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Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe 
cognitive dysfunction. Although research has mainly focused on forebrain 
abnormalities, emerging results support the involvement of the cerebellum 
in SZ physiopathology, particularly in Cognitive Impairment Associated with 
SZ (CIAS). Besides its role in motor learning and control, the cerebellum is 
implicated in cognition and emotion. Recent research suggests that structural 
and functional changes in the cerebellum are linked to deficits in various 
cognitive domains including attention, working memory, and decision-making. 
Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities 
and connectivity with brain regions associated with cognitive processing. This 
review delves into the role of the cerebellum in CIAS. We initially consider the 
major forebrain alterations in CIAS, addressing impairments in neurotransmitter 
systems, synaptic plasticity, and connectivity. We then focus on recent findings 
showing that several mechanisms are also altered in the cerebellum and 
that cerebellar communication with the forebrain is impaired. This evidence 
implicates the cerebellum as a key component of circuits underpinning CIAS 
physiopathology. Further studies addressing cerebellar involvement in SZ and 
CIAS are warranted and might open new perspectives toward understanding the 
physiopathology and effective treatment of these disorders.
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1 Introduction

Schizophrenia (SZ) is a complex neuropsychiatric syndrome affecting approximately 1% 
of the population worldwide. Although it is considered a low-prevalence illness, the burden 
of SZ is substantial and ranks among the top 10 causes of disability globally (Owen et al., 2016; 
Charlson et al., 2018; Marder and Cannon, 2019). SZ was traditionally classified into several 
categories, such as paranoid, hebephrenic, undifferentiated, residual, catatonic, and simple. In 
2013, a significant change was made with the release of the fifth edition of the Diagnostic and 
Statistical Manual of Mental Disorders (DSM-5). Following debate, DSM-5 abandoned the 
traditional subtypes due to several factors and controversies concerning their clinical utility 
and reliability. The field shifted away from subtyping toward a broader diagnostic framework 
called “schizophrenia spectrum disorder” due to the need for a more comprehensive dimensional 
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approach to understanding the heterogeneity of SZ. This spectrum 
reflects the broader conceptual framework outlined in the DSM-5, 
which recognizes a spectrum of related conditions beyond classical 
SZ, includes diagnoses such as schizoaffective disorder, 
schizophreniform disorder, and others, acknowledging the diversity 
within psychotic disorders. This allows healthcare professionals to 
diagnose the condition based on the severity of symptoms (American 
Psychiatric Association, 2013). Symptoms typically appear during the 
late teenage or early adulthood, mainly among men, while it becomes 
prevalent in women from age 40 onwards (Charlson et  al., 2018; 
Velligan and Rao, 2023). The onset of SZ during early 
neurodevelopment establishes it as a neurodevelopmental disorder 
(Fatemi and Folsom, 2009). The symptoms, course, prognosis, and 
treatment efficacy vary from patient to patient. It encompasses a range 
of symptoms, including hallucinations and delusions (positive), lack of 
emotion, joy, and motivation (negative), and impaired memory, 
attention, learning, and decision-making (cognitive) (Patel et al., 2014; 
Queirós et  al., 2019). Among these, the “Cognitive Impairment 
Associated with SZ” (CIAS) is core, accounting for much of the 
impaired functioning associated with the disorder not responsive to 
existing therapies (McCutcheon et al., 2023). This may result in higher 
rates of co-incidence of medical and/or mental illnesses, such as 
substance abuse, mainly alcohol and cannabis consumption, with 
prevalence rates up to 41.7% (Hunt et al., 2018), and more likely to get 
health complications, including cardiovascular disorders (Nielsen 
et  al., 2021), diabetes (Mamakou et  al., 2018), immune-related 
disorders (Pouget et al., 2019), endocrine dysfunctions (Misiak et al., 
2021), and respiratory diseases (Suetani et al., 2021). Consequently, 
SZ patients show higher mortality rates than healthy individuals 
(Correll et al., 2022). Given the complex nature and wide range of 
variables involved, the etiology of SZ is multifaceted and requires 
extensive investigation and an integrated approach. Nonetheless, 
recent neurobiological research has implicated several factors in the 
development of SZ (Orsolini et al., 2022), including:

(i) Genetic: SZ is a highly heritable disease, with several genetic 
alterations implicated in its onset and development, including copy 
number variants (CNVs), genetic mutations, risk genes, gene 
polymorphism, and single nucleotide polymorphism, which mainly 
affect brain functionality during pre-pubertal and pubertal age 
(DeLisi, 2022; Owen et al., 2023). Family and twin studies show an 
incidence risk of around 80% (Sullivan et al., 2003; Lichtenstein et al., 
2009), while the remaining 20% is attributed to non-heritable factors, 
including environmental, stochastic, and de novo mutations risk 
factors. It is worth noting that the 22q11.2 deletion (a type of CNV) 
showed the highest effective size among SZ patients (Owen et al., 
2023). The expression of specific gene alleles of the major 
histocompatibility complex (MHC) has been related to alterations in 
white matter microstructure within tracts innervating the frontal lobe 
(Emily Simmonds et al., 2023), particularly on chromosome 6 and 19, 
influencing axonal density in tracts connecting to the frontal lobe. 
This suggests that alterations in axonal packing, driven by MHC risk 
alleles, might represent a neurobiological mechanism in SZ. Family 
cohorts, linkage studies, and genome-wide association studies 
(GWAS) led to identifying multiple loci-related SZ risks (Allen et al., 
2008; DeLisi, 2009; Ripke et al., 2020).

(ii) Epigenetic: Epigenetic alterations involve modifications to 
gene expression influenced by external cues, and are hypothesized to 
act as a mediator of environmental risk factors (see iii) involved in 

SZ pathophysiology (Rivollier et  al., 2014; Chen et  al., 2021). 
Epigenome-wide association study approaches led to the discovery 
of genetic loci that undergo differential epigenetic regulation (Perzel 
Mandell et  al., 2021). Neurodevelopmental dysfunction, which is 
hypothesized as a significant contributor to SZ beyond genetic 
influences, was initially proposed by Weinberger, who posits that 
genetic predisposition and environmental insults during gestation 
alter the neurodevelopmental process and are latent until the 
maturational changes of adolescent exposure to earlier 
neurodevelopmental abnormalities (Weinberger, 1987). These 
findings underscore the complexity of SZ etiology, wherein both 
genetic and environmental factors interact to shape 
neurodevelopmental trajectories and contribute to structural and 
functional alterations in different brain regions. Sustained brain 
development into young adulthood emphasizes vulnerability until 
typical SZ onset. The “two-hit” and “multiple hits” hypotheses propose 
that the chance of developing SZ increases with exposure to several 
risk factors that alter essential processes during ongoing development 
(Davis et al., 2016). A comprehensive analysis in a cohort of 381 SZ 
patients showed a significant contribution of DNA methylation 
alterations to the phenotypic diversity including cognitive deficits 
(Kiltschewskij et  al., 2023). These factors may lead to structural/
functional alterations in different brain regions.

(iii) Environmental: Several environmental factors, including 
abnormal fetal development and low birth weight, pregnancy-related 
diabetes, preeclampsia, other birthing complications, maternal 
malnutrition and vitamin D deficiency during pregnancy, winter 
births (which are associated with a 10% higher relative risk), social 
environment, urban residence, childhood trauma or stress are 
implicated in the development of SZ (Jones, 2013; Löhrs and Hasan, 
2019; Crossley et  al., 2021; King et  al., 2023). Moreover, immune 
dysfunctions and neuro-inflammatory processes seem to play a role 
in SZ pathogenesis. Studies evidenced the involvement of neuro-
inflammation (Müller, 2018) and autoinflammation in SZ (Delunardo 
et al., 2016) but microglia activation has not been confirmed by PET 
studies in humans (Marques et al., 2019). Compared with healthy 
individuals, SZ patients have an older brain for their chronological age 
and have the most pronounced acceleration of brain aging based on 
the model of frontal features (Kaufmann et al., 2019). Thus, early aging 
negatively affects the brain volume causing an age gap that is 
considered a potential biomarker of SZ (Man et al., 2021). Moreover, 
structural and functional abnormalities in some brain regions 
potentially cause deviations in the brain aging trajectory (Ballester 
et al., 2023). On the contrary, data from 26 cohorts suggested that 
advanced structural brain aging among SZ is not associated with 
specific clinical characteristics (Constantinides et al., 2023).

