated in the disruption of 
cognitive and memory functionality and strategies aimed at restoring 
the proper proteostasis of neuronal cells could have important 

therapeutic effects (Hetz and Saxena, 2017). In fact, targeting pathways 
associated with abnormal ER stress with pharmacological treatment 
has been shown to rescue neuronal loss in PD in vitro models (Chung 
et al., 2013). There are also evidences that cells with a chronic and 
severe ER stress, for instance induced by RT, interfere with 
immunosuppressive environment of the CNS, supporting a link 
between neuronal cells under ER stress and glial cells leading to 
inflammation of brain microenvironment (Drake, 2015; Logsdon 
et al., 2016). As a case in point, ER-stress-induced astrocyte activation 
can induce a pro-inflammatory phenotype in microglial cells (Meares 
et  al., 2014), which through their innate receptors, can recognize 
extracellular protein aggregates or oligomers as danger signals. This 
interaction triggers a neuroinflammatory response that initiates debris 
clearance via microglia-mediated phagocytosis (Sprenkle et al., 2017).

Notably, during the UPR the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB) and mitogen-activated protein 

FIGURE 1

Radiotherapy (RT) induces significant changes in the tumor microenvironment. RT mediates the transition of microglial (MG) cells from a resting state 
to the activated pro-inflammatory M1-phenotype that induces prolonged activation of astrocytes (AS) leading to astrogliosis (Hwang et al., 2006; 
Wilson et al., 2009; Liddelow et al., 2017; Feng et al., 2018). This, in turn, promotes the phenotype switching of microglia in a vicious cycle. These 
phenomena determine neurotoxic factors release, the alteration of blood–brain barrier (BBB) integrity (Alghamri et al., 2021) and the upregulation of 
Poly ADP-ribose polymerase 1 (PARP-1), with consequent increase of nuclear factor kappa beta subunit (NF-kβ) and reduced neurogenesis (Ullrich 
et al., 2001; Chiarugi and Moskowitz, 2003; Kauppinen and Swanson, 2005; Kauppinen et al., 2011; Martínez-Zamudio and Ha, 2014; Stoica et al., 2014; 
Raghunatha et al., 2020; Gutierrez-Quintana et al., 2022). The consequent inflamed condition induces DNA damage, neuronal senescence, and 
ultimately neuronal death. These alterations further recall immune cells into the tumor microenvironment (TME) determining a chronic 
neuroinflammation status. Created with BioRender.com.
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kinase 1 (MAPK-1) were shown to play a pivotal role in mediating cell 
survival (Tang et al., 2001; van den Berg et al., 2001). Furthermore, in 
astrocytes it has been shown that UPR affects STAT pathways through 
the interaction of PERK and JACK1, further supporting the 
association between UPR and neuroinflammation (Meares et  al., 
2014), paving the way to our hypothesis that RT could lead to 
neurodegeneration through the exacerbation of ER-stress 
response pathways.

2.3 RT effects on proteasomal degradation 
system and neurocognitive disorders

To counteract against misfolded proteins, the ER system has in 
place quality control mechanisms, including the unfolded protein 
response (UPR), as well as ER-associated degradation (ERAD) (Taylor 
et al., 2002; Hartl, 2017), which interacts in a coordinated manner 
with the ubiquitin-proteasome system (UPS) (Araki and Nagata, 
2011). This multicatalytic complex is also the main target of many 
cancer therapies, including radiation. It was reported that even subtle 
changes in cellular redox balance caused by irradiation (and other 
stress stimuli) profoundly impact proteasome function. This suggests 

that proteasomes act as sophisticated and highly sensitive stress 
sensors, rapidly and simultaneously orchestrating diverse cellular 
processes in response to radiation exposure (Pervan et al., 2005). In 
particular, ionizing radiation exposure has been shown to impair 
normal proteasome activity. This reduction in proteasome activity 
slows the degradation of proteins, leading to their further 
accumulation and exacerbating endoplasmic reticulum (ER) stress 
conditions. Studies utilizing proteasome inhibitors across various 
organisms have revealed its impact on memory processes, including 
consolidation, recollection, and extinction. In fact, within the nervous 
system, the proteasome plays a crucial role in protein degradation and 
maintaining cellular homeostasis in neurons, glial cells, thereby 
contributing to overall brain health (Davidson and Pickering, 2023). 
Moreover, because the proteasome degrades most short-lived cellular 
proteins, primarily the proteasome subtypes (26S), changes in its 
activity might significantly, and selectively, alter the life span of many 
signaling proteins and in particular, in brain cells, compromise several 
neuronal functions, such as gene transcription and neurotransmitter 
release. Emerging research has shed light on the neuron-specific 
functions of the proteasome, particularly its crucial role in facilitating 
long-term memory formation (Giulivi et al., 1994; Dantuma and 
Lindsten, 2010; Brodsky and Skach, 2011; Jung and Grune, 2013) and 

