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Recently, large-scale scRNA-seq datasets have been generated to understand
the complex signaling mechanisms within the microenvironment of Alzheimer’s
Disease (AD), which are critical for identifying novel therapeutic targets and
precision medicine. However, the background signaling networks are highly
complex and interactive. It remains challenging to infer the core intra- and inter-
multi-cell signaling communication networks using scRNA-seq data. In this
study, we introduced a novel graph transformer model, PathFinder, to infer multi-
cell intra- and inter-cellular signaling pathways and communications among
multi-cell types. Compared with existing models, the novel and unique design
of PathFinder is based on the divide-and-conquer strategy. This model divides
complex signaling networks into signaling paths, which are then scored and
ranked using a novel graph transformer architecture to infer intra- and inter-cell
signaling communications. We evaluated the performance of PathFinder using
two scRNA-seq data cohorts. The first cohort is an APOE4 genotype-specific
AD, and the second is a human cirrhosis cohort. The evaluation confirms the
promising potential of using PathFinder as a general signaling network inference
model.

KEYWORDS

Alzheimer's disease, signaling pathways, cell cell signaling communications,
microenvironment, graph neural network

Introduction

Single-cell RNA sequencing data (scRNA-seq) technologies have become popular in
recent years because of their ability to profile gene expression and analyze cell composition in
the single cell resolution (Kolodziejezyk et al., 2015; Tanay and Regev, 2017; Hwang et al.,
2018). On the one hand, by profiling and annotating scRNA-seq data, researchers can analyze
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differentially expressed genes in each cell population and
sub-population to understand which gene is altered in certain
conditions. On the other hand, scRNA-seq data also show great
potential in discovering intra- and inter-cellular communication.
However, there are only limited methods for discovering active
signaling pathways or intra-cellular communication using scRNA-seq
data. The existing models are mainly based on correlation, regression,
and Bayesian analysis (Saint-Antoine and Singh, 2019), and the direct
interaction signaling cascades were usually ignored in those methods
because only a small set of genes exhibit gene expression changes
between different conditions (Feng et al, 2020). For example,
CellPhoneDB (Efremova et al.,, 2020) can model the interactions
between ligands from one cell type and receptors from another cell
type. However, it cannot model the downstream signaling.
CCCExplorer (Choi et al., 2015) can discover both the ligand-receptor
interaction and downstream the signaling network by modeling
differentially expressed genes. NicheNet (Browaeys et al., 2020) takes
a further step by integrating various interaction databases and training
a predictive model to assess the interaction potential between the
ligand and downstream targets. However, it only applies a statistical
model, which cannot generate a clear communication path. CytoTalk
(Huetal, 2021) applies the Steiner tree to discover the de-novo signal
transduction network from gene co-expression. However, the
discovered signaling is based on co-expression, and the physical
interaction cascade is still unknown.

In the past few years, graph neural networks (GNNs) have become
famous due to their great performance in node and graph
representation as wells as in classification tasks. For instance,
GraphSAGE (Hamilton et al, 2017) proposed the first general
framework for learning the node representation inductively. GAT
(Velickovi¢ et al., 2017) incorporates the attention mechanism into
GNNs to actively learn how to aggregate all the information in graphs.
The DGCNN (Zhang et al., 2018) model proposes sortPooling to
efficiently sort nodes and learn graph features for graph classification.
GIN (Xu et al, 2018) connects message-passing GNNs with the
1-dimensional Wifelier-Lehman test (1-WL test) on learning graph
structure and proposes a new GNN algorithm that is equally powerful
as the 1-WL test. More recently, researchers have tried to generalize
the transformer architecture (Vaswani et al,, 2017) into graph learning
fields as it already shows superior power in learning both text and
image data. Many studies (Cai and Lam, 2020; Hu et al., 2020; Rong
etal., 2020; Zhang et al., 2020; Yang et al., 2021; Ying et al., 2021) have
shown great potential in applying the transformer model to the graph
data. They either nest GNN architectures in the transformer layer,
design specific attention mechanisms, or design novel encoding
mechanisms to incorporate the graph structure into the transformer
model. However, using GNNs to discover the intra- and inter-cell
communication network remains unknown as these networks are
typically black-box models and it is hard to interpret their
prediction results.

In this study, we present a novel framework called PathFinder to
discover both intra- and inter-cell communication networks with a
novel graph transformer-based neural network. Given the scRNA-seq
expression data and the condition (control/test), PathFinder first
samples a series of predefined paths through the prior gene-gene
interaction database. Then, the PathFinder model takes the
scRNA-seq expression data and the predefined path list as inputs to
predict the condition of each cell. Through the training, the path
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important score will be learned to indicate the relative importance of
each path in separating between the control and test conditions. To
learn different types of communication, such as upregulated or
downregulated networks, a novel regularization term is introduced.
PathFinder will first generate a prior score for each path based on the
expression level of genes in the path. Then, during the training, this
regularization term will regularize the learned path scores to be close
to the prior scores. After training, the path score will be sorted and
the intra-communication network for each cell type will be generated
by extracting the top K important paths. To generate the inter-cell
communication network between the ligand cell and the receptor
cell, the intra-cell communication network for the receptor cell will
be collected, and the ligand list will be extracted from the differential
expressed gene list in the ligand cell. Finally, the ligands are linked to
the intra-cell network based on the ligand-receptor interaction
database. The overall procedure of generating both intra- and inter-
cell communication networks using PathFinder is shown in Figure 1.
To thhe best of our knowledge, this is the first method to apply deep
learning and graph transformers to discover signaling networks in
scRNA-seq data. The advantages of PathFinder are listed below: (1)
The model is designed based on a graph transformer, which has the
great ability to learn both local and long-range signaling patterns
from gene expression and large-scale networks. (2) It is capable of
identifying and providing the full signaling network between cells via
cellular ligands and receptors. (3) The proposed PathFinder is a
general framework that allows users to input their own defined
signaling paths or gene-gene interaction network database to
identify important signaling based on their interests. Furthermore,
(4) it can separate and generate different types of communication
(Differential
which allows more precise downstream analysis. We applied the