Several therapeutic strategies exist to reduce the symptoms, 
including antipsychotics, psychosocial interventions, electroconvulsive 
therapy, and alternative and complementary therapies (Correll et al., 
2023). However, each approach has significant limitations (Khandaker 
et al., 2015; Stępnicki et al., 2018). Since the existing therapies may 
only be effective for 50% of patients, the estimated life expectancy of 
SZ is 15–20 years shorter than that of the general population (Correll 
et al., 2022), and it mostly addresses positive symptoms rather than 
negative and cognitive symptoms and causes multiple neurological 
and metabolic complications (Stępnicki et al., 2018; Robbins, 2019). 
Therefore, understanding SZ’s mechanisms and alterations is crucial 
for developing novel, mechanism-based therapies.
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Brain imaging techniques have shown abnormalities in different 
brain regions (Karlsgodt et al., 2010; Zhao et al., 2018; Khalil et al., 
2022; Sone et al., 2022). The alterations include reduction in brain 
volume, particularly in frontal and temporal regions, abnormal 
connectivity between brain nodes, and altered neurotransmitter activity 
(Wright et al., 2000; Dean, 2002; Cannon et al., 2003; Karlsgodt et al., 
2010; McCutcheon et  al., 2020). Decades ago, Andreasen and 
colleagues, developed a model that implicates the connectivity among 
brain nodes located in prefrontal regions, thalamic nuclei, and 
cerebellum, suggesting that disruption in this circuitry produces 
“cognitive dysmetria” (Andreasen et al., 1998), encompasses difficulty 
in prioritizing, processing, coordinating, and responding to 
information. Subsequently, the cerebellum started to attract attention 
due to its potential role in the SZ physiopathology.

The cerebellum, historically known to control movement and 
motor coordination, gaining importance also for its involvement in 
different cognitive, affective, and social functions (D'Angelo and 
Casali, 2012; Schmahmann, 2019; Jacobi et  al., 2021; 
Supplementary material). Failure of cerebellar functioning determines 
the so-called cerebellar cognitive affective syndrome (CCAS) 
(Schmahmann and Sherman, 1998) in addition to ataxia. Furthermore, 
studies exploring the organization of cerebro-cortical pathways have 
shown intricate connections between the cerebellum and various 
regions of the brain involved in high cognitive functions (Palesi et al., 
2015, 2017; Schmahmann, 2019; Jacobi et al., 2021). The concept of 
the universal cerebellar transform suggests that the cerebellum 
expresses a fundamental computational capability that extends beyond 
motor processing (D'Angelo and Casali, 2012). This notion is in line 
with the dysmetria of thought theory, proposing that the cerebellum 
participates in cognitive operations by fine-tuning the timing and 
coordination of mental processes (Andreasen and Pierson, 2008; 
Yeganeh-Doost et  al., 2011; Bernard and Mittal, 2015; Cao and 
Cannon, 2019; Schmahmann, 2019). Growing evidence suggests that 
cerebellar abnormalities play a central role in the pathophysiology of 
SZ (Andreasen and Pierson, 2008; Yeganeh-Doost et al., 2011; Bernard 
and Mittal, 2015; Cao and Cannon, 2019) by influencing cortical 
processing (Andreasen and Pierson, 2008; Yeganeh-Doost et al., 2011; 
D'Mello et al., 2015; Mapelli J. et al., 2022).

In the last 50 years, the number of PubMed articles including the 
terms “schizophrenia” and “cognitive impairment” has increased 
(Figure 1A), while adding “cerebellum” it remains notably smaller 
(Figure 1B). This cannot solely be due to the time gap (the cerebellum 
hypothesis in CIAS was introduced 25 years ago) highlighting the 
need for further investigating the field. In this review, we  first 
summarize recent literature about brain abnormalities in CIAS and 
then explore the involvement of cerebellum, emphasizing structural 
and functional abnormalities, along with alterations in 
neurotransmitter systems and connectivity.

2 Neural dysfunction in cognitive 
impairment associated with SZ (CIAS): 
the classical view

Factor analyses of the Measurement and Treatment to Improve 
Cognition in SZ test battery identified seven cognitive domains: (1) 
processing speed, (2) attention, (3) working memory, (4) verbal 
learning and memory, (5) visual learning and memory, (6) reasoning, 

and (7) social cognition and executive functions (Nuechterlein et al., 
2004). Eventually, dimensionality reduction suggests that these seven 
domains can be reduced to the parent domains of processing speed, 
attention/working memory, and learning (Burton et al., 2013) bearing 
relevant cerebellar implications (see below). Among these, processing 
speed is the most affected domain in SZ. However, it is associated with 
antipsychotic treatments, and the severity of the impairment does not 
differ from that observed in verbal and working memory (Knowles 
et al., 2010; Yeganeh-Doost et al., 2011; D'Angelo and Casali, 2012; 
Fatouros-Bergman et al., 2014). Considering the time course of CIAS, 
the overall cognitive impairment is detectable during childhood, while 
the severity of verbal and nonverbal deficits increases throughout the 
first two decades of life (Mollon et  al., 2018). These deficits can 
be observed in the first episode and are more severe among the clinical 
high-risk group. However, cognitive symptoms may manifest before 
the stabilization of psychotic symptoms during adolescence, and 
evidence suggests they could even be  evident before the onset of 
psychosis. Notably, the decline of cognitive processes throughout the 
illness is considered a defining feature of SZ (Hedges et al., 2022). 
Indeed, most cognitive decline over two decades post-hospitalization 
often exceeds normal aging. This underscores the importance of 
focusing on cognition as a therapeutic target during later stages of 
psychotic illness (Fett et al., 2020). As cognitive shortages are present 
before the prodromal period and persist throughout the development 
of the disease, they could be a potent biomarker and target for early 
detection and prevention. The severity of cognitive impairment is 
greater in SZ compared to other psychiatric disorders. A meta-analysis 
suggested more severe cognitive symptoms, particularly in attention 
and social cognition, among SZ patients compared to bipolar disorder 
(Li et al., 2020).

Twin and GWAS studies showed a strong negative correlation 
between liability for SZ and cognitive function (Toulopoulou et al., 
2007; Davies et al., 2018; Savage et al., 2018). Additionally, several 
deficits in the ability to detect sarcasm were observed among mono 
and heterozygous twin groups as compared to healthy co-twin. 
However, impairments were also observed in the unaffected 
homozygous co-twins, indicating that socio-cognitive deficits could 
be a genetic vulnerability indicator of the illness. The socio-cognitive 
decline was associated with lower intelligence and higher levels of 
psychopathology among SZ patients (Lemvigh et al., 2022). Several 
genes have been correlated with CIAS, due to their implication in 
modeling and shaping neuronal plasticity, including DISC1, NRG1, 
AKT1, and DTNBP1, which influence cognitive abilities in SZ 
(Tripathi et al., 2018). These alterations were detected at both cellular 
(neuron and glia) and circuit levels (Millan et al., 2012). Nevertheless, 
the genetic underpinnings of cognitive abilities do not imply a direct 
link. For instance, when the individual has less access to educational 
opportunities, the phenotype-associated alleles might negatively 
correlate with cognitive capacity. Therefore, it is fundamental to 
consider environmental influences too. Aberrant communication 
between brain regions and processing in cortical columns are the core 
pathology of CIAS and are thought to involve alterations in synaptic 
plasticity and network connectivity. Alterations in gamma band 
activity were correlated with SZ susceptibility, indicating that shifts in 
synaptic function and neuronal firing patterns are of 
pathophysiological relevance rather than consequences of this 
disorder (Dimitriadis et al., 2021). Alpha and beta band activity was 
correlated with disrupted temporal connectivity in (para) limbic areas 
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and associated with reduced signal memory and higher variability 
across time in SZ patients (Alamian et al., 2020). Several neuronal-
based alterations seem to contribute to CIAS, including abnormalities 
in neurotransmitter systems, structural/functional changes (Karlsgodt 
et al., 2010; Zhao et al., 2018; Sone et al., 2022), impaired synaptic 
plasticity, and deviations in neural oscillations. Consequently, multiple 
neurophysiological and neurochemical models were proposed in 
CIAS (Javitt, 2023).

