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Research on bidirectional communication between the heart and brain has 
often relied on studies involving nonhuman animals. Dependance on animal 
models offer limited applicability to humans and a lack of high-throughput 
screening. Recently, the field of 3D cell biology, specifically organoid 
technology, has rapidly emerged as a valuable tool for studying interactions 
across organ systems, i.e., gut-brain axis. The initial success of organoid models 
indicates the usefulness of 3D cultures for elucidating the intricate interactivity 
of the autonomic nervous system and overall health. This perspective aims to 
explore the potential of advancing in vitro modeling of the heart-brain axis by 
discussing the benefits, applications, and adaptability of organoid technologies. 
We closely examine the current state of brain organoids in conjunction with the 
advancements of cardiac organoids. Moreover, we explore the use of combined 
organoid systems to investigate pathophysiology and provide a platform for 
treatment discovery. Finally, we address the challenges that accompany the use 
of 3D models for studying the heart-brain axis with an emphasis on generating 
tailored engineering strategies for further refinement of dynamic organ system 
modeling in vitro.
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1 Introduction

The heart and the brain have a mutually indispensable relationship. Dysfunction in one 
organ system causing pathological changes in the other are clinical implications of the heart-
brain axis (Manea et al., 2015; Tahsili-Fahadan and Geocadin, 2017; Sha et al., 2023), but their 
interconnectedness is deeper. Brain and heart development occurs early and almost 
simultaneously in organogenesis (Donovan and Cascella, 2024). The precise dance of timing 
and signaling in neurogenesis and cardiogenesis is regulated by genes for progenitor 
proliferation (Sonic Hedgehog) and cellular commitment (notch, jagged, Nkx2.5), shared 
among various organs, but that have exclusive roles in shaping heart and brain development 
(Simeone et al., 1995; Dessaud et al., 2008). Nearly half of congenital heart issues are linked to 
complications in genetics (Wnt, Sonic Hedgehog, Bone Morphogenetic Protein) that aid 
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neural crest development, heart septation, and cell migration (Dessaud 
et al., 2007, 2008; Yu et al., 2008; Buijtendijk et al., 2020).

A network of brain regions, including the hypothalamus, 
cerebellum, amygdala, and insula, make up the central autonomic 
network. Sympathetic, parasympathetic, and sensory nerves 
abundantly innervate the heart (Fukuda et al., 2015), and their direct 
influence over the sinoatrial and atrioventricular nodes supports the 
contraction of heart muscles and the pumping of blood. The brain 
regions in the central autonomic network regulate sympathetic and 
parasympathetic heart activity through afferent and efferent vagal 
pathways (Silvani et  al., 2016). Vagal efferents modulate cardiac 
activity, but the nerve is primarily composed of afferents (70%), which 
produce Calcitonin gene-related peptides in the heart that can cause 
adverse cardiac remodeling or have cardioprotective effects (Berthoud 
and Neuhuber, 2000; Chai et al., 2006; Meléndez et al., 2011; Habecker 
et al., 2016). The cerebellum and the hypothalamus receive cardiac 
signals from heart sensory nerves. They can both modulate heart rate 
or ejection fraction, for example, through the critical Hypothalamic–
Pituitary–Adrenal Axis, or they can relay cardiac signals elsewhere in 
the brain (Sheng et al., 2021; Neubert et al., 2023). The amygdala and 
insula receive cardiac signals, interpret autonomic arousal, and then 
modulate sympathetic and parasympathetic activity to meet emotional 
needs (Chouchou et al., 2019). The locus coeruleus in the hindbrain, 
which produces norepinephrine for the brain, can also increase 
sympathetic activity or decrease parasympathetic activity in cardiac 
nerves and is implicated in genetic and stress-induced cardiovascular 
diseases (Wood and Valentino, 2017; Lian et al., 2023).