FIGURE 2

RT induces ER stress in TME and consequent brain fog. RT-induced endoplasmic reticulum (ER) stress-specific signaling that leads to a constitutive 
unfolded protein response (UPR) activation This increases the expression of eukaryotic initiation factor 2α (eIF2α) kinase (PERK), activating transcription 
factor 6 (ATF6) and type I transmembrane protein inositol requiring 1 α (IRE1α). Hyperactivation of UPR is a survival strategy from RT for cancer cells 
and results in misfolded protein accumulation in neuronal cells Chatterjee et al., 2018; Wang et al., 2018; Ren et al., 2021). The neurodegeneration 
induced by this accumulation may explain the cognitive impairment observed in patients treated with RT. PERK increasing determines on one hand the 
phosphorylation of eIF2α, decreasing synaptic plasticity and impairing spatial memory consolidation, and on the other hand, it causes 
neuroinflammation through Janus kinase 1 (JAK1) and the increasing of signal transducer and activator of transcription (STAT), with the consequent 
establishment of the so-called brain fog (Tang et al., 2001; van den Berg et al., 2001; Bellezza et al., 2014; Meares et al., 2014; Drake, 2015; Logsdon 
et al., 2016; Sprenkle et al., 2017). Created with BioRender.com.
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potentiation (Pacifici et al., 1993), dendritic spine growth (Upadhya 
et al., 2004) and neurodevelopment (Dong et al., 2008; Hamilton et al., 
2012), as well as synaptic plasticity (Hamilton and Zito, 2013). The 
proteasome also plays a regulatory role in clock proteins within the 
nervous system, influencing circadian rhythm (Ceriani et al., 1999).

Furthermore, the proteasome is linked to neuroinflammation and 
to some age-related neurodegenerative diseases (Pintado et al., 2017). 
In particular, during neuroinflammatory conditions the brain 
expresses cyclooxygenases-1 and 2 (COX-1 and COX-2), which 
release prostaglandins that induce proteasome inhibition that, in turn, 
hampers neuroinflammation. In particular, COX-2 is upregulated in 
both neurons and glial cells during neuronal injury (Consilvio et al., 
2004; Ishii et al., 2005; Bi et al., 2012). Additionally, in a study of 
Pintado and colleagues, it was shown that proteasome inhibition in a 
rat model caused a worsening of neuroinflammation (Pintado et al., 
2012). Neurological disorders have been also reported to be associated 
with the accumulation of ubiquitinated proteins in neuronal inclusion 
and also with signs of inflammation that may contribute to 
neurodegenerative processes (Lev et al., 2006; Ortega et al., 2007). 
Taken together, these considerations lead to the hypothesis that 
changes induced by radiotherapy in proteasome system trigger the 
neuroinflammation which in turn induce cognitive impairment and 
neurodegeneration (Figure 3).