In this section, we present relevant studies on neuromodulator 
abnormalities and related hypotheses in CIAS, focusing on cerebral 
regions following the classical view. The potential role of the 
cerebellum will be discussed in the subsequent section of this review.

2.1 Abnormal neurotransmitter systems

Several neurotransmitters have been implicated in SZ 
pathogenesis, but whether their alterations are causative, 
compensatory, or simply consequential remains unclear. SZ patients 
have altered levels and activity of neurotransmitter systems, especially 
dopamine, acetylcholine (Ach), serotonin, glutamate, and GABA 
(Mandal et  al., 2022), Impacting multiple brain circuits through 
disruption of the Excitatory/Inhibitory (E/I) balance (Liu et al., 2021). 
Notably, dysfunctions primarily involve the alteration of dopaminergic 
control. Nevertheless, other neurotransmitter systems appear altered 
and implicated in CIAS. Here, we  illustrate the relevant 
neurotransmitter hypotheses related to CIAS, particularly those 
implicated in the forebrain and midbrain regions (Figure 2) and set 
the basis for SZ physiopathology and pharmacotherapy. Issues related 
to the cerebellum are considered in the next section.

2.1.1 Neurotransmitter models
Dopamine plays a central role in SZ pathophysiology (Howes and 

Kapur, 2009) as shown by rich experimental evidence (Simpson et al., 
2010; McCutcheon et al., 2019, 2020; Selten and Ormel, 2023). Current 
findings underscore dopamine’s central role in CIAS (Slifstein et al., 
2015; Simpson and Kellendonk, 2017). The dopamine hypothesis was 

developed post-hoc to account for the serendipitous discovery of the 
anti-psychotic effect of some dopaminergic drugs (Carlsson and 
Lindqvist, 1963; Creese et al., 1996), while genetic support is limited 
(Edwards et  al., 2016). The dopaminergic hypothesis can 
be summarized as the combination of two main effects: (1) excessive 
dopamine activity in the mesolimbic pathway (Simpson et al., 2010; 
Elert, 2014; McCutcheon et al., 2019), specifically in the striatum, 
disrupts the neurotransmitter balance impairing the functioning of 
other brain regions involved in cognitive processing; (2) reduced 
dopamine activity in the mesocortical pathway, connecting the ventral 
tegmental area (VTA) to the prefrontal cortex (PFC), is linked to both 
negative symptoms and CIAS (Brisch et al., 2014; Elert, 2014; Slifstein 
et al., 2015; Simpson and Kellendonk, 2017; Figure 2A). The dual 
dopamine hypothesis (Elert, 2014; McCutcheon et  al., 2020) also 
opens an issue for the functioning of dopaminergic antipsychotics, 
whose efficacy is largely linked to their affinity for the D2R distributed 
both in cortical and subcortical regions (Toda and Abi-Dargham, 
2007; Howes et al., 2012; de Bartolomeis et al., 2023). Although the 
dopamine hypothesis is central to SZ, its dysregulation in the striatum 
and cerebral cortex is just one aspect of the complex pathophysiology 
of SZ. The cerebellum, whose dopaminergic system is starting to 
unveil, is also probably key to CIAS, as explained below.

Another relevant system for SZ is the cholinergic one. Ach plays 
a vital role in cognitive functions, and pharmacological manipulation 
targeting the Ach system influences attention, episodic, working, and 
spatial memories (Newman et al., 2012). Several experimental results 
converge toward the hypothesis of cholinergic hypofunctioning 
(Figure 2B) in SZ. Indeed, notable changes in the cholinergic system 
linked to CIAS, including (1) reduced cholinergic activity, (2) altered 
receptor functions (especially M1 and M4 mAChRs) (Crook, 
Tomaskovic-Crook et  al., 2000, Carruthers et  al., 2015), and (3) 
disrupted cholinergic-dopaminergic interactions (Foster et al., 2021). 
Although direct evidence on cerebellar cholinergic alterations in CIAS 
is scarce, its investigation could open new potential avenues.

Another neurotransmitter implicated in CIAS is serotonin or 
5-hydroxytryptamine (5-HT) (Eggers, 2013). Extensive evidence 
points to serotonergic hypofunctioning, suggesting that targeting the 

FIGURE 1

Trend of publications about CIAS on PubMed. (A) Number of publications related to the keywords “Schizophrenia and Cognitive Impairment” extracted 
from PubMed. (B) The number of publications related to the keywords “Schizophrenia and Cognitive Impairment and Cerebellum” extracted from 
PubMed. Publications including the cerebellum start to appear with a delay of about 30  years and reach a maximum of about 1/30 of the total 
publications on SZ and Cognitive impairment (Figures are created with the GraphPad prism 8).
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serotonin system might provide a viable treatment for CIAS. Thus, a 
comprehensive understanding of the mechanisms involved is crucial 
for designing effective treatments (Figure 2C). The conflicting findings 
on serotonin alterations, high level (Zhang et al., 2011), low 5-HT2 
receptor density, and altered enzyme activity underscore the complexity 
of its role in CIAS, suggesting potential treatments through serotonin 
system modulation. However, there are still gaps in understanding 
broader neural circuits beyond the forebrain and midbrain regions, 
crucial for addressing cognitive deficits. Thus, considering the 
serotonergic system in cerebellum (Oostland and van Hooft, 2013) 
and its influence on other neurotransmitters, consequently, cognitive 
processes, might further reveal how serotonin dysfunction interacts 
with CIAS (Section 3.2.3).

The incomplete effectiveness of current antipsychotics suggests 
that alterations in these systems do not account for most of the 
negative and cognitive symptoms. Therefore, a glutamatergic model 
of SZ has been proposed. Elert attributed altered concentrations of 
dopamine in different brain regions to glutamate dysregulation (Elert, 
2014), specifically, glutamate receptors in SZ patients are compromised 
preventing glutamate from binding to them and dysregulating the 
function of GABAergic inhibitory interneurons. The lack of inhibition, 
eventually, causes excessive dopamine in the nucleus accumbens, 
resulting in positive symptoms of SZ, and reduced dopamine 
concentration in PFC, leading to negative symptoms (Elert, 2014) 

(please note that, in Elert’s work, cognitive symptoms are considered 
together with the negative ones). Extensive evidence, combined with 
preclinical findings, supports the notion that alterations in the 
glutamatergic system, including neurotransmitter and transporter high 
levels in different brain regions (Matute et al., 2005; Merritt et al., 
2019, 2021; Adams et  al., 2022) and reduced NMDAR function 
(NMDAR hypofunction) (Gonzalez-Burgos and Lewis, 2012; 
Moghaddam and Javitt, 2012), play a crucial role in the development of 
CIAS, thus placing the glutamate system dysfunction at the core of SZ 
(Swanton, 2020; Figure 2D). Experimental evidence points also to 
GABAergic system alteration in SZ (Fatemi and Folsom, 2015). 
Specifically, Glutamic Acid Decarboxylase 67 (GAD67) downregulation 
(Fatemi et  al., 2005; Gonzalez-Burgos and Lewis, 2012; Fujihara, 
2023), low GABA level (Nakahara et al., 2022), receptor hypofunction 
(Marques et al., 2021) and downregulation, and transmission deficits 
are linked to CIAS (Dienel et al., 2023), emphasizing the potential of 
targeting the GABAergic system for improving CIAS. For a review of 
the glutamatergic and GABAergic hypothesis together see Yeganeh-
Doost et al. (2011). Given the fundamental role of the glutamatergic 
and GABAergic systems of cerebellum, these will be considered below 
for their potential contribution to CIAS (Sections 3.2.4, 3.2.5).