The peculiar and powerful ways that brain or heart affliction disrupts 
the other system indicate that their partnership is unique. We recognize 
that the body is an integrated system, and it follows that if there is an 
injury or developmental abnormality in one organ, others may 
be affected. But why and how, in Takotsubo syndrome, neural activity 
like extreme psychological stress or the hyperconnectivity of autonomic 
brain regions may cause the fully formed left ventricle to balloon to a 
different shape in adulthood goes unexplained with our current 
knowledge of organ crosstalk (Rossi et al., 2022). Other puzzling cases of 
heart-brain axis dysfunction are numerous and occur across the lifespan. 
Parkinson’s disease patients have been subtyped into body-first or brain-
first disease trajectories using multimodal images of the heart and brain 
(Horsager et al., 2020), but it is unclear why and how the heart would be a 
propagation site for α-synuclein (Van Den Berge and Ulusoy, 2022). 
High AB amyloid levels in familial hypercholesterolemia patients and 
risk for mild cognitive impairment exceed age predictors and sporadic 
hypertension control groups (Zambón et al., 2010). Genetic and in-utero 
environmental complications cause congenital heart diseases with severe 
neurodevelopmental issues (Sha et al., 2023) and lifelong impacts on 
heart and brain development.

Identifying how the partnership between the heart and brain 
influences development, (see Figure 1A), and disease is difficult for 
researchers to do in vivo. Processes causing heart and brain 
interdependence are challenging to identify outside of fetal development 
because as neonates’ human hearts and brains shift from cell proliferation 
to maturation. In humans, protein expression differs from mice (Lin 
et al., 2014), and there are tremendous temporal and genetic expression 
differences in heart-brain disorders (Pervolaraki et  al., 2013, 2018). 
Failure in fetal heart adaptations that support brain oxygenation, e.g., 
placenta formation, disrupts the brain growth cycle early in development 
(Miller et al., 2016; Zhang and Lindsey, 2023). The changes are so early 
that neuroimaging checking for abnormalities comes too late in cases of 

congenital heart disease or from in-utero environmental factors like 
gestational diabetes, prenatal stress, and preeclampsia (Limperopoulos 
et al., 2010; McQuillen and Miller, 2010). We believe a functional fetal 
model of the human heart-brain axis can be built in vitro to uncover 
meaningful hidden relationships across the lifespan.

2 In vitro organ modeling capabilities 
and their heart-brain axis applications

2.1 Current state of in vitro modeling for 
organ connections and dysfunction

Organ cells cultured in laboratories recapitulate fetal tissue properties 
and functions. Cultures are embryogenic copies of organs generated 
from stem cells (embryonic or pluripotent) donated by healthy humans 
or clinical patients or taken from animals for genetic and tissue property 
testing. See Figure 1B for the types of cultures referenced throughout the 
perspective. For in vitro culturing and analysis fundamentals, see Duval 
et al. (2017), then return here for heart and brain modeling specifics. 
Before delving into heart-brain implications, it is crucial to highlight the 
advanced capabilities of in vitro models. Researchers have started using 
two or more connected organoids, known as assembloids, for modeling 
interactions between multiple organ systems. Assembloids have 
recapitulated cortico-thalamic, cortical-subpallium, cortico-striatal, 
gut-brain, visual system, and hindbrain-skeletal muscle interactions 
(Bagley et al., 2017; Birey et al., 2017; Xiang et al., 2019; Andersen et al., 
2020; Miura et  al., 2020; Fligor et  al., 2021; Reiner et  al., 2021). 
Morphogens guide cell fate differentiation, enhance reproducibility, and 
yield brain organoids with specific cell fates (Muguruma et al., 2015; 
Birey et al., 2017; Xiang et al., 2017, 2019) and cardiac organoids with 
neurons or endothelial cells resembling fetal heart development (Marini 
et al., 2022). Culturing adult cell types is difficult, but in vitro modeling 
of Huntington’s and Parkinson’s has identified early markers of these 
midlife or late-life diseases (Smits et  al., 2019; Andrews and 
Kriegstein, 2022).