networks expressed/upregulated/downregulated),
PathFinder model on two scRNA-seq data cohorts: one is a mice
cohort of AD and another is a human cohort of cirrhosis. The
PathFinder not only achieves great prediction results but also
generates intra- and inter-cell communication networks that align
well with the latest knowledge on the mechanism of both
two diseases.

Results

scRNA-seq data of Alzheimer's disease
cohort on mice

To evaluate the proposed PathFinder method, scRNA-seq data on
Alzheimer’s disease are collected from the Gene Expression Omnibus
(GEO) database with accession number GSE164507 (Wang et al,
2021). The raw data are processed using the Seurat R package (Hao
etal, 2021), and the process procedure is conducted by following the
previous study’s procedure (Wang et al., 2021). Specifically, we select
cell samples from two different conditions, denoted as TAFE4_tam
and TAFE4_oil. TAFE4_tam refers to mice with the APOE4 gene
knocked out from astrocyte cells, and TAFE4_oil refers to mice with
the existence of APOE4. It is well known that APOE4 is one of the
most significant genetic risk factors for late-onset AD. By analyzing
the difference between the signaling pattern with and without APOE4,
we can gain a deeper understanding of the effects of the APOE4 gene
on brain cells.
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FIGURE 1

(Upper) Overview of the PathFinder method to discover both intra- and inter-cell communication networks. The input scRNA expression data with
both samples from the control condition and the test condition are used to construct the gene—gene interaction network based on our large database.
Then, the path sampler is used to generate all pre-defined path from the interaction network. Then, the PathFinder model is trained to separate the
cells from two different conditions. After the training, the learned path score can indicate the importance of each path. The top k paths are selected to
generate the intra-cell communication network. Finally, the ligand—-receptor database is used to link all picked ligands (like differential expressed
ligands) from ligand cells to the receptors in the intra-cell communication network of receptor cells to construct the inter-cell communication
network. (Lower) Model architecture of PathFinder. The PathFinder model consists of three components: node encoder, path encoder, and graph
encoder. The node encoder is a stack of L the transformer layer with special encoding to encode local graph structure information of each node. The
path encoder take the output from each layer of node encoder to learn long-range path embedding for each pre-defined path. Finally, the graph
encoder aggregate information from each path to generate graph embedding and make final prediction. In the graph encoder, the trainable path
weight will be learned to assign each path an importance score, which can be used to generate intra-cell communication networks.

Concretely, the excitatory neuron (Ex), microglia (Mic), and
astrocyte (Ast) of the TAFE4 group are collected from the dataset with
a total number of samples of 13,604, 3,874, and 734, respectively. The
detailed data distribution are provided in Supplementary Table S1.
Then, the PathFinder method is applied to predict the condition of each
cell (oil or tam) separately for each cell type and generate both intra- and
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inter-cell communication networks between these three cell types. The
pre-defined path list includes all shortest distance paths starting from
receptors and all possible paths from the receptor to the target gene. For
the shortest distance paths, we only select paths with a minimum length
of 3 (except all receptor direct regularizations, which have a length of 2)
and a maximum length of 10. We compute the prior score of each path
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based on the average differential expression level of all genes in the path
(more details in the Method section) for the path score regularization.
To ensure the robustness of the analysis, we only selected the top 8,192
variable genes from the original dataset as input to the model, which
resulted in a final count of 1,210 pre-selected paths. The detailed path
selection procedure can be found in the Method section.

scRNA-seq data of cirrhosis cohort on
humans

The scRNA-seq data of human cirrhosis is obtained from the GEO
database under the accession number GSE136103, which includes
non-parenchymal cells collected from healthy individuals and patients
with cirrhosis. After processing, single-cell data were obtained from
five healthy individuals (healthyl-5) and five patients with cirrhosis
(cirrhoticl-5). Similarly, the raw data are processed using the Seurat
R package (Hao et al., 2021). After the process, we select three
important cell types: endothelial (Endo), macrophages (Mac), and T
cells (Tcell). The total number of cells for each cell type is 6,197, 9,173,
and 20,950, respectively. The detailed data distribution is provided in
Supplementary Table S1. Similar to the AD cohort, we use PathFinder
to predict the cell condition for each cell type. The pre-defined path
list is selected in the same way as the AD dataset. For the cirrhosis
cohort, we selected the top 12,000 variable genes from the original
dataset as input to the model, which resulted in a final count of 1,549
pre-selected paths.

PathFinder can effectively separate cells
from different conditions of AD by
selecting differentially expressed signaling
paths

To evaluate the performance of the PathFinder model, it is applied
to excitatory neurons, astrocytes, and microglia cells from the AD
cohort separately to predict the conditions of each cell (tam/oil),
denoted as TAFE4_ex, TAFE4_mic, and TAFE4_ast, respectively. For
each cell type, we repeat the training five times, each time randomly
splitting the whole dataset into train, validation, and test subsets at a
ratio of 0.7/0.1/0.2. We report the average performance and standard
deviation on the test set over all five runs. The detailed experimental
setting can be found in the Method section. The detailed results are
shown in Table 1 and Figure 2A.