Based on glutamatergic and GABAergic alterations, an altered E/I 
balance can eventually explain CIAS (Jelen et al., 2019, Liu et al., 2021, 
Gawande et  al., 2023). Restoring the E/I balance and addressing 

FIGURE 2

Neurotransmitter alterations in the SZ brain. The most affected brain regions are shown in different colors depending on the neurotransmitter system 
they belong to. Hyperfunctioning and hypofunctioning regions are identified with red and blue arrows, respectively. Note that the cerebellar 
neurotransmitter hypothesis is illustrated in Figure 5. (A) Dopamine system: there is evidence for dopamine hypofunction in prefrontal cortex and 
ventral tegmental area (VTA) (mesocortical pathway). In contrast, there is dopamine hyperfunction in the striatum (mesolimbic pathway). 
(B) Cholinergic system: there is evidence for alteration of the cholinergic system in multiple brain regions, including downregulation of muscarinic 
receptors (M1 and M4) in both cerebral cortex and striatum, along with reduction of cholinergic signaling in the hippocampus. (C) Serotonergic 
system: there is evidence for high serotonin levels and low 5-HT2 receptor density in the prefrontal cortex, while the serotonin level and its metabolites 
are elevated in basal ganglia. (D) Glutamatergic system: there is evidence for multiple alterations in the brain glutamatergic system; NMDARs in 
prefrontal cortex and iGlutRs in hippocampus are hypofunctional, while excessive glutamate release is detected in basal ganglia, thalamus, 
hypothalamus, and VTA. (E) GABAergic system: there is evidence for decreased GABA concentration in the cingulate gyrus, particularly dorsal anterior 
cingulate cortex, and dorsolateral prefrontal cortical GABA-neurons; a low α5-GABAARs expression level is found in the hippocampus.
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abnormalities in glutamatergic and GABAergic neurotransmission 
may offer a potential target to improve cognitive function. In 
particular, the cerebellar E/I balance, potentially involved in various 
cognitive processes (Sections 1.2, 1.3 in Supplementary material), is a 
strong candidate to explore CIAS.

2.1.2 Pharmacological implications
Pharmacologically, multiple strategies are exploited to attack the 

neurotransmitter systems from different sites to ameliorate SZ positive 
and negative symptoms. The main drugs used are called typical (e.g., 
haloperidol and chlorpromazine) or atypical (e.g., olanzapine and 
risperidone), depending on whether they act on the dopaminergic 
system or also/exclusively on the others. Typical drugs are 
dopaminergic inhibitors, mostly acting on D2R, ameliorating the 
positive symptoms but often worsening the negative ones. Given their 
poor selectivity, these drugs also lead to side effects, including 
extrapyramidal disturbances, hyperprolactinemia, cognitive decline 
(Li et  al., 2016; Orzelska-Górka et  al., 2022), sedation, and 
cardiovascular issues (Stępnicki et al., 2018). Atypical antipsychotics, 
instead, address both positive and negative symptoms by affecting 
various other receptors and have fewer side effects. This is potentially 
due to their lower D2R affinity or to their preference for mesolimbic 
over nigrostriatal pathway receptors (Stępnicki et al., 2018; Orzelska-
Górka et al., 2022). Consequently, attempts to address cognitive and 
negative symptoms are growing, rather than exclusively targeting D2R 
in the dopaminergic system that mainly ameliorates positive 
symptoms. While atypical drugs might rescue negative symptoms, 
their primary efficacy remains in targeting positive ones. We argue 
that recent knowledge on cerebellar physiology will allow for 
considering new avenues for antipsychotic drug actions and 
neuromodulation (e.g., transcranial magnetic stimulation, TMS) in 
CIAS (Section 4.2).

2.2 Abnormal synaptic plasticity

Synaptic plasticity is the ability of synapses, connections between 
neurons, to endure structural and functional changes in response to 
stimuli. Short-term changes transiently affect local dynamics of 
neurotransmitter release and postsynaptic receptor activation, while 
long-term changes involve biochemical modifications of membrane 
receptors and ionic channels along with cytoplasmic and nuclear gene 
regulation, modifying the expression of membrane proteins and the 
formation/pruning of synapses. Long-term changes occur in the form 
of either long-term potentiation (LTP) or long-term synaptic 
depression (LTD). In most cases, these changes involve AMPA and 
NMDA receptors (Citri and Malenka, 2008), a fact particularly 
relevant to SZ, in which NMDARs seem to play a central role (Krystal 
et al., 1994; Verma and Moghaddam, 1996; Catts et al., 2016). In SZ, 
large-scale gene expression analyses showed minor but significant 
differences in genes associated with synaptic functioning in post-
mortem brain tissue of SZ versus control subjects (Jaffe et al., 2018). 
Moreover, structural and functional alterations of neuronal circuits 
have been observed (Wu et al., 2012), such as receptor modifications, 
dendritic spine adjustments, and postsynaptic density size reduction 
(Konopaske et al., 2014; McCollum et al., 2015). It was suggested that 
the synaptic changes and functional dysconnectivity observed in SZ 
patients are linked to E/I imbalance at the level of cortical microcircuitry, 

which influences cortical synchrony at the macroscale level (Stephan 
et al., 2006; Yizhar et al., 2011). Synchronized neural oscillations, in 
turn, influence cortical network plasticity (Huerta and Lisman, 1993; 
Singer and Gray, 1995) and are crucial for cognitive functions. 
Combined alterations in synaptic transmission, long-term synaptic 
plasticity, and synchronous oscillations seem to underpin CIAS 
(Uhlhaas and Singer, 2010). Altered presynaptic Ca2+ signaling was 
proposed to dysregulate LTP and to play a role in CIAS (Nanou and 
Catterall, 2018; Pereda et al., 2019; Wu et al., 2022).

Several lines of evidence support the role of altered synaptic 
plasticity in CIAS. LTP and LTD proved to be affected both in clinical 
and preclinical subjects (Wu et  al., 2022) and were significantly 
associated with the course of the disease (Hasan et al., 2011). TMS and 
transcranial direct current stimulations (tDCS) revealed impaired 
LTP-like plasticity due to dysfunctional NMDAR and GABAR (Hasan 
et al., 2011; Hamilton et al., 2020). In rodents with psychotic symptoms 
induced by MK-801, LTP following high-frequency stimulation is 
disrupted (Frankiewicz et al., 1996; Obi-Nagata et al., 2019). This 
effect may be related to NMDAR hypofunction in GABAergic neurons 
resulting in E/I imbalance and impaired synaptic plasticity, and results 
in a range of cognitive deficits, including attention, memory, and 
learning, while also contributing to hallucinations and delusions 
(Nakazawa and Sapkota, 2020).

Beyond functional evidence, genetic markers of synaptic plasticity 
showed alterations in neural cell adhesion molecule-1, Neurotropin-3, 
and Matrix-metalloproteinase-9 in CIAS (Keshri and Nandeesha, 2023). 
Large-scale gene expression studies evidenced a reduction in the 
presynaptic protein synaptophysin in hippocampus, frontal cortex, and 
cingulate cortex (Osimo et al., 2019). PET imaging revealed that synaptic 
vesicle glycoprotein 2A, widely expressed in presynaptic terminals and 
synaptic vesicles, was reduced in different brain regions in SZ, and was 
associated with either positive or cognitive symptoms (Onwordi et al., 
2021; Radhakrishnan et al., 2021). Post-mortem and GWAS findings 
were confirmed by transcriptomic and proteomic data obtained from 
patient-derived induced pluripotent stem cells (Santarriaga et al., 2023).

In summary, functional and genetic findings obtained using 
multiple techniques support alteration in synaptic transmission and 
plasticity in SZ (Abashkin et  al., 2021; Nascimento et  al., 2022) 
opening the question on how and when these changes happen. During 
neurodevelopment, genetic and environmental factors make synapses 
vulnerable to stress-triggered glia-mediated elimination, disrupting 
neuron function and worsening symptoms like psychosis (Howes 
et al., 2023). This can be especially relevant to SZ, typically emerging 
during adolescence or adulthood. Since neuronal plasticity is a critical 
factor implicated in CIAS, it may be  targeted to improve synaptic 
plasticity and cognitive performance in SZ (Mould et al., 2021). Again, 
the cerebellum presents major plastic mechanisms that might 
be relevant for CIAS and will be considered below (Section 3.2).