An exemplar of in vitro model effectiveness comes from research on 
tuberous sclerosis complex. This disorder afflicts adults and children with 
numerous benign tumors in different organ systems, and brain tumors 
can lead to severe neurological issues (Henske et al., 2016). Animals 
cannot appropriately model pathognomonic lesions in the disease, and 
postmortem patient tissue rarely reveals loss of heterozygosity, an 
important biomarker, in dysplastic tissues. So, Eichmüller et al. (2022) 
cultured brain organoids from patients with tuberous sclerosis complex 
genetic mutations and, in recreating fetal processes, captured the 
emergence of brain tumors and identified the progenitor population that 
gives rise to them. Moreover, an integrated model of the heart and brain 
would be particularly beneficial for this research, as tumors associated 
with tuberous sclerosis complex often manifest first in the heart (Hinton 
et al., 2014). However, unlike in the brain, they fade (Will et al., 2023) and 
rarely lead to severe issues. Replaying fetal development in integrated 
models may unravel organs’ developmental journeys to reveal insights 
into development and disease.

2.2 In vitro models of heart-brain axis

We limit this perspective to findings from using or building in vitro 
tools to uncover more about the exclusive relationship between the 
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heart and the brain. Firstly, we  share insights from modeling 
sympathetic neuron control of cardiomyocytes in traditional cell 
cultures. The sympathetic-cardiomyocyte connection is a direct pathway 
for heart-brain axis communication, but there are limitations inherent 
in using traditional cultures for this modeling. Secondly, we explore 3D 
models for findings that cannot be achieved in traditional cultures but 
which stop short of accurately modeling development and integrated 
function of the human heart and brain. Lastly, we discuss the feasibility 
of creating human heart-brain assembloids (hHBAs) to develop the 
model most comparable to organ development and function, as the 
human 3D tool has yet to be introduced.

3 Limitations and insights from 
modeling sympathetic cardiomyocyte 
regulation in traditional cell cultures

3.1 Traditional cultures limit faithful 
modeling of sympathetic-cardiomyocyte 
tissue features

In the heart-brain axis, connections between sympathetic and 
parasympathetic neurons and cardiomyocytes provide direct pathways 
for neural regulation of cardiac functions such as contractility and 

FIGURE 1

(A) Genetic and environmental cues guide cell proliferation of the earliest heart-brain-like structures. Neural crest cell migration innervates the heart with 
sympathetic, parasympathetic, and sensory nerves. The heart and the placenta support the brain’s growth cycle with oxygen autonomically because 
their mutual relationship has been formed through cell connections and paracrine signaling. Genetic, structural, autonomic, and cell communication 
factors are essential elements of heart-brain communication postnatally. (B) Researchers’ questions primarily determine their cell culturing approach. 
Organoids, the self-assembling 3D model that can be connected with other tissue to form assembloids, may be the most useful for investigating heart-
brain connections because of their developmental and functional capabilities. Figure created using Biorender (https://biorender.com/).
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automaticity (Gordan et  al., 2015). Cultures can recapitulate 
sympathetic efferent control of the heart. Oh et  al. (2016) first 
stimulated mouse sympathetic neurons with nicotine and measured 
increased beating in co-cultured myocytes. Modeling efferent control 
of the heart is needed to investigate the development of the partnership 
between the heart and the brain. Autonomic breakdowns can occur 
as early as embryogenesis (Al Nafisi et al., 2013; Siddiqui et al., 2015), 
the malformation of sympathetic neurons is linked to prenatal heart 
failure and postnatal arrhythmia (Tada et al., 2007; Brack et al., 2013). 
On the one hand, research into sympathetic control of cardiomyocytes 
in traditional cultures has yielded findings into how heart and brain 
development is codependent and relevant for disease. On the other 
hand, this research in traditional cultures faces limitations, especially 
when compared to more advanced 3D models that have addressed 
issues such as no cell-environment interactions (Cukierman et al., 
2001; Ravi et al., 2015), decreased cell junctions (Soares et al., 2012), 
and unnaturally rapid cell proliferation with poor differentiation (Ravi 
et al., 2015; Costa et al., 2016; Langhans, 2018).