As can be seen, the PathFinder can successfully classify the majority
of cells in the test dataset into the correct condition. This means that,
after training, the model learned the most important difference between
the two conditions from a huge gene expression profile. Such differences
can be reflected in the important score of each path, as the final
prediction is made based on the different predefined paths. Among all

TABLE 1 Evaluation results of the PathFinder model.

10.3389/fncel.2024.1369242

results, the standard deviation of the metrics for TAFE4_ast is much
larger than the other two cell types. We speculate that this discrepancy
is caused by the limited number of cell samples in the TAFE4_ast group,
which makes the model easily overfit to the training data.

Then, we evaluate the learned path score from each group. For each
cell group, we first average the learned path score from five repeated runs
to get the final path score. We average the absolute fold-change level of
all genes within each path to get an average differential expression level
for each path. Then, we compare the top 200 selected paths from the
results of the PathFinder model to the remaining paths. The results are
shown in Figure 2B. We can see that, for all three different cell types, the
selected top 200 paths from PathFinder have a much higher average
differential expression level compared to the remaining paths. The
results indicate that PathFinder is effective in ranking differential
expressed paths through the training. This can be attributed to two
objective functions used in PathFinder. First, by minimizing the
classification loss, the model is forced to increase the score for paths that
are useful for separating two different conditions. It is intuitive that paths
with higher average differential expression levels are more helpful for the
prediction. Second, by minimizing the regularization loss, the model
tends to give a high score for paths with high prior weight, and the prior
weight is positively related to the average differential expression level.

Then, we evaluate the robustness and stability of the PathFinder.
Concretely, we want the final path score distribution (ranking) learned
from PathFinder to be stable and robust even if we slightly alter the
training data. Since we randomly split the whole dataset for each
repeated run, we can directly compare the learned score for each run
to achieve our goal. Therefore, we plot the learned score for all paths,
and all runs with paths are sorted by the average score. The results are
shown in Figure 2C. For all three cell types, the learned scores are very
stable across different runs, as paths with higher ranks always have
higher scores. This means that, even if we slightly alter the training
dataset, the PathFinder model can still output almost the same top k
paths. The results successfully demonstrate the robustness of the
PathFinder model for extracting important paths and constructing
intra-communication networks.

Finally, we further evaluate the effectiveness of PathFinder on
intra-cell signaling networks using the human cirrhosis cohort.
Specifically, we run PathFinder on endothelial, macrophages, and T
cells. The procedure is the same as the AD cohort. The average
evaluation metric on the test set can be found in Supplementary Table 52
and the comparison of the average differential expression level of
paths can be found in Supplementary Figures STA,B.

Core intra-cell signaling networks
associated with the APOE4 genotype

In this section, we evaluate the intra-cell communication networks
discovered by the PathFinder model. Particularly, we want to know

Accuracy Recall Precision Specificity F1 AUC
TAFE4_ex 0.67 £0.01 0.71 +0.04 0.66 +0.02 0.64 £0.05 0.68 £0.01 0.73 +0.01
TAFE4_mic 0.67 £0.01 0.76 £ 0.03 0.65 £ 0.02 0.58 £ 0.04 0.70 £ 0.01 0.71 £ 0.01
TAFE4_ast 0.62 £ 0.04 0.75+0.15 0.65 +0.03 0.44 +£0.14 0.69 £ 0.06 0.65 +0.04
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Evaluation of the PathFinder model on the AD cohort. (A) The detailed evaluation metrics on test dataset from all runs. (B) The comparison of the
average differential expression level of top paths sorted by PathFinder during the training. The top 200 paths have higher differential expression level
than others for all three cell types. (C) The learned path scores of PathFinder on different runs. All paths are ranked by the average score across all runs.
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whether the discovered networks can reveal the recent discovery of
APOE4-driven AD or even indicate new findings. First, for all three
cell types, the final networks are generated by first averaging the path
score learned from five repeated runs and then ranking and selecting
the top 300 paths from all paths to form the final networks. The
generated networks for all three cell types are shown in Figure 3. Then,
we perform the enrichment analysis on all generated networks using
KEGG signaling pathways and gene ontology (GO) terms. The
enrichment results are shown in Figure 4A. Based on the results,
we find several key factors that are important to the development of
APOE4-driven AD.

Neuron inflammation

Numerous studies have shown that inflammation is highly
activated and plays a key role in the progress of AD (Rogers et al.,

Frontiers in Cellular Neuroscience

1996; Akiyama et al., 2000; Halliday et al., 2000; Mathys et al.,
2019). From the enrichment results, we can see that many
inflammation-related pathways/GO terms are enriched across
multiple cell types. For example, cytokine-mediated signaling
pathway, cellular response to cytokine stimulus, and inflammatory
mediator regulation of TRP channels. This result aligns with the
findings of previous studies and further confirms that the existence
of APOE4 in the astrocyte stimulates the inflammatory response.
More specifically, several genes related to neuron inflammation are
identified by PathFinder across multiple cell types. STAT1 and
STATS3 are identified as hub genes connected to multiple targets in
both the network of neurons and microglia. It has been shown that
STAT1 plays a key role in regulating inflammatory responses and
cellular death (Hu et al., 2002; Butturini et al., 2018). Moreover, the
differential expression analysis (Figure 4B) reveals that STATTI is

05 frontiersin.org
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Intra-cell communication networks discovered by the PathFinder model for the AD cohort. (A) Excitatory neurons; (B) Microglia; (C) Astrocyte.
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highly differentially expressed in the TAFE4 group, which further
confirms the important role of STATI.