2.3 Abnormal connectivity

Dysconnectivity refers to disruption in communication and 
coordination between brain regions. The disconnection hypothesis 
(Friston et al., 2016) posits that a failure of functional integration occurs 
in the SZ brain. Accordingly, the alterations of structural and functional 
connectivity within and between brain regions is a core hypothesis of 
CIAS (Repovs et al., 2011; Frangou, 2014; Canu et al., 2015; Adhikari 
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et al., 2019; Uyy et al., 2020). The analysis of resting state (RS) networks 
implicated in cognitive control, task set maintenance, attention, and 
error processing (Fair et al., 2009) suggested that not only the cerebral 
cortex, primarily the prefrontal and limbic cortex, but also subcortical 
hubs, including cerebellum, thalamus, and basal ganglia, play an 
important role in the pathogenesis of SZ (Andreasen et  al., 1996; 
Andreasen and Pierson, 2008; van den Heuvel and Fornito, 2014; Rolls 
et al., 2020). An fMRI study demonstrated that connectivity alterations 
are circuit-specific, with prefrontal-limbic hypoconnectivity and primary-
sensorimotor hyperconnectivity extending consistently across subcortical 
nuclei (Avram et al., 2018). However, variations are reported depending 
on the stage of development of the disease (Kochunov et al., 2017; 
Anhøj et al., 2018; Sharma et al., 2018; Chen et al., 2019; Hu et al., 2023).

Dysconnectivity could explain distinct symptom dimensions 
(Avram et al., 2018) and correlated with social cognition, reasoning/
problem-solving, and working memory capabilities (Zarghami et al., 
2023). Dysconnectivity has been also related to specific 
neurotransmitter systems. A PET study suggested that aberrant striatal 
dopamine and cortico-thalamic connectivity are physiologically related 
within dopamine-modulated cortico-basal ganglia-thalamic circuits in 
SZ. Moreover, the disconnection between medial PFC and the dorsal 
hippocampus was related to CIAS in a rodent model of NMDAR 
hypofunction and was partially rescued by Risperidone (one of the 
most prescribed atypical antipsychotic drugs primarily targeting D2R 
and 5-HT2AR receptors and known to improve executive function, 
attention, learning, and memory) (Delgado-Sallent et al., 2023).

In conclusion, brain dysconnectivity plays a vital role in the 
pathophysiology of SZ, affecting multiple brain networks and 
contributing to cognitive impairment. A primary role is apparent for 
brain circuits involving associative areas, including the prefrontal, 
temporal, and limbic cortex. Nonetheless, findings across studies show 
a range of changes, including reduced connectivity in some networks 
(thalamic-frontal, left frontoparietal, lateral and medial visual, 
sensorimotor, DMN, and auditory) and increased connectivity in 
others (right central executive, right ventral attention, subcortical 
nuclei networks). Moreover, dysconnectivity correlates with distinct 
symptom dimensions and is associated with specific neurotransmitter 
systems. The involvement of cerebellum, among the subcortical 
regions, has also emerged and will be considered in Section 3.3.

2.4 Abnormal neurodevelopment

The neurodevelopmental deficit is a fundamental concept in the 
pathophysiology of SZ and provides an ontogenetic framework for 
modifications in neurotransmitters, connectivity, and synaptic 
plasticity. Weinberger hypothesized that SZ symptoms, despite 
appearing in early adulthood, stem from environmental and genetic 
factors causing abnormal prenatal brain development (Weinberger, 
1987). The onset of the illness occurs during a vulnerable period in 
adolescence when neural alterations may be activated (Fatemi and 
Folsom, 2009). Synaptic formation and maintenance occur during the 
second and third trimester of pregnancy, then synaptic connectivity 
develops during childhood. These ontogenetic changes are crucial for 
learning, memory, and brain functioning. Alterations in synaptic 
development can lead to SZ and ASD (Hall and Bray, 2022). The onset 
of SZ in adolescence can be related to the “plasticity switch” secondary 
to the peripubertal brain maturational changes, caused by 

modifications in the glutamatergic system. The loss of plasticity could 
result in social and non-social cognitive deficits (Keshavan and 
Hogarty, 1999). Synaptic pruning with excessive elimination of 
synapses and loss of synaptic plasticity alters microconnectivity and 
can lead to the emergence of symptoms in the predisposed brain. 
Another possible mechanism is myelination of the heteromodal 
association cortex that proceeds postnatally. During adolescence 
(Peters et  al., 2012), aberrant myelination and oligodendrocyte 
number may contribute to connectivity dysfunction in SZ.

The neurodevelopmental hypothesis explains why prodromal 
symptoms of SZ start during adolescence. Likewise, individuals who 
will later develop SZ may exhibit non-specific indications of mild 
brain dysfunction before the onset of the disease, which can 
be observed as subtle motor abnormalities or cognitive impairments 
(Cuesta et  al., 2018). Cognitive decline continues from the first 
episode through the chronic stage (Bonner-Jackson et  al., 2010; 
Sheffield et al., 2018). Although cognitive deterioration is common in 
all stages of SZ, deficiencies in executive functions (e.g., learning, 
processing speed, organization) are more common in the chronic 
stage (Stone and Seidman, 2016). In clinical high-risk SZ adolescents, 
progressive grey matter reduction in the right superior frontal, middle 
frontal, and medial orbitofrontal cortical regions, as well as a greater 
rate of expansion of the third ventricle, were observed (Cannon et al., 
2015). This was replicated in a subsequent meta-analysis (Ding et al., 
2019). In addition, white matter abnormalities, pointing to a 
neurodevelopmental pathology, were observed (Seitz-Holland 
et al., 2023).

Genetic alterations are thought to lay at the basis of the aberrant 
neurodevelopmental processes in SZ and are evaluated using the 
polygenic risk score and its correlations with clinical and anatomo-
functional parameters (Cattarinussi et al., 2022; Fernandez-Cabello 
et al., 2022).

A factor that could operate during pregnancy is maternal 
infection with the consequent immune activation that impairs 
dendritic spine development and synaptic plasticity (Pekala et al., 
2021). Reduced synaptic plasticity along with reduced dendritic 
spines, decreased expression of synaptic genes, and abnormal 
synaptic neurotransmission have been reported in SZ (Berdenis van 
Berlekom et  al., 2020). Indeed, reduced dendritic spine density 
(together with reduced parvalbumin interneurons) is a 
characteristic histopathological feature of SZ. The loss of 
microconnectivity can cause aberrant myelination, impaired 
connectivity, and cognitive deficits (Valdés-Tovar et al., 2022; Wu 
et al., 2022). The interaction between genetic and environmental 
insults linked to the neurodevelopmental model in SZ has been 
recently reviewed in detail (Schmitt et  al., 2023). Prenatal and 
perinatal complications, childhood trauma, and maternal immune 
activation interact with genetic susceptibility to shape 
neurodevelopmental trajectories and increase the risk of developing 
SZ (Schmitt et al., 2023).

Relevant to this review, a recent Polygene score analysis evidenced 
the role of the cerebellum and its connectivity in neurodevelopmental 
psychiatric disease, suggesting that the genetic patterning for child 
psychopathology is distinct from that for adults, and implicates fetal 
cerebellar development (Hughes et al., 2023). A better evaluation of 
cerebellar neurodevelopmental abnormalities is warranted, given the 
identification of over 1,000 genes in the cerebellum related to 
neurodevelopmental disorders (Sepp et al., 2024).
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3 The potential role of cerebellum in 
CIAS

Following the identification of the CCAS (Schmahmann and 
Sherman, 1998; Schmahmann, 2016; Argyropoulos et al., 2020) and the 
core hypothesis on cognitive dysmetria (Andreasen et  al., 1998; 
Andreasen and Pierson, 2008), new evidence calls for updating the role 
of cerebellum in CIAS (see Figure  3 and Sections 1.1, 1.2, 1.3  in 
Supplementary material for details on cerebellar anatomy and physiology):

 (1) Cognitive domain: The multiscale analysis of circuit operations 
supports the cerebellar involvement in the main cognitive 
domains of CIAS, attention, learning, decision-making 
(D'Angelo and Casali, 2012), akin to the involvement of 
cerebellum in cognitive, emotional, and behavioral control 
(Ciapponi et al., 2023; Supplementary Figure S1).

 (2) Processing speed: The cerebellum contributes substantially to 
mechanisms of CIAS, like processing speed, by allowing mental 
processing to move from controlled to automatic mode (Wong 
et al., 2021).

 (3) Connectivity: The cerebellum shows tight bidirectional 
connectivity with associative areas involved in CIAS, especially 
the PFC (Palesi et al., 2015, 2017, 2018).