We explain the shortcomings of traditional cultures in sympathetic 
neuron cardiomyocyte modeling first. Traditional cultures cannot 
recapitulate details of heart-brain interactions because they lack cell-
matrix interactions, preventing them from forming complex tissue 
structures. Research in traditional cultures like Takayama et al. (2020), 
where nicotine-stimulated parasympathetic and sympathetic neurons 
inversely alter cardiomyocyte beating, is less faithful to in vivo 
processes because organ structure cannot be  replicated. In 
parasympathetic regulation of the heart, the neurons are located in the 
epicardium and regulate activity in the sinoatrial and atrioventricular 
nodes, which have functions and tissue properties specific to heartbeat 
regulation that are not accounted for in traditional cultures (Stavrakis 
and Po, 2017). In 3D cultures, guided differentiation with cell-matrix 
interactions engenders fetal-like heart structures (left ventricle, right 
ventricle, atria, outflow tract, and the atrioventricular canal), 
providing a tool to test function and structure (Schmidt et al., 2023). 
Additionally, different gradients of the sympathetic innervation of 
heart regions cannot be  modeled in traditional cultures (Volmert 
et al., 2023). Sympathetic innervation gradients in cardiac nodes are 
linked to mouse bradycardia and likely influence brain-heart control 
(Chow et al., 1993; Kawano et al., 2003; Maden et al., 2012; Tillo et al., 
2012; Hasan, 2013).

3.2 Findings from traditional cultures could 
be reproduced with 3D models

Modeling sympathetic regulation of cardiomyocytes in 
traditional cultures underscores the significance of sympathetic 
and parasympathetic neuron plasticity in development and disease 
(Kanazawa and Fukuda, 2022). Traditional cultures enhance 
researchers’ capacity to model features of organ interconnections. 
However, 3D culture research could replicate these findings while 
addressing structural limitations inherent in traditional cultures. 
In experiments with sympathetic mouse neuron cultures, Larsen 
et al. (2016) found that the condition of the neurons (healthy or 
pro-hypertensive) affected heart cell responses, not the condition 
of the co-cultured human heart cells. Their experiments found that 
genes crucial for heart development were more active in mouse 
neurons and human cardiomyocyte co-culture than in 

cardiomyocytes alone. Norepinephrine is one of the main 
neurochemicals exerting control over the heart (Elia and Fossati, 
2023). Winbo et al. (2020) add neuromodulatory capabilities to 
sympathetic-cardiomyocyte modeling by co-culturing 
norepinephrine-secreting sympathetic neurons with 
cardiomyocytes and demonstrating that cardiomyocytes increased 
beating after neuronal nicotine stimulation. Nevertheless, single 
and multi-organ 3D cultures of the heart and brain have led to 
research findings that traditional cultures could not 
have uncovered.

4 Advantages, insights, and 
considerations in modeling the human 
heart-brain axis in 3D cultures up to 
the early fetal period

4.1 Advantages of 3D cultures, particularly 
organoids for reproducing development 
features and fetal organ function

Culturing 3D tissues, especially organoids, yields insights into 
heart and brain interdependence that are not achievable in other 
systems because they provide a more accurate representation of 
development and human physiological responses (Haisler et al., 2013; 
Imamura et  al., 2015; Voges et  al., 2017; Menasché et  al., 2018). 
Advancements in cardiac organoids enable the discovery of specific 
organ interconnections and functional features. Hofbauer et al. (2021) 
cultured cardiac organoids that developed endocardial cells and a 
chamber-like cavity, a feature other tools, particularly traditional 
cultures, cannot replicate. Lewis-Israeli et al. (2021) cultured cardiac 
organoids with epicardium, endocardium, and cardiac fibroblast cell 
types. The ability to culture cardiac organoids with heart chamber-like 
cavities and diverse cell types is crucial for faithfully modeling how 
the heart and brain become intertwined in development. Through 
mechanobiological processes, cross-talk between the brain, early heart 
structures, epicardium, and endocardial cells influences 
cytodifferentiation and organ pathophysiology. With organoids, 
developmental plasticity is often coupled with appropriate organ 
physiological responses. Hofbauer et al. (2021) leveraged that benefit 
to demonstrate fetal cardiac regeneration capabilities, and Lewis-
Israeli et  al. (2021) demonstrated how in-utero environmental 
differences cause cardiac structure abnormalities.