Autophagy

In addition to inflammation, the Apoptotic and Apoptotic
signaling pathways are enriched in the neuron and the microglia.
Autophagy is a lysosome-dependent, homeostatic process, in which
organelles and proteins are degraded and recycled into energy.
Autophagy has been linked to Alzheimer’s disease pathogenesis
through its merger with the endosomal-lysosomal system, which
has been shown to play a role in the formation of the latter
amyloid-p plaques (Funderburk et al., 2010). One hypothesis states
that irregular autophagy stimulation results in increased amyloid-f
production (Yu et al., 2005). The existence of APOE4 may also
affect the process of autophagy, leading to the accumulation of
amyloid-p in the brain affected by AD. Particularly, CLU and
FOXOL1 genes are identified in the intra-network of microglia and
astrocytes. CLU is one of the top AD candidate genes. Some study
shows that it is a causal gene of AD-affected hippocampal
connectivity (Zhang et al., 2015). Moreover, it is shown that CLU
protein interacts with A, reduces its aggregation, and protects
against its toxic effects (Beeg et al., 2016). Many studies have shown
that FOXOI induces autophagy in cardiomyocytes and cancer cells.
FOXOL1 has been identified as a gene that encodes for a transcription
factor involved in modulating autophagy in neurons (Xu
etal., 2011).

Lipid transportation

The regulation of lipid metabolic process and cellular response to
lipids are enriched in the intra-communication network of all three
cell types. The enriched genes included NR1D1, EGR1, and BRCAI.
It has been proved that APOE4 is involved in the lipid transportation
and metabolism (Tindale et al,, 2017). The existence of APOE4 in the
astrocyte may disturb the brain lipid composition and thus affect the
blood-brain barrier (BBB) function (Chew et al., 2020). All these
results confirm the influence of APOE4 in the progress of AD and the
dysfunction and death of the neuron.

JAK-STAT signaling pathway

In the intra-communication network of the astrocyte, the receptor
signaling pathway via JAK-STAT is enriched with the corresponding
gene: STAT3, SOCS3, HMGA?2, and STAT1. The JAK-STAT signaling
pathway has been reported to be the inducer of astrocyte reactivity
(Ben Haim et al,, 2015). The enrichment of the pathway indicates that
the existence of APOE4 in astrocytes can influence the function of the
JAK-STAT signaling pathway, and the pathway reversely affects the
activity of the astrocyte.

Evaluation of the intra-cell signaling
networks on human cirrhosis

In this section, we further evaluate the intra-cell signaling
networks on human cirrhosis on endotheilal, marcrophages, and T
cells. The network extraction procedure is the same as the AD cohort.
The gene expression and the pathway enrichment analysis result are
shown in Figure 5. The final intra-networks for each cell type are
shown in Figure 6. Before the analysis, we compare the extracted

Frontiers in Cellular Neuroscience

10.3389/fncel.2024.1369242

intra-cell network of cirrhosis with that obtained from the AD cohort.
We merge the genes from all three cell types together for AD and
cirrhosis separately and then compare the common genes from both
cohorts. There are 269 genes from cirrhosis and 110 genes from
AD. However, there are only 14 common genes, which demonstrate
that PathFinder is disease- and expression-specific. We further explore
the networks identified by the PathFinder model and their relationship
with cirrhosis.

The role of immune cells in liver diseases

Immune cells and various signaling pathways play an important role
in the pathogenesis of liver diseases. Gene CCRY is activated in the
intra-cell signaling network of both endothelial and T cells. Studies have
found that, in a mouse model of NASH, the CCR9/CCL25 axis promotes
the recruitment of macrophages and the formation of fibrosis, providing
a new potential therapeutic target for NASH (Morikawa et al., 2021). On
the other hand, liver NKT cells accumulate in a CXCR6-dependent
manner early after injury, exacerbating the inflammatory response and
promoting the progression of liver fibrosis, suggesting that the CXCR6/
CXCL16 pathway may be an effective target for the treatment of liver
fibrosis (Wehr et al., 2013). CXCR6 is discovered by PathFinder for the
intra-cell signaling network of both endothelial and macrophages,
which further confirms it. Additionally, B-arrestinl (ARRB1) activated
at the signaling network of all three cell types was reported to interact
with pro-GDF15, promoting its cleavage and maturation in the Golgi
apparatus, and the absence of ARRBI significantly exacerbates hepatic
steatosis, fibrosis, and inflammation (Zhang et al., 2020).

Liver fibrosis and its reversibility

The development of liver fibrosis is a complex and potentially
reversible process. In its early stages, liver fibrosis may not immediately
present severe symptoms but can eventually progress to cirrhosis and
affect multiple organs. CREB is a highly activated gene discovered by
PathFinder. Research has found that CREB, a molecule downstream of
the cAMP signaling pathway, can serve as a therapeutic target for fibrosis
(Lietal, 2019). Furthermore, insulin-like growth factor 1 (IGF1) and its
receptor IGFIR play a crucial role in liver health and function, primarily
expressed in the liver tissue. Studies on liver fibrosis have revealed the
core role of the IGF1/IGFIR signaling system in controlling the liver
fibrosis process (Gui et al., 2023). In the intra-cell signaling network of
all three cell types identified by PathFinder, IGFIR is activated and
further triggers target GNLY and HBEGF through FGFR3. Although
there is not enough literature discussing their relationship with cirrhosis,
exploiting the molecular mechanisms and functionality may provide
new insights into studying cirrhosis and be helpful in developing more
effective treatments to solve liver disease problems.