 (4) Microcircuit level: Cerebellar functioning relies on a delicate 
regulation of the internal E/I balance, which appears altered in 
CIAS (D'Angelo and De Zeeuw, 2009; Mapelli et  al., 2014; 
Nieus et al., 2014; Perez-Garcia, 2015; De Schepper et al., 2022).

 (5) Whole brain level: The cerebellum controls the functioning and 
rhythms of the cerebral cortex (Popova and Naumenko, 2013; 
Margarint et al., 2020), which show relevant alterations in CIAS.

 (6) Neuromodulation systems: The cerebellum is emerging as part 
of complex regulatory systems that subtend CIAS and are based 
on dopamine (Ikai et al., 1994; Carta et al., 2019; D'Angelo, 
2019; Cutando et al., 2022; Kimura et al., 2023), Ach (Jaarsma 
et al., 1997; Zhang et al., 2016; Okkels et al., 2023; Zhao et al., 
2023), and 5HT (Oostland and van Hooft, 2013; Saitow et al., 
2013). Moreover, the cerebellum hosts among the most 
important NMDA receptor-dependent neurotransmission and 
plasticity mechanisms in the brain, addressing the 
glutamatergic hypothesis of CIAS (Hansel et  al., 2001; 
Contestabile, 2002; Bouvier et al., 2016; Mapelli L. et al., 2022).

3.1 Cerebellar structural and functional 
abnormalities and CIAS

Cerebellar Crus I- II, VIIB, and, to a lesser extent, VIIIA and VI, 
are linked to executive functions and cognitive control and deficits in 
tasks requiring flexibility, inhibition, and goal-directed behavior can 
emerge from damage to these areas (Schmahmann and Sherman, 
1998; Argyropoulos et  al., 2020). Posterior cerebellar lesions are 
associated with deficits in executive functions that resemble those 
observed in prefrontal lesions, including impairment in planning, 
verbal fluency, working memory, problem-solving, and multi-task 
performance and organization (Schmahmann and Sherman, 1998, 
Argyropoulos et al., 2020), while lesions in vermis and paravermis 
regions are associated with behavior alteration and mood disturbance. 
Likewise, cerebellar degeneration can cause impairments of executive 

function, working memory, and perceptual processing (Kansal et al., 
2017). Verbal and phonemic fluency, working memory, cognitive 
flexibility, immediate and delayed recall, verbal learning, and 
visuomotor coordination were variably associated with lobule VI, 
Crus I- II, VII B, and/or IX, whereas immediate, and delayed recall 
show associations with the anterior lobe.

Cerebellar abnormalities in psychosis are tied not only to a specific 
diagnosis or illness stage but also to developmental factors and 
premorbid cognitive disturbances (Moussa-Tooks et  al., 2022). 
Cerebellar dysfunction has been repeatedly correlated with CIAS 
(Andreasen and Pierson, 2008; Dean and Porrill 2014; Ding et al., 2019, 
Kim et al., 2021). Neuroimaging studies reported smaller cerebellar 
volume, altered intra-cerebellar and cerebellar-cerebral RS functional 
connectivity, and reduced cerebellar activation during cognitive tasks 
(Zhuo et al., 2018; He et al., 2019; Kim et al., 2021; Lundin et al., 2021; 
Moussa-Tooks et al., 2022). On a microscopic scale, neuropathological 
changes include lower Purkinjie Cell (PC) density and reduced distal 
and terminal dendritic branches (Mavroudis et al., 2017). PCs and 
granular cells (GrCs) are key in maintaining the E/I balance but, in SZ, 
deficits in the development of PCs and GrCs (and possibly also in other 
cell types) could alter the E/I balance required for cerebellar network 
functioning (Perez-Garcia, 2015; Figure 3).

First-episode SZ patients exhibit reduced cerebellar grey matter 
and altered functional activation prominently in lobules IV, V, VII, 
and VIII, and in Crus I-II (Ding et al., 2019; Kaufmann et al., 2019; Li 
X. et  al., 2022; Li Y. et  al., 2022). Moreover, mean age and illness 
duration were negatively associated with the reduction in the left Crus 
II (Li X. et al., 2022). A correlation study between cerebellar anatomy 
and functional activation with cognitive scores revealed that 
anatomical characteristics predicted both cognitive abilities and 
psychopathology (Moberget et al., 2019) [but see Guo et al. (2018) and 
Moussa-Tooks et al. (2022)]. A recent preclinical study reported an 
increase in climbing fiber/Purkinje cell synaptic connectivity following 
neonatal subchronic administration of Phencyclidine (PCP), a drug 
of abuse with psychomimetic effects leading to long-term behavioral 
changes related to SZ in rodents (Veleanu et al., 2022). In a post-
mortem study, cerebellar cortex abnormalities correlated with the 
altered expression of 23 genes involved in cerebellar presynaptic 
vesicular transport, Golgi function, and GABAergic neurotransmission 
(Mudge et al., 2008).

In SZ patients, cerebellar cortex volume is significantly decreased, 
with the most pronounced effects observed in regions functionally 
connected with frontoparietal cortices. This has been consistently 
reported as one of the most prominent structural alterations, alongside 
other changes such as reductions in hippocampus volume and 
frontotemporal cortical thickness. Positive correlations emerged 
between cerebellar volume and cerebral cortical thickness in 
frontotemporal regions, suggesting common underlying disease 
processes jointly affecting the cerebellum and the cerebrum. 
Interestingly, cerebellar volume reduction in SZ was highly consistent 
across the age span 16–66 years and was present already in the 
youngest patients, which is more in line with neurodevelopmental 
than neurodegenerative etiology (Moberget et al., 2018, 2019).

Bègue and co-workers used canonical correlation analyses to link 
cerebellar grey matter volume to cognitive functioning. They proposed 
two maps: one associated with cognitive flexibility, processing speed 
and working memory (Crus II and Lobule X) and the other with 
working memory (Crus I and Lobule VI), both linked also to working 
memory (Bègue et al., 2023). While cerebellar volume reduction is the 
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most common finding, an increase in right cerebellum and lingual 
gyrus grey matter volume was also associated with formal thought 
disorders in SZ patients (Maderthaner et al., 2023).

Finally, sexual dimorphisms have been considered in normative 
cerebellar developmental trajectories, challenging the belief that males 
have inherently larger cerebellar volumes, possibly due to differences 
in hormonal fluctuations and environmental experiences (Sefik et al., 
2022). In clinical high-risk SZ females, smaller cerebellar cortex sizes 
correlated with more severe disorganization symptoms, especially in 
negative-related domains, while SZ males under 20 showed reduced 
white matter volume (Sefik et al., 2022) (see Figure 4 for cerebellar 
structural/functional alterations and Figure  3 for 
microcircuit abnormalities).

3.2 Cerebellar neurotransmitters alteration 
in CIAS

Like the forebrain, the cerebellum is regulated through a complex 
system of neurotransmitters (Ottersen, 1993). Fast excitatory synaptic 

transmission is mediated by glutamate, and inhibitory synaptic 
transmission is mostly mediated by GABA (although there are also 
glycinergic synapses). Glutamate is released from mossy fibers (mfs) 
onto GrCs (D'Angelo et al., 1990) which, in turn, release glutamate 
onto PCs. GABA regulates the overall excitability of the cerebellar 
circuit. GABAergic neurons (Purkinje cells, Golgi cells, stellate cells, 
and basket cells) provide inhibitory signals that fine-tune and 
modulate the output from the cerebellum to other parts of the brain 
(Mapelli et al., 2014; Nieus et al., 2014). In addition to GABA and 
glutamate, several neuromodulators, such as dopamine, serotonin, 
noradrenaline, and acetylcholine, play important roles in modulating 
cerebellar function (Zhang et  al., 2016). For example, while the 
cerebellum is not classically considered an elective dopaminergic 
region, recent studies showed that it has an important involvement in 
dopaminergic control and plays a role in dopamine deficit-related 
neurological and psychiatric disease (Flace et al., 2021). Serotonin is 
known to modulate GABAergic and glutamatergic signaling in the 
adult cerebellum, where it can adjust PCs and Lugaro cell firing rate 
(Dieudonné and Dumoulin, 2000; Fleming and Hull, 2019). Ach can 
enhance glutamatergic neurotransmission and plasticity in the 