Declines in the activity of the constitutive proteasome, observed 
with aging and neurodegenerative diseases, often coincide with an 
upregulation of the alternative proteasome form, known as the 
immunoproteasome. The immunoproteasome is a specialized variant 
that differs from the standard proteasome in three subunits, induced 
by inflammation and constitutively expressed in hematopoietic cells. 
Under non-inflammatory conditions, the immunoproteasome is only 
a small portion of the total cellular proteasome pool, as 
immunoproteasome expression is low in neurons and glia in absence 
of cytokine stimulation. In the CNS the immunoproteasome appears 
to be expressed both in immune and non-immune cells, including in 
astrocytes, bone marrow-derived immune cells, oligodendrocytes, and 
Purkinje cells (Speese et al., 2003; Eide et al., 2005; Hegde, 2010). 
Immunoproteasome expression is typically low in these regions but 
undergoes a significant increase in response to injury (Ferrington 
et  al., 2008). For instance, after interferon-γ release and during 
neuroinflammation, cells are stimulated to produce ROS such as the 
H2O2 and the superoxide hydroxyl radicals, thus damaging the cellular 
proteome (Pearl-Yafe et  al., 2003). Moreover, when neuronal 
accumulation of ubiquitinated proteins occurs, there is a switch from 
proteasome to immunoproteasome that increases the peptide reserve 
for antigen presentation. Indeed, a Pintado’s in vivo study, showed that 
after the injection of lipopolisaccaride in rats with a higher proportion 
of immunoproteasome, proteasome inhibition induced the formation 
of neuronal aggresome-like structures. However, these modifications 
were not observed when proteasome inhibition was induced 
separately, suggesting that neuroinflammation is a crucial risk factor 
for intracellular protein accumulation and neurodegeneration 
(Pintado et al., 2012). Furthermore, the immunoproteasome plays a 
crucial role in glial cells, implying an interplay between the 
immunoproteasome and glia-mediated inflammatory responses, 
ultimately contributing to a pro-inflammatory environment (Orre 
et al., 2013; Jansen et al., 2014). Radiotherapy (RT) is known to trigger 
neuroinflammation, which in turn is associated with activation of the 
immunoproteasome. This activation has been linked to the formation 

of aggresome-like structures in neurons. Based on this chain of events, 
it’s conceivable that RT contributes to neurodegeneration and 
cognitive impairment in GBM patients by triggering of inflammatory 
response pathways and accumulation of misfolded proteins potentially 
damaging neurons in healthy tissue surrounding tumor.

2.4 RT’s CNS damage: a multifaceted attack

To recapitulate, RT triggers interconnected pathways, with 
neuroinflammation and glial activation as central players, ultimately 
leading to neuronal death, impaired communication, and cognitive 
decline known as brain fog. Understanding these pathways holds 
promise for developing neuroprotective strategies. The key pathways 
consist firstly in neuroinflammation: RT triggers inflammatory 
mediators (eATP, interferons, chemokines) & oxidative stress (IL-6, 
IL-10, TGF-β), leading to BBB disruption and further inflammation. 
This fuels neuronal death, memory issues, and glial activation 
(microgliosis & astrogliosis); secondly glial activation: microglial 
hyperactivity and astrogliosis release neurotoxic factors, damaging 
neurons and impairing communication; thirdly neurogenesis 
disruption: RT hinders new neuron formation in the hippocampus, 
impacting learning and adaptation; fourth DNA damage and 
senescence: DNA damage in astrocytes triggers a response leading to 
tissue damage and cognitive decline and fifth ER-stress: RT-induced 
the accumulation of misfolded proteins which activates UPR 
pathways, causing both radioresistance and neurodegeneration. 
Additionally, UPR interacts with JAK1, affecting STAT pathways and 
promoting neuroinflammation, that, in turn, stokes the vicious cycle 
that ends with brain fog (Table 1).

3 New horizons for clearing brain fog

Due to their highly invasive nature and extensive infiltration of 
brain tissue, GBM treatment often involves delivering high doses of 
RT (typically 60 Gy) to large brain volumes in an attempt to delay 
tumor recurrence and extend patient survival. However, this 
unavoidably exposes normal, functioning brain tissue to radiation, 
that causes devastating effects on brain function. Radiation-induced 
cognitive impairment manifests with acute (days to weeks after RT), 
early delayed (1–6 months after RT and often reversible), and late 
delayed effects (6 months or more after RT and usually irreversible and 
progressive). Late delayed effects include decreases in memory and 
executive functioning, among other deficits, further worsening the 
quality of life of GBM patients. The mechanisms underlying 
RT-induced neurotoxicity are still being studied and are known to 
be complex and multifaceted. This complexity makes it challenging to 
develop effective preventive measures to mitigate the adverse effects 
of RT on the brain. In the present review, we have focused on the 
molecular mechanisms that have been found to play a central role 
both in the etiology and pathogenesis of cognitive impairment due to 
RT and to important degenerative diseases, such as AD and PD.