Liver disease transition process

In the intra-cell signaling networks identified by PathFinder,
genes EGR1 and ERBB3 are highly activated. In the liver disease
transition process, chronic hepatitis and cirrhosis are major factors
leading to the majority of hepatocellular carcinomas (HCC).
Concurrently, non-alcoholic fatty liver disease (NAFLD) has become
a global epidemic, not only associated with the development of
metabolic syndrome but also regarded as a pathway leading to severe
liver diseases such as cirrhosis and hepatocellular carcinoma. In this
transition process, EGR1 has been discovered as a key regulator of
NAFLD, presenting potential as a potent target for intervening in
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NAFLD (Guo et al, 2023). Additionally, research has identified
ERBB3 as a potential serum marker for early HCC in patients with
2020). A deeper
understanding of the mechanisms underlying liver disease transition

chronic hepatitis and cirrhosis (Nasiri et al,

will provide insights into therapeutic strategies for related diseases.

Core multi-cell inter-cell communication
networks associated with the APOE4
genotype

To further understand the complex signaling flow and mechanism
behind the APOE4 and AD pathology, we further generate inter-cell
communication networks between three different cell types using
PathFinder, as shown in Figure 4C. First, we can see that, compared to
astrocytes, microglia have much more interactions with neurons. This
may indicate that the existence of APOE4 in the astrocyte may activate
the functionality of microglia and then cause abnormal activities in the
neurons. Among all interactions, several interesting interactions
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appealed to the result. First, the MIF secreted by the astrocyte interacts
with the EGFR in the neuron and follows downstream signaling. The
MIF is a well-known proinflammatory cytokine that promotes the
production of other immune mediators. Increased expression of MIF
can contribute to chronic neuroinflammation and neurodegeneration
(Tavassoly et al., 2020). EGFR is a potential target for treating
AD-induced memory loss (Zhu et al, 2011; Wang et al.,, 2012). The
increased expression level of MIF could be the signature of activated
astrocytes, and the MIF further triggers the expression of EGFR and
the subsequent downstream network in the neuron, which contributes
to neuron inflammation and degeneration.

In addition to MIF in astrocytes, many ligands for receptor EGFR
are also identified in microglia, including ICAM1, IGF1, HLA-A,
CNTN2, PCDHI15, FLRT2, TAC3, PTN, and PTPRC. The
downregulation of PTPRC is reported to contribute to the
overproduction of Ap and neuron loss (Brito-Moreira et al., 2017).
Another interaction is the NLGNI gene which is expressed in neurons
that interact with the NRXNI gene in the astrocyte. The amyloid-f
oligomers are synaptotoxins that build up in the brains of patients
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and are thought to contribute to the memory impairment in AD. It
has been shown that the interaction of neurexins (Nrxs) and
neuroligins (NLs) is critical for synapse structure, stability, and
function (Tyzack et al., 2017). The dysregulation of the interaction
between Nrxs and NLs may contribute to the formation of amyloid-f
oligomer. The EFNAS5 in the neuron is upregulated in the neuron and
interacts with EPHBI and downstream STAT3 signaling in the
astrocyte. This interaction is closely related to the ephrin-Bl-
mediated stimulation. The analysis has shown that the ephrin-B1-
mediated stimulation induces a protective and anti-inflammatory
signature in astrocytes and can be regarded as “help-me” signal of
neurons that failed in early amyotrophic lateral sclerosis (ALS)
(Lambert et al., 2018). Such signals could also play an important role
in triggering inflammation and neuron degeneration in the
CNS system.

Conclusion and discussion

In this study, we propose PathFinder, which is the first deep-
learning model with a graph transformer that can be used to extract
both intra- and inter-cell communication networks using scRNA-seq
data. Through a case study using an AD scRNA-seq dataset from mice,
we evaluate the effectiveness of PathFinder from multiple perspectives.
First, the quantitative analysis confirms that PathFinder performs well
in separating cells from different conditions by leveraging the
difference of expression patterns in the signaling paths. Furthermore,
the learned path score is robust and consistent in repeat runs.
We further evaluate the correctness of extracted networks through
extensive literature searches. The resulting network aligned well with
many recent discoveries on the AD pathology, which further proved
the effectiveness of the proposed PathFinder. Additionally, the current
version of PathFinder has a few potential limitations to be improved
in the future studies. First, it requires many samples in training to
produce reasonable results. Second, it relies on the pre-defined paths
from the database to learn and extract meaningful patterns and is
unable to discover new signaling flows. Third, currently, it is hard to
validate the discovered signaling pathway quantitatively as there is no
existing benchmark for conducting this process. All these limitations
warrant further investigation. For example, we can construct a
common benchmark to evaluate the performance of all signaling
network inference methods quantitatively. We will also improve the
model in our future work.

Methodology

Gene-gene interaction database collection
and processing

To construct the gene-gene interaction database, the raw
interaction data were collected from NicheNet software (Browaeys
et al., 2020). The raw interaction data were divided into three types:
ligand-receptor network, signaling network, and gene-regulation
network. The original network contained 12,019 interactions/1,430
genes, 12,780 interactions/8,278 genes, and 11,231 interactions/8,450
genes, respectively. To construct the intra- and inter-network database,
the data were further processed by the following steps.
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First, ligands and receptors were collected by gathering the source
and target of the ligand-receptor network. There were a total of 688
ligands and 857 receptors. Then, interactions in the ligand-receptor
network were divided into two types. If one interaction exists in both
directions in the database, we labeled it as bidirectional. Otherwise,
we labeled it as directional. After processing, there were 11,880
directional interactions and 139 bidirectional interactions.