FIGURE 3

Alterations in the SZ cerebellar microcircuit. (A) Healthy cerebellar microcircuit: The simplified circuit scheme includes cortical (grey area) and 
subcortical structures. Afferent fibers activate the cerebellar cortex as well as DCN cells (DCN-C) and IO cells (IO-C), then the DCN emits the output 
and inhibits the IO. The cerebellar cortex is therefore a large side loop controlling DCN activity. The cerebellar cortex contains various types of 
neurons, primarily granule cells (GrC), Golgi cells (GoC), Purkinje cells (PCs), stellate cells (SC) and basket cells (BC). Other neurons, including Lugaro 
cells, unipolar brush cells, candelabrum cells, and globular cells are not shown. The two primary inputs are mossy fibers (mf), originating from various 
brainstem and spinal cord nuclei, and climbing fibers (cf) originating from the IO. Signals conveyed through the mossy fibers diverge, activating the 
DCN and the granular layer (containing GrC and GoC). The ascending axon of the GrC bifurcates in the molecular layer (containing PC, SC, and BC), 
forming the parallel fibers (pf). The cerebellar cortical circuit consists in a forward excitatory neuronal chain forming multiple inhibitory loops: mossy 
fibers excite GrCs, which subsequently activate all the other cortical elements. In the granular layer, inhibition is provided by GoC, and in the molecular 
layer by SC and BC. Finally, PCs inhibit the DCN. The IO, which is also activated by brainstem and spinal cord projections, controls PC activity through a 
single powerful synapse. Consequently, the entire system can be seen as a complex mechanism regulating the DCN output. Re-drawn from D'Angelo 
et al. (2016). (B) Cerebellar microcircuit in schizophrenia condition: The figure illustrates the main alterations reported in the SZ cerebellar microcircuit. 
The grey matter and white matter thickness are decreased. Microscopic alterations include reduced density of the main neuronal populations (PCs, 
GrCs, inhibitory interneurons), reduced PC dendritic branching, altered synaptic vesicular transport (not shown), increased connectivity at climbing 
fiber/PC synapses, disconnection between PC and neuronal populations in the DCN.
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cerebellar glomeruli (Prestori et  al., 2013). Eventually, these 
neuromodulators can influence cerebellar functioning impacting 
motor learning and control as well as cognitive processing (Ankri 
et al., 2015; Mapelli et al., 2015; Gao et al., 2016; Flace et al., 2021). 
Since dysfunction and imbalance in neurotransmitter systems lead to 
various neurological disorders including CIAS, addressing the 
intricate interplay of cerebellar neurotransmitters could provide 
insight into the underlying causes of these disorders and allow for the 
development of targeted treatments to restore cognitive decline in 
SZ. The evidence supporting the impact of cerebellar neurotransmitters 
in CIAS is presented below and summarized in Figure 5.

3.2.1 The cerebellar dopaminergic system
As seen above, dopamine in forebrain circuits is crucial for 

cognitive functioning and is significantly implicated in SZ 
pathophysiology (Davis et al., 1991; Kesby et al., 2018) (Section 2.1). 
A fact that has not been sufficiently recognized before is that dopamine 
is also present at high concentrations in the cerebellum. In rodents, 
the deep cerebellar nuclei (DCN) show higher dopamine 
concentrations than hippocampus and cerebellar cortex, and similar 
to frontal cortex (Versteeg et al., 1976). Several clinical and preclinical 
studies showed a crucial involvement of cerebellar dopaminergic 
mechanisms in CIAS (Demirtas-Tatlidede et al., 2010; Rogers et al., 
2013; Parker et al., 2014).

Recently, the cerebellar dopaminergic system has been 
characterized. Receptor subunits D1R-D5R have been reported in 
various lobules of the cerebellar cortex, mostly in PCs, where they 
impact synaptic and cellular plasticity (Cutando et  al., 2022). 
Dopaminergic projections to the cerebellar cortex and nuclei originate 
mainly from VTA (Ikai et al., 1994) and in part from locus coeruleus 
(Canton-Josh et  al., 2022) that also gives rise to the major 
dopaminergic midbrain and cerebral pathways (Panagopoulos and 
Matsokis, 1994). Moreover, PCs produce dopamine (Li et al., 2023). 
Finally, the cerebellum output through the DCN regulates the VTA 
(Carta et al., 2019) and the substantia nigra (Washburn et al., 2024). 
Therefore, the cerebellum has a triple relationship with the dopaminergic 
system: it produces dopamine, it receives dopaminergic innervation, and 
it regulates the dopaminergic systems of the brain stem and basal ganglia.

PCs synthesize and release dopamine in an activity-dependent 
manner modifying local microcircuit functioning (Li et al., 2023). 
Dopamine binds to D1Rs in Bergman glial cells causing membrane 
depolarization and activating a Ca2+ signaling cascade leading to 
AMPA receptor GluA1 subunits membrane insertion and glutamate 
release. This, in turn, enhances interneuron activity reducing PC 
excitation by parallel fibers and climbing fibers (cfs) and altering the 
PCs firing frequency and pattern, eventually impacting locomotor and 
social behavior. These findings indicate that the cerebellar 
dopaminergic system has a critical pathophysiological role in disorders 
associated with motor and social dysfunction (Li et al., 2023). Axons 
coming from the locus coeruleus may regulate cerebellar cortex 
activity by co-releasing dopamine onto D1R-positive unipolar brush 
cells. PCs, then directly inhibit the same unipolar brush cells, forming 
a dopamine-sensitive recurrent circuit (Canton-Josh et al., 2022).

The cerebellum modulates VTA dopamine release via direct 
projections impacting the expectation/reward mechanism (Carta 
et al., 2019; Holloway et al., 2019). This pathway extends the role of 
cerebellum in error detection to the discrepancy between motivation 

and expectation of reward allowing a cerebellar control on emotional 
and social behavior (D'Angelo, 2019).

As seen above, hypoactivity in the mesocortical pathway is 
associated with negative symptoms and CIAS (Toda and 
Abi-Dargham, 2007; Treadway and Zald, 2011). Interestingly, reduced 
functionality in cerebellar circuits alters dopaminergic activity in the 
medial PFC (Rogers et al., 2011), suggesting that a third, cerebellum-
related, control system impacts dopaminergic functions in SZ. Indeed, 
electrical stimulation of the Purkinje layer and DN evokes a long-
lasting increase in dopamine release in PFC. Thus, a disconnection 
between the PCs and neuronal populations of the DN could alter 
dopaminergic signaling in PFC and impact SZ symptoms (Mittleman 
et al., 2008) and CIAS. Reduced interaction between the cerebellum 
and the basal ganglia-dopamine network might be  involved in 
regulating the motivation domain (Yoshida et al., 2022).

Indirect evidence supports this hypothesis. (1) In rat cerebellum, 
the atypical antipsychotic blonaserin and the anxiolytic buspirone 
engage extensively in D3R regulation and their action is associated 
with cognitive impairment (Baba et al., 2015; Di Ciano et al., 2017). 
(2) A reduced cerebellar expression of SP transcription factors and 
D2Rs was related to negative symptoms observed in SZ (Pinacho et al., 
2013). (3) In genomic DNA isolated from the cerebellum, the atypical 
antipsychotic agent olanzapine increased methylation of genes related 
to the dopaminergic system, such as D3R, DOPA decarboxylase, and 
VMAT2 (SCL18A2/VMAT2) (Melka et al., 2013). (4) Alteration in 
D2R levels in PCs of male mice during adulthood alters sociability and 
preference for social novelty without affecting motor functions 
(Cutando et al., 2022). (5) Aberrant dopamine neurotransmission in 
SZ influences the cerebellar vermis affecting time processing and 
directly addressing the cognitive dysmetria hypothesis (Yeganeh-
Doost et al., 2011). While more research is warranted, a causal link is 
beginning to emerge between cerebellar dopamine and CIAS.