4.2 Insights and considerations in relevant 
3D multi-organ modeling of heart and 
brain interconnections

The fidelity of 3D cultures to fetal organ development processes 
and function sparked a new goal among researchers: to culture 3D 
multi-organ models (Picollet-D’hahan et al., 2021). Researchers 
interested in modeling the human gut-brain axis in vitro have 
successfully used assembloids to uncover meaningful hidden 
connections between systems (Bellono et al., 2017; Kim et al., 2021; 
Trapecar et al., 2021). See Figure 2A for the different techniques 
for connecting organoids. Bellono et al. (2017) demonstrated how 
enterochromaffin chemoreceptors communicate environmental 
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and homeostatic processes from the gut directly to the nervous 
system, and Trapecar et  al. (2021) discovered gene expression 
mechanisms for neuron, astrocyte, and microglia maturation and 
function. Despite these successes in uncovering links between 
organ systems using assembloids for gut-brain dynamics, a human 
heart-brain assembloid (hHBA) has yet to be cultured and tested. 
Instead, the most relevant human multi-organ model of the heart 
and brain was built using gastruloids that mimic early embryogenic, 
not fetal, organ development and lack functional capabilities 
(Olmsted and Paluh, 2022). While there is room for critique on 
how models were built or tested, many 3D multi-organ models 
have findings relevant to uncovering heart-brain dynamics or 
culturing a future hHBA.

In chronological order, Skardal et  al. (2020) co-cultured 
assembloid of the liver, lung, testes, heart, and brain and revealed 
cardiotoxicity in cells exposed to drugs recalled by the US Food and 
Drug Administration. Their work demonstrates the feasibility of 
integrating models of the heart and brain, but the authors do not test 
neuro-cardiac interconnectedness in their model. Then, Rossi et al. 
(2021) cultured mouse gastruloids and discovered that regulatory 
factors from non-cardiomyocytes, such as vascular endothelial growth 
factors and fibroblast growth factors, could influence cardiomyocyte 
beating. Without providing specific heart-brain insights, this work is 
still relevant for future neuro-cardiac modeling because it introduced 
a new engineering approach and demonstrated how other cell factors 
influence cardiomyocytes (Yang et al., 2020). Later, Drakhlis et al. 

FIGURE 2

(A) These techniques have the same benefits for connecting heart-brain organoids into assembloids. Researchers may use static contact or 
microfluidics to avoid potential issues with different ECMs across multiple organoids. Co-culturing may negate the structural benefits of 3D cultures. 
(B) Parkinson’s disease has many opaque heart-brain connections. Heart, hindbrain, and midbrain cells connected in one hHBA could answer these 
three questions about the disease. First, introducing human alpha-synuclein to heart cells and observing propagation in a hHBA could show how 
alpha-synuclein spreads through the sympathetic nervous system. Second, stimulating midbrain cells with Pramipexole may show how some 
pharmaceutical interventions increase dopamine in midbrain cells but cause cardiotoxicity. Third, by culturing LRRK2+, patient-derived-iPSCs may 
show genetic connections in midbrain cell death and sympathetic denervation. Figure created using Biorender (https://biorender.com/).
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(2021) and Silva et al. (2021) cultured heart-gut multi-organ models 
and, respectively, showed foregut cells interweaved and scattered 
throughout the cardiac tissue and a transcriptional state roughly 
equidistant from cardiac and gut progenitors. Even without direct 
heart and brain implications, these models illustrate the tissue and 
genetic differences in 3D multi-organ models. Later, Olmsted and 
Paluh (2022) showed gastruloids with neuro-cardiac cooperation 
precursors, e.g., neuropeptide Y and brain-derived neurotrophic 
factor, exhibiting a more autonomic transcriptomic phenotype 
compared to gastruloids lacking cardiac signaling. However, 
gastruloids are early embryonic models unsuitable for testing 
functional organ coupling. Liu et al. (2023) co-cultured reprogrammed 
mouse fibroblasts, transformed into autonomic ganglion organoids 
with neonatal mouse ventricular myocytes. This research is just short 
of an hHBA, and excitingly, stimulation of the autonomic ganglions 
with nicotine increased mouse myocyte beating, replicating the 
findings from traditional cultures. Lastly, Hernandez et  al. (2023) 
bioprinted neuronal Parkinson’s model cells and cardiomyocytes to 
create a tissue development platform. However, this may be more 
useful in the future as an intervention than for uncoupling brain and 
heart connections.