The gene-regulation network was processed as follows. First, 1,639
transcriptional factors (TFs) were collected (Fan et al., 2021). For
convenience, TFs that exist in either the ligand or receptor list were
removed. Finally, 1,632 TFs were collected. Then, three different types
of regulation were collected in the gene-regulation interaction
network, which are ligand regulation, receptor regulation, and TF
regulation. To label each interaction into one of three types, all the
interactions in the network were removed if the source gene was not
in the ligand, receptor, or TF list. Then, the interactions were labeled
based on the type of source (e.g., if the source of interaction is a
receptor, we label it as receptor regulation). After processing, there
were 1,329 ligand-regulation interactions, 272 receptor-regulation
interactions, and 6,706 TF-regulation interactions.

Finally, the signaling network was processed as follows. First, all
interactions were removed if they existed in either the ligand-receptor
or the gene-regulation network. Then, the interactions were further
divided into receptor-TE, receptor-signaling, signaling-TF, and
signaling-signaling. To be more specific, if the source of interaction is
in the receptor list and the target of interaction is in the TF list, the
interaction was labeled as receptor-TF. If the source of interaction is
in the receptor list and the target is not in the tTF list, the interaction
was labeled as receptor-signaling. If the source of interaction is not in
the receptor list and the target of interaction is in the TF list, the
interaction was labeled as signaling-TFE. If neither the source nor target
of interaction is in the TF and receptor lists, the interaction was
labeled as signaling-signaling. The interactions that cannot
be classified into one of the specified groups were removed for
convenience. Finally, there are 31 receptor-TF interactions, 524
receptor-signaling interactions, 975 signaling-TF interactions, and
9,745 signaling-signaling interactions.

Notations and terminologies

Terminologies

An embedding or a representation is a vector of size RY that
represents an entity, such as a gene or a path. The input embedding is
the embedding input to the model, the hidden embedding is the
embedding output by the middle layers of the model, and the output
embedding is the embedding output by the model. With the final
output embedding for an entity, we can do the classification or
regression by passing it to a logistic regression or linear regression
layer. An encoding is a function that transforms an entity to the
embedding. Typically, the goal of a deep learning or machine learning
model is to learn a model that can take the input embedding of the
entity we want to predict and output the output embedding which is
more reliable and powerful for the prediction. A single neural network
layer will contain one or multiple trainable weight matrices. These
matrices is responsible for transforming the input embedding into the
output embedding. They will be updated and refined by the backward
propagation and gradient descent used in the neural network.
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Notations

A gene graph is denoted as G = (V/,E ), where V/ is the set of gene
nodes with ’V| =n, E is the set of edges and E c V' xV . The node
embedding set is denoted by X = [x] X025 Xn ]T e ™4 , where
x, € R%isthe embedding vector of the node u. The graph structure is
defined by an adjacency matrix 4 € [O,l]nxn, where 4, =1 indicate
there is an edge from the node u# to node v and 4,,, = 0 otherwise.
Furthermore, a set of paths sampled from a graph is denoted as
P= {pl,pz,...,pp} , where p,, is the m-th path, which is a list to
store the nodes of the path in order. Paths can have different lengths,
and we denote the length of path m be /,,,.

Preliminary of transformer and
Graphormer

The transformer is a powerful architecture in the deep learning
field. It consists of multiple transformer layers. Each transformer
layer has two parts: a multi-head self-attention and a point-wise
feed-forward network (FFN) with residual connection applied
between each part. Let H'™ & R be the embedding of nodes in
layer /-1, and H! s the embedding of the node u in layer / —1, the
computation of multi-head self-attention is:

oM = Wi k!

Il i 1l pypl=ly i
0 =H"wg v =H"'w,

Ql,i 1iT

K™
= = |yhi
o

o = Concat(headl,. ..,head), ) Wé,

head; = Attention(Ql’i,Kl’i,Vl’i) = SoﬁMax[

where Wé’i , W[lgi, Wlﬁ’i € Rh*”’”Xd*, and W([) € R"Mn e all trainable
h
e R’”>< b

weight matrix, / is the number of heads, o' is the output
from the multi-head self-attention in layer [, Concat is the
concatenation function to combine multiple vectors into one single
large vector. For simplicity, we let 2 x dj, = hgpp . The output o' will
then be fed into a point-wise feed-forward network. The computation

of the point-wise feed-forward network is:

FFN (x) = ReLu(xW, + b I} + B},

where Wll e R ans¥Pens ,Wzl & Rl ¥ Pens R bll e R¥Muns ,and bé e RM are
all trainable weight matrix and bias. Notice that here we slightly
modify the hidden size of the feed-forward network of the original
model. The embedding of each node 0! e R" will be input into this
FFN for further processing.