About this, the sigma receptors (SRs), a class of ER transmembrane 
proteins, could represent an appealing target for the prevention of 
neurocognitive disorders. Sigma receptors (SRs) exist in two subtypes: 
sigma-1 receptor (S1R) and sigma-2 receptor (S2R). S1R resides on 
the mitochondria-associated endoplasmic reticulum (ER) membrane 
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(MAM), while S2R is found in the ER-resident membrane. SRs exert 
chaperoning functions and modulate physio-pathological processes 
in the CNS. SRs are found abundantly in various brain cells, including 
neurons, astrocytes, microglia, and oligodendrocytes (Gundlach et al., 
1986; Alonso et al., 2000; Hayashi and Su, 2004; Gekker et al., 2006; 
Zhao et al., 2014).

A multitude of studies have demonstrated that S1R plays a crucial 
role in promoting neuronal survival and restoring neuronal functions 
in neurodegenerative diseases. This neuroprotective effect is attributed 
to S1R’s ability to modulate various cellular processes (including 
calcium homeostasis and glutamate activity), reducing the production 
of ROS, regulating ER and mitochondrial functions, and influencing 
reactive gliosis and neuronal plasticity (Nguyen et al., 2015; Ruscher 
and Wieloch, 2015). Emerging research has demonstrated the 
effectiveness of S1R-targeting drugs in alleviating symptoms 
associated with a wide range of neurodegenerative disorders, each 
with distinct underlying mechanisms. These disorders include 
learning and memory disorders, cognitive impairments, and 
neurodegenerative diseases such as AD, PD, ALS, MS, and HD 
(Maurice and Goguadze, 2017).

In addition to S1R, S2R has also been shown to play an important 
role in neurological diseases (Huang et al., 2014). S2R couples and 
interacts with surrounding proteins to actuate a wide variety of 

cellular processes being closely associated and interacting with key 
proteins including progesterone receptor membrane component 1 
(PGRMC1). S2R and PGRMC1 are linked to learning and memory 
through mechanism of action studies and efficacy studies in in vitro 
and in vivo preclinical models. PGRMC1 is also a well-identified 
hormone receptor with multiple functions in AD (Xu et al., 2022), and 
α-synucleinopathies (Kline et al., 2017). Indeed, S2R modulators have 
been shown to ameliorate amyloid-β oligomer and α-synuclein 
oligomer-mediated deficits in neuronal trafficking (Izzo et al., 2014).

Based on the many pathways affected in neurodegenerative 
diseases, another possible good candidate could be the hyperbaric 
oxygen treatment (HBOT). This therapy has been used for over 
50 years to treat various conditions, including decompression sickness 
and wound healing (Mensah-Kane and Sumien, 2023). Recent studies 
have shown promising results in using HBOT to treat conditions 
associated with neurodegeneration and functional impairments. In 
fact, HBOT has been shown to reduce neuroinflammation in severe 
brain disorders. It also has the ability to downregulate 
pro-inflammatory cytokines (IL-1β, IL-12, TNFα, and IFNγ) while 
upregulating an anti-inflammatory cytokine (IL-10), making it 
potentially cytoprotective (Kudchodkar et  al., 2008). Moreover, 
combining hyperbaric oxygen (HBO) with RT was found to suppress 
inflammasome activation in an in vitro human microglia model 