3.2.2 The cerebellar cholinergic system
Cholinergic signaling in the cerebral cortex and basal forebrain 

is strongly related to learning and memory (Lecrux et  al., 2017) 
(Section 2.1) but its role in the cerebellum is less explored. 
Nevertheless, there is growing evidence indicating that cholinergic 
projections from the brainstem may influence cerebellar function and 
play a modulatory role in cognitive processing. Cholinergic 
projections form the third afferent system of the cerebellum, following 
cfs and mfs (de Lacalle et al., 1993), and seem to play a modulatory 
role by biasing neuronal excitability and synaptic responses, 
eventually influencing the cerebellar output and behavioral responses 
(Zhang et al., 2016).

Nearly half of cholinergic neurons in the brainstem project to 
cerebellum (Zhao et al., 2023). The vermis also harbors a substantial 
population of cholinergic neurons, and a dysfunction in this region 
may potentially contribute to cognitive deficits (Huang et al., 2007), as 
observed in Parkinson’s disease patients (Maiti et  al., 2020). Both 
nAChRs and mAChRs are expressed in the cerebellum and are 
activated by Ach released from cholinergic fibers.

In rodents, mAchRs are present in all cerebellar lobules with 
differential expression across layers. Expression is higher in the PC 
layer of lobules I-V, Crus I-II, in the GC layer of lobules VI-VII, and 
in the molecular layer of all other lobules. Cholinergic fibers emerge 
from the inferior peduncle and spread across the cerebellar cortex as 
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mfs, glomerular rosettes, and thin varicose fibers (Jaarsma et  al., 
1997). The cerebellum shows choline acetyltransferase (ChAT) 
(Jaarsma et al., 1997) and acetylcholine esterase (Okkels et al., 2023) 
activity, and [18F] FEOBV PET imaging have revealed Ach uptake in 
the cerebellum in vivo, most markedly in the vermis and 
flocculonodular lobe (Okkels et al., 2023).

The α7-nACh receptor subunit controls LTD/LTP balance at 
mf-GrC synapses, which, consequently, facilitates neural adaptation 
(Prestori et al., 2013). Similarly, applying nicotine during an air-puff 
stimulation task influences GrCs activity (Xu et al., 2019). Cerebellar 
nAChRs can also regulate GABA release from interneurons in a 
subtype-specific manner and affect cognitive functions (Turner 
et al., 2011).

Alterations of the cerebellar cholinergic system were documented 
in various mental disorders and associated with cognitive decline. For 
instance, in a rat model of Japanese encephalitis characterized by 
marked damage in cognitive functions, transient spatial learning and 
memory deficits were due to reduced cholinergic activities in various 
brain regions including the cerebellum (Chauhan et al., 2016). The 
reduction involved most cholinergic markers, including total 
muscarinic receptor bindings and M2 receptor, CHRM2 mRNA level, 
and ChAT expression (Chauhan et al., 2016).

Ach plays a crucial role in the cerebellar interpositus nucleus 
during execution and coordination of voluntary movements, 
through activation of muscarinic receptors. Moreover, the 
cholinergic system is relevant for reward-related behavior (Pickford 
et al., 2023). Bilateral cerebellar infusion of scopolamine (mAChR 
antagonist), or Mecamylamine (mAChR antagonist) differentially 
impaired motor performance (Pickford et al., 2023). Disruption in 
cholinergic neurotransmission has been associated with executive 
dysfunction in animals and humans affected by SZ (Section 2.1). 
While there is currently no direct evidence evaluating the role of 
cerebellar cholinergic signaling in CIAS, alterations in the cholinergic 
system might impact CIAS. For instance, individuals with SZ often 
experience cognitive impairments in working memory, attention, 
and executive functions, all of which have been associated with 
cerebellar activity and cerebellar cholinergic signaling. These 
observations are indirect and further research is required to elucidate 
the relationship between cerebellar cholinergic dysfunction 
and CIAS.

3.2.3 The cerebellar serotonergic system
Serotonergic signaling regulates mood, cognition, and various 

physiological processes, and its alteration is implicated in SZ 
pathophysiology (Section 2.1). Although serotonin is commonly 
associated with PFC and limbic system, it is also present in the 
cerebellum (Oostland and van Hooft, 2013), and serotonergic fibers 
represent one of the primary input pathways. Cerebellar 5-HT 
modulates glutamatergic and GABAergic synaptic transmission, 
regulates signal flow in PCs, facilitates firing, and regulates synaptic 
transmission and long-term synaptic plasticity in DCN neurons 
(Saitow et  al., 2013). In the cerebellar cortex and DCN, different 
subtypes of serotonergic receptors (5-HT1B, 5-HT2B, 5-HT2A, 5-HT3, 
and 5-HT5A) have been identified (Duxon et al., 1997; Oostland and 
van Hooft, 2013).

The serotonergic system controls cerebellar development and is 
implicated in neurodevelopmental diseases (Oostland and van Hooft, 
2013). Initially, 5-HT regulates dendritic growth and synaptic 

plasticity. In the first postnatal week, activation of 5-HT₁R expressed 
by GrCs and PCs stimulates dendritic growth and synapse formation 
(Oostland et al., 2014). Then, activation of 5-HT₃ Rs in GrCs limits 
dendritic growth of PCs by modulating pf-PC plasticity and cf 
competition for PC dendrites. Finally, activation of 5-HT₂R in GrCs 
and PCs during late postnatal development and in the mature 
cerebellum stabilizes synaptic activity (Oostland and van Hooft, 2013; 
Oostland et al., 2014). The Lugaro cells are also specifically targeted by 
serotonergic inputs that can increase their firing thereby inhibiting 
Golgi cells (GoC) (Dieudonné and Dumoulin, 2000).

Under physiologic conditions, cerebellar 5-HT1ARs decline 
during the neonatal stage and disappear by early childhood. In 
contrast, in SZ, cerebellar 5-HT1ARs persist in adulthood, specifically 
in the vermis, in relation to abnormal serotonergic innervation (Slater 
et  al., 1998). These results support the notion that SZ has a 
neurodevelopmental component and that cerebellar 5-HTRs 
expression goes wrong during ontogenesis. This aspect is intriguing 
since 5-HT1AR is strongly associated with disturbed mood and 
emotion (Popova and Naumenko, 2013). Upregulation of cerebellar 
5-HT1AR in SZ has been confirmed by in vivo PET imaging (Tauscher 
et al., 2002) while immunolabeling revealed that cerebellar 5-HT2AR 
is reduced in SZ subjects (Eastwood et al., 2001).

The reported alterations in 5-HTR expression in the cerebellar 
cortex and nuclei contribute to the serotonergic hypothesis of SZ, 
although a direct demonstration is still lacking. Please note that 
altered cerebellar serotonergic signaling is potentially associated with 
ASD, where a broad distribution of 5-HT5A mRNA has been revealed 
in all cerebellar regions (Marazziti, 2002).

3.2.4 The cerebellar glutamatergic system
Alterations of the glutamatergic system in SZ (see Section 2.1) 

have been reported not just in the basal ganglia, temporal lobe, and 
thalamus (Merritt et  al., 2023) but also in the cerebellum. The 
cerebellum contains the highest concentration of NMDA receptors in 
the brain along with a rich variety of receptor subtypes and receptor-
dependent mechanisms. A recent preclinical study suggested the 
crucial role of cerebellar glutamatergic neurotransmission during 
brain development in motor and social behavior (van der Heijden 
et al., 2023).

Cerebellar NMDARs are crucial for neuronal survival 
(Contestabile, 2002) and circuit development and functioning 
(Rabacchi et  al., 1992; Bidoret et  al., 2009). Repeated ketamine 
administration causes neurodegeneration in the cerebellum and 
memory loss in rats (Onaolapo et  al., 2019). PCP administration 
during the neonatal stage impacts development of the olivocerebellar 
circuit. In the PCP model, the mRNA levels of two GoC selective 
NMDAR subunits, NR2B and NR2D, decreased (Bullock et al., 2009). 
In humans, in the first episode of psychosis, individuals displayed 
elevated levels of glutamate both in the associative striatum and 
cerebellum (de la Fuente-Sandoval et al., 2013). All NMDAR subunits 
are expressed in the cerebellum, with significant expression of GluN2C 
and GluN2D (Thompson et al., 2000), and might be altered in SZ 
(Schmitt et al., 2010).

Alterations in cerebellar NMDAR expression and activity were 