However, the vanilla transformer cannot be used directly on the
graph structure data as it lacks a critical part for encoding the
topological information into the model. To deal with this issue,
Graphormer proposed several novel encodings into the model.
Specifically, they introduced centrality encoding, spatial encoding,
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and edge encoding. The centrality encoding is used to embed the
graph centrality information into the model. Given the input data X,
the computation of centrality encoding is:

HO :X+Z_{deg_(G)}+Z+{deg+(G)}’

where the Z7,Z* are all trainable embedding vectors and
deg_(G),deg+(G):G—>R" are the function to compute the
in-degree and out-degree of each node in the graph G. The
spatial and edge encoding is used to encode the graph structure
into the model. With the spatial and edge encoding, the self-
attention is revised as:

oMK T
Vi

head; = SoftMax +b {¢(G)}+ci]Vl’i,

where b’ is trainable embedding vectors to encode the spatial
information at head i and ¢(G):G — R™" is the function to
compute the shortest path length between each two nodes. If two
nodes are not connected, a special value will be used. ¢t e R™"is the

N
edge embedding and Cuy = = ernwfaT, where x,,, is the edge feature
of the n-th edge in the shortes’ﬁ%ath between node # and node v and
the w}, is trainable weight vector of n-th edge of head i. Note that both
the spatial and edge encodings are unique across different layers.

Architecture of PathFinder

The PathFinder model consists of three components, namely, the
node encoder, path encoder, and graph encoder. The overall
architecture of the PathFinder model is shown in Figure 1, lower. The
rationale behind PathFinder is that, if a model can identify disease
cells from normal cells, it must learn useful knowledge from the gene
expression profile to help it make that prediction. In PathFinder,
we introduce the path encoder to let the model make the prediction
based on the importance of the signaling paths with their
corresponding expression. In this way, if the model can make a
reasonable prediction, it must have the ability to distinguish
differential expressed signaling paths from the other paths, and that is
exactly what we are looking for. Furthermore, since the paths are
pre-defined from the physical interaction database in a biologically
meaningful way, the extracted signaling paths are inherently
biologically meaningful. PathFinder can be seen as a simulator to
simulate the signaling path in the cell and use it to make the prediction.
Below, we discuss each component in detail.

Node encoder

The architecture of the node encoder is similar to the
Graphormer, which stacks L transformer layer with centrality
encoding, spatial encoding, and edge encoding. The input to
PathFinder is the expression value of each gene in a cell sample.
However, we made several modifications to the original
architecture. First, the hidden size in the point-wise feed-forward
network is all %, in both two layers for simplicity. Second, the
edge encoding in PathFinder is modified. In the original
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Graphormer, the edge encoding is computed by all the edges in
the shortest path between two nodes, which can capture long-
range information in the graph. However, the localized feature in
the graph will be smoothed in such a manner. Instead, PathFinder
aims for the node embedding learned from the node encoder to
focus on the localized information in the graph. Therefore, direct
edge encoding is proposed. The direct edge encoding is
computed by:

i _ iT
Cuyy = XuyW

Where x,,, is the edge feature of the edge between node # and
node v. If there is not an edge between two nodes, the direct edge
encoding is set to a special vector for simplicity. By doing this,
the node encoder becomes adept at learning node embedding
that capture localized information. Finally, the spatial encoding
is also revised in PathFinder. Since here the graph structure is
identical for all samples and the node order invariant is
automatically held, we can learn a specific spatial encoding for
each pair of two nodes. Therefore, we design the node index
encoding in the PathFinder model. The node index encoding is
not computed from the length of the shortest path between each
pair of nodes but is directly learned for each pair of two genes,
namely, for each pair of two genes, a unique encoding is learned
for each head in each layer of the node encoder.

Path encoder

Furthermore, the path encoder is responsible for learning gene
signaling path embedding, utilizing the node embedding in the graph
and the pre-defined path list of the graph. The details of the
pre-defined path list are illustrated below. Suppose there are p unique
paths in the path list P, where the length of the m-th path is /,, and the
total number of nodes in the path list is £ (count repeated nodes in
different paths). Denote the node embedding output from the layer /
as H', we first learn a path-specific embedding through:

Ul-l = scatter(Hl)‘ Wul +b,£,
1

where Wu[ € R"»*and b,ﬁ € R" are all trainable weight matrix, scatter
is a function to reorder and scatter the node in the graph into the
order of the pre-defined path list. For example, suppose there are five
embedding genes output from the node encoder. That is 7 !'e R
. We label each gene from 1 to 5. Suppose there are two paths. The first
path is 1->3->4. The second path is 2->3->4->5. Then, the
scatter(H ) will output a new matrix with the size of 7 and each row
represents a gene in a path. For instance, the third row is Hi since it
is the third gene in the first path. U e R®¥ s the learned path-
specific embedding. For convenience, we denote U f,, i as the
embedding of i-th node in the m-th path. Then, path positional and
path edge encodings are introduced to encode additional information
for all paths. Let U ! be the result embedding after the special
encodings. We have:

!

7l / !
Ui =Um,i+pi + €iitl>
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Where p,[ is the learnable positional encoding vector and its value
only depends on the position i, el{i 41 is the learnable edge encoding to
encode the edge type between i-th node and i +1-th node. Then, the
score of each node within the path is computed by:

Si = tanh (T, 2+ b, Wl + b,

s'= ScatterSoﬁMax(Sl),

where Ws[1 e R"™, bél eR", WS[2 e R™", and b;z e R" are all trainable
parameters. ScatterSoftmax is the softmax function working within
each path. The S !'e R® is the final r set important score for each
node in each path. We let 7 x u = hg,p, for simplicity. After we obtain
! the path embedding is computed by:

Pl = Flatten(ScatterSum(Sl * (jl))

* is the point-wise product working on each set of important
scores. That is, for each set of important scores, we do a point-wise
product of that set of scores and U [, which results in total 7 sets. The
ScatterSum function is the summation on each path. Flatten is the
function to flatten the embedding of all sets. P! e RP*! s the final
path embedding in the layer /.