FIGURE 3

RT lowers UPR rate inducing brain fog. When protein misfolding occurs during physiological conditions proteins are ubiquitinated (Ub-proteins), activating 
the proteasome (PT) that in response induces protein degradation (Tang et al., 2001; van den Berg et al., 2001; Bellezza et al., 2014; Meares et al., 2014; 
Drake, 2015; Logsdon et al., 2016; Sprenkle et al., 2017). In the case of RT, this rate is lowered leading to the accumulation of Ub-proteins that shift the 
equilibrium to an increased impact of immunoproteasome, which leads to glia-mediated neuroinflammation. The latter, together with the accumulation 
of misfolded proteins and induced ER stress causes the compromise of neuronal function and the consequent brain fog establishment (Pearl-Yafe et al., 
2003; Ferrington et al., 2008; Pintado et al., 2012; Orre et al., 2013; Jansen et al., 2014). Created with BioRender.com.
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(Arienti et al., 2021). This effect was attributed to a reduction in the 
expression levels of pro-inflammatory cytokines IL-1β and IL-6. 
Similar results were obtained by Qian et al. who reported that, in 
animal models, HBO mitigates the inflammatory response associated 
with traumatic brain injury by modulating microglial inflammasome 
signaling (Qian et al., 2017). Recently, basic and clinical research has 
shown the potential of HBOT to treat neurodegenerative diseases 
(Huang and Obenaus, 2011; Huang et al., 2016; Shapira et al., 2018). 
The effectiveness of HBOT in improving age-related cognitive decline 
was evaluated in a study involving healthy elderly individuals (Jacobs 
et  al., 1969). Male participants with an average age of 68 years, 
displaying clinical signs of intellectual deterioration, underwent 
cognitive assessments following 30 intermittent sessions of HBOT, 
which involved breathing pure oxygen at 2.5 times atmospheric 
pressure. HBOT enhanced cognitive function in these healthy older 
adults through mechanisms involving regional alterations in cerebral 
blood flow, as assessed by perfusion magnetic resonance imaging 
(Amir et al., 2020). Also, elderly patients with significant memory loss 
demonstrated enhanced cognition and increased cerebral blood flow 
following exposure to HBOT (Shapira et al., 2018). In the in vivo 
models of aging, HBOT effectively counteracted cognitive decline and 
hippocampal-dependent pathologies by enhancing cholinergic 
signaling pathways, protecting against apoptosis, and mitigating 
oxidative stress and inflammatory responses (Chen et al., 2016, 2017; 
Shwe et al., 2021).

Another common mental disease associated with brain tumors 
and RT is depression. The impact of stress on brain morphology has 

become increasingly evident through extensive research spanning 
several decades and depression is now clearly associated to chronic 
uncontrollable stress and the related neuroinflammation derived (Eyre 
and Baune, 2012; Iwata et al., 2013; Franco and Fernández-Suárez, 
2015). Indeed, depressed patients usually exhibit increased 
inflammatory cytokines such as IL-1β, IL-6 and IFNγ, both in different 
brain regions and the periphery (Maes et al., 2009; Wager-Smith and 
Markou, 2011; Young et al., 2014). It is also known that enhanced 
levels of IL1β in the hippocampus lead to inflammation, that may 
contribute to depression (Kovacs et al., 2016). In this context, the role 
of ATP-gated transmembrane cation channel P2X7 receptor in the 
neuroinflammation is highlighted, due to its involvement in the IL-1β 
maturation (Potucek et al., 2006; Mingam et al., 2008; Piccini et al., 
2008). These receptors are mainly located on microglia and activated 
in response to stress signals like increased level of ATP (Ferrari et al., 
2006). Studies on peripheral immune cells demonstrated that 
activation of P2X7R induced oligomerization of NLR family pyrin 
domain containing 3 (NLRP3) with other proteins that in complex 
form the so-called inflammasome (Yue et al., 2017). The latter, as 
already discussed, is associated to neuroinflammation, leading to the 
neurodegeneration that can comprehend, in the light of the last 
discoveries, depression. Taken together, these findings may suggest 
NLRP3 inflammasome as a new therapeutic target for cognitive 
impairment related to radiation therapy (Alcocer-Gómez and 
Cordero, 2014).

Non-invasive brain stimulation (NIBS) may represent a new 
age of brain fog treatment. Neuromodulatory techniques stand as 

TABLE 1 RT’s CNS damage: a multifaceted attack.

RT-induced pathways leading to CNS damage References

Release of inflammatory mediators (eATP, interferons, chemokines) Greene-Schloesser et al. (2012), Herrera et al. (2017)

Increase of oxidative stress through the release of immunosuppressive molecules (IL-6, IL-10, 

TGF-β) with loss of BBB integrity

Alghamri et al. (2021)

Induction of reactive state of microglia that induces astrogliosis, release of neurotoxic factors, 

neuronal cell death, memory dysfunctions

Hwang et al. (2006), Wilson et al. (2009), Liddelow et al. (2017), Feng et al. 

(2018)

Perturbation in neurogenic niche leading to deficits in neural precursors, dysfunction in 

hippocampal neurogenesis, synaptic structure

Tada et al. (1999), Monje et al. (2003), Rola et al. (2004), Stevens et al. (2007)

DNA damage accumulation leading to a senescence-associated secretory phenotype in 

astrocytes with tissue damage and cognitive decline

Monje et al. (2002), Eriksson and Stigbrand (2010), Turnquist et al. (2019), 

Tripathi et al. (2021)

higher expression level of NF-kB and PARP 1 and consequent neuronal death, and 

constitutive microglia activation

Stoica et al. (2014), Kauppinen and Swanson (2005), Kauppinen et al. (2011), 

Raghunatha et al. (2020), Martínez-Zamudio and Ha (2014), Ullrich et al. 