5 Discussion: considerations in 
culturing hHBAs and culturing hHBAs 
from patient-iPSCs with heart and 
brain abnormalities

This perspective is timely to offer guidance for future human 
heart-brain in vitro research because a tool for investigating organ 
connections during development and disease has yet to 
be  introduced. Humans have different developmental timelines 
and transcriptomics than mice (Anzai et al., 2020), and human 
tissue may prove more beneficial for drug testing than animals 
(Varga et al., 2015; Van Norman, 2019). Addressing media needs 
for different types of connected tissues may be challenging, but 
issues will likely be specific to researchers’ design choices. Design 
standards have been difficult to set for in vitro models because of 
researchers’ diverse questions and the almost unlimited flexibility 
in what can be cultured. Uncoupling the role of the autonomic 
nervous system in the heart-brain axis may be of keen interest to 
researchers who culture hHBAs. However, there are also 
applications for genetic, tissue abnormality, and drug toxicity 
experiments. Figure 2B illustrates the design of an hHBA cultured 
to study all those areas in Parkinson’s disease. Clear rationale is 
crucial to ensure dissimilar hHBA models still better the field’s 
understanding of organ interconnectedness (Cho et al., 2022). The 
likely use of patient cells to study the heart-brain axis heightens the 
case for clear design choices. While patient-iPSCs may influence 
developmental signaling pathways unexpectedly, they may also 
accelerate research.

Brain diseases can affect the heart via genetics and autonomic 
processes, and vice versa for heart diseases. With patient-iPSCs, 
pathological dysfunctions in heart and brain tissues could be used 
to identify any interrelationship between abnormalities using 
hHBAs. For example, SCN1A gene expression is associated with 
sudden unexplained death in epilepsy (SUDEP), which has unclear 
connections to the heart and the brain. Patients with Dravet 

syndrome, a rare genetic encephalopathy, have a higher risk for 
SUDEP (Kearney, 2013) and often have variations in the SCN1A 
gene. Dravet syndrome patient-iPSCs develop cardiac (Frasier 
et al., 2018) and neural (Higurashi et al., 2013) abnormalities in 
ways indicating neuronal hyperexcitability and predisposition for 
arrhythmia are caused by SCN1A haploinsufficiency. Culturing an 
hHBA from Dravet syndrome patient-iPSCs will more closely 
resemble in vivo developmental changes in structure and function 
from SCN1A expression. SCN1A is expressed in both the heart and 
brain (Malhotra et al., 2001; Mishra et al., 2015), so only an hHBA 
can elucidate when, where, and how SCN1A gene expression starts 
to affect and intertwine systems pathologically. Culturing an hHBA 
from patient cells allows researchers to closely mimic human organ 
processes in a connected system. If researchers are going to 
enhance the field’s understanding of the heart-brain axis, then 
research on in vitro systems that can tackle the complexity of their 
partnership must advance.
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