Graph encoder

In the original Graphormer, the graph embedding is learned by
introducing a special node and letting it connect to all the nodes in the
graph. After forwarding, the embedding of that special node is
regarded as the graph embedding for the graph-level task. In
PathFinder, our goal is to learn the graph embedding from the path
embedding. Meanwhile, we aim to extract the important paths from
the model after training it for the graph-level task. To simultaneously
achieve both goals, the graph encoder is proposed. The graph encoder
consists of two parts. The first part is a trainable path weight and the
sigmoid function to assign each path with different scores. The second
part is the jumping knowledge network to combine the graph
embedding in each layer and compute the final embedding.

In PathFinder, the graph embedding is learned by integrating all the
path embeddings from each layer, which requires an important score for
each path. Normally, the score is computed based on one sample.
However, such a score is not robust and may vary a lot even with a minor
variation of the path embedding (Xu et al,, 2018; Chen et al,, 2019; Fan
etal, 2021). To avoid the issue and learn a robust important score across
the whole dataset, the trainable path score M € RP? isintroduced. M is
identical to all samples and layers and learned through backpropagation.
The path important score is computed by:

1= Sigmoid(M),

where 7 € R? is the important score for each path. Then, the graph
embedding of layer / is computed by:
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g =1r,

where gl is the graph embedding of layer /. The final step of the graph
encoder is to integrate the graph embedding of each layer and learn a
final embedding. Here, we utilize the idea of JumpingKnowledge
network (Xu et al., 2018) and compute the final graph embedding by:

G = MaxPooling (Concat(g1 ,g2 yee .,gL )),

where MaxPooling is the max pooling function and G € Rl s
the final graph embedding learned by PathFinder. Finally, the graph
embedding is used to classify the cell sample into the corresponding
condition (control/test). The prediction is a typical binary prediction
computed by:

p= SoftMax(GWp),

Where W), R%*2 s the trainable projection matrix and p is the
predicted distribution.

Training and regularization of PathFinder

To train the PathFinder model, the negative log-likelihood
(NLL) loss is applied. Let the p{ be the predicted probability
of the true condition of cell i, then the NLL loss is

computed by:

Lelass = % - IOg(pic)

i=l1

Where the N is the number of cells in the dataset. Meanwhile,
to regularize the training of the model and learn biological
meaningful paths from the model, the regularization term is
introduced to the path score M. Intuitively, the path that
has a higher total fold change should have a higher path score.
Furthermore, we designed three different regularization
terms to generate different important paths by introducing the
prior path score. Specifically, these three regularizations are
upregulated path, downregulated path, and differentially
expressed path regularization. Let the fc/" be the log fold
change of gene j in path m, then the prior path score is
computed by:

S = Normalization mean[g fc}"]
J

S own = Normalization meanLZ - fef" J
J
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(

(
ng:g = NormalizationtmeanLZIfc{"
J

ﬂ

Where the S, S, and S('i'ég are the prior path scores for

up»
upregulated, downregulated, and differential expressed regularization,
respectively. Normalization is the min-max normalization across all
paths. Suppose we use the upregulated prior score, the regularization

loss is computed by:

Lreg = Dxe (1110

The final loss is:

L= Lclass + ﬂﬁreg

Where S is the weight of the regularization term.

Predefined path list

To train the PathFinder model, the path list needs to
be defined before the training. Given the collected gene-gene
interaction database and the input variable gene list, we designed
several choices to generate a predefined path list. The first choice
is the shortest path. For this choice, the shortest path between
each pair of genes in the dataset will be computed and collected
given the gene-gene interaction network. The second choice is to
generate all the possible paths that start from the receptor and
end in the target, which can also be performed using the gene-
gene interaction database. To constrain the path, the minimum
length of the path is set to be 3 unless the path is a receptor
regulation interaction. The maximum length of the path is set
to be 10.

Experimental details

We conduct experiments to validate the effectiveness of
PathFinder on TAFE_ex, TAFE_mic, and TAFE_ast cell sample
datasets. For each dataset, we randomly split datasets into train/
validation/test sets with a ratio of 0.7/0.1/0.2. We train the model
using the train set and validate the performance of the model
using the validation set. Finally, we save the model that achieves
the best performance on the validation set and report the
performance of the saved model on the test set. We use the area
under the curve (AUC) as the performance metric for selecting
the best model. We repeat experiments on each dataset five times
(with a different random split applied to the dataset each time)
and report the mean results and the standard deviation. The
model and training hyperparameters are described as follows:
We set the number of layers as 6 and the hidden size /4, as 128.
The number of heads and scores set  as 8. For each experiment,
we set the number of training epochs as 30, the learning rate as
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0.0005, the dropout rate as 0.1, the regularization weight 8 as 0.1
for TAFE_ex and TAFE_mic, and 1.0 for TAFE_ast.

Generation of the intra- and inter-cell
communication network

After the PathFinder model is trained, the generation of an
intra-cell communication network is straightforward.
Concretely, we first average the path weight learned from five
repeated experiments to get the final path weights. Furthermore,
the top K paths are extracted and combined to generate the
intra-cell communication network. The generation of the inter-
cell communication network is as follows. Let the cell that
provides ligands be the ligand cell and the cell providing
receptors be the receptor cell. The intra-cell communication
network is first generated. Then, the ligands of the ligand cell
and receptors of the receptor cell will be extracted from their
respective intra-networks. Then, the ligand-receptor pairs are
selected given the ligand-receptor database. Finally, the kept

pairs will be linked and the inter-network is generated.
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