(2001), Gutierrez-Quintana et al. (2022), Chiarugi and Moskowitz (2003)

Induction of ER-stress through the production of ROS, upregulation of UPR pathways 

(PERK, ATF6, IRE1) causing radioresistance through MAPK-1 and NF-kB and accumulation 

of misfolded proteins in neuronal cells

Tang et al. (2001), van den Berg et al. (2001), Drake (2015), Logsdon et al. 

(2016), Pintado et al. (2017), Chatterjee et al. (2018), Wang et al. (2018), Ren 

et al. (2021)

interaction between PERK and JACK1 affecting STAT pathways leading to 

neuroinflammation

Bellezza et al. (2014),  Meares et al. (2014), Sprenkle et al. (2017)

Changes in cellular redox balance which impact on proteasome that act as a stress signal 

causing degradation of proteins and exacerbating ER-stress

Pacifici et al. (1993), Giulivi et al. (1994), Dantuma and Lindsten (2010), 

Davidson and Pickering (2023)

Induction of COX-1 and COX-2 upregulation with the release of prostaglandins that induce 

proteasome inhibition that hampers neuroinflammation contributing to neurodegeneration

Consilvio et al. (2004), Ishii et al. (2005), Bi et al. (2012)

Induction of neuroinflammation with release of IFN-γ, production of ROS that damage 

constitutive proteasome with the consequent upregulation of the immunoproteasome, which 

in turn induces the formation of neuronal aggresome-like structures and neurodegeneration

Pearl-Yafe et al. (2003), Ferrington et al. (2008), Pintado et al. (2012), Orre 

et al. (2013), Jansen et al. (2014)
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FIGURE 4

New therapeutic strategies to clear brain fog. Sigma receptors are ER transmembrane proteins represented by Sigma-1 receptor (S1R) and Sigma-2 
receptor (S2R), that exert chaperoning functions and modulate physio-pathological processes like neuronal plasticity, glutamate activity as well as 
regulation glial cells reactivity. S1R receptor agonists preserve neurological functions while S2R antagonists ameliorate neuronal trafficking deficits 
derived by protein misfolding diseases. Hyperbaric oxygen treatment is involved in many neurodegenerative diseases. It reduces neuroinflammation 
through the inhibition of pro-inflammatory cytokines and mediate cytoprotection via the upregulation of anti-inflammatory cytokines. It also prevents 
cognitive impairments and hippocampal pathologies through the modulation of cholinergic pathways. ATP-gated transmembrane purinergic P2X7 
receptor induces the formation of inflammasome by leading to oligomerization of NLRP3, posing the way to think at these receptors as a new 
therapeutic strategy to target cognitive impairment related to radiotherapy. Non-invasive brain stimulation techniques may add to the previously 
described agents and represent a new horizon on the brain fog treatment. They induce neuronal plasticity changes, reduce phagocytic microglial 
activity and neuroinflammation, and decrease oxidative stress while increasing cortical neurons stability. These could be innovative therapeutic target 
to clear brain fog. Created with BioRender.com.

robust alternatives to pharmacological interventions for 
neurological and neuropsychiatric disorders, primarily due to their 
numerous advantages, including non-invasiveness, enhanced 
safety, and minimal to negligible side effects (Peruzzotti-Jametti 
et  al., 2013a). Though NIBS tools developed on magnetic and 
electric fields, and more recently on ultrasound, resulting in one of 
the fastest-growing fields in medicine, the concept of influencing 
the activity of the human brain by using external therapeutical 
strategies dates back to the 1st century AD (Cambiaghi and 
Sconocchia, 2018). The main non-invasive brain neuromodulatory 
approaches are repetitive transcranial magnetic stimulation 
(rTMS), transcranial direct current stimulation (tDCS), 
transcranial alternating current stimulation (tACS), random noise 
stimulation (RNS), transcranial ultrasound stimulation (TUS). 
Although the underlying mechanisms of action is slightly different 
among them, NIBS tools are known to induce long-lasting 
neuronal plasticity changes, associated to behavioral modifications 
in both humans (Zhao and Woodman, 2021; George et al., 2022) 
and animal models (Cambiaghi et al., 2020a; Cherchi et al., 2022). 
Interestingly, in addition to neuronal effects, both magnetic and 
electric stimulation after effects have been recently associated with 
different glial cell activity modulation. Of note, in ischemic mouse 

models rTMS promotes microglia anti-inflammatory cytokines 
production both in-vitro and in-vivo (Luo et al., 2022). In rodent 
models of brain ischemia and vascular dementia, tDCS lead to an 
attenuation of the inflammatory response in different brain 
regions. In particular, in the MCAO mouse model of brain 
ischemia, cathodal tDCS is able to preserve cortical neurons if 
applied in the acute phase (Peruzzotti-Jametti et al., 2013b), while 
it exerts positive effects on functional motor outcomes when 
delivered hours after the brain damage and inflammatory response, 
combined with a less phagocytic anti-inflammatory microglia 
activity (Cherchi et al., 2022). In the rat vascular dementia model, 
anodal tDCS reduces the levels of malondialdehyd and ROS, but 
enhances superoxide and glutathione, thus reducing the oxidative 
stress (Guo et al., 2020). Finally, mice exposed to a 14-days 5 Hz 
rTMS exhibit increased cell proliferation in the hippocampal 
dentate gyrus, in parallel with improved cognitive behavior 
(Ramírez-Rodríguez et al., 2022). In line with this, 5 days of high-
frequency (15 Hz) rTMS showed an improved emotional behavior 
paralleled by enhanced prefrontal cortex morphological plasticity, 
both in terms of dendritic spine density and dendritic complexity 
of layers II/III and V (Cambiaghi et al., 2022). On the contrary, 
1 Hz rTMS results in augmented mature granule cells and newly 
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generated neurons structural complexity, in association to 
antidepressant effects, though not affecting neurogenesis 
(Cambiaghi et al., 2020b). Especially, these latter observations on 
NIBS effects on glial cells, inflammation and neurogenesis well 
suits a strong interest for the treatment of brain fog associated to 
RT (Figure 4).

4 Conclusion

Radiotherapy (RT) is a common treatment for glioblastoma 
multiforme (GBM), but it can have adverse neurocognitive effects. The 
exact impact of RT on the quality of life in long-term GBM survivors 
is not fully understood. Predicting the clinical impact of RT is 
challenging because both the immediate and long-term effects of RT 
on quality of patient’s life depend on various factors. These factors 
include radiobiological factors (RT dose, volume, timing, and 
duration), physiological factors (pre-existing brain function), and 
patient-related factors (age, sex, and comorbidities). While RT 
remains the most effective non-surgical treatment option for GBM, its 
effectiveness is limited by the inherent and adaptive radioresistance of 
these tumors, which contributes to their inevitable recurrence.

Radiation treatment planning should consider the brain’s remarkable 
ability to adapt and recover by creating new neural connections, a crucial 
aspect of patient rehabilitation, as well as the sensitivity of the targeted 
brain regions. Even if the most severe effects occur months to years after 
radiation therapy, it is conceivable that decreasing the early impairment 
of brain parenchyma could likely prevent the propagation of the late-
term effects of RT (Constanzo et al., 2020).

While our grasp of the underlying mechanisms of radiation-
induced cognitive dysfunction remains incomplete, compelling 
evidence points to neuroinflammation as a significant contributor. 
Recent research has unveiled neuroinflammation as a pervasive feature 
in numerous CNS disorders, encompassing brain trauma, stroke, and 
various neurodegenerative processes. Bridging the gap between these 
preclinical findings and clinical practice holds the potential to enhance 
both survival rates and quality of life for brain tumor patients 
undergoing RT. Incorporating neuroinflammatory markers, cognitive 
function assessments, and quality of life measures into the design of 
future clinical trials based on RT treatment is crucial. Furthermore, 
literature data suggest a plausible link also between radiation 
neurotoxicity and UPR activation. However, targeting the UPR is still 
challenging, due to its role in physiological pathways that involve 
different organs, so it can have serious adverse effects if administered 

for a long time. Indeed, particular attention should be  paid as the 
consequences on basal motor and cognitive functions could be severe 
and this aspect has to be taken into account (Hetz and Saxena, 2017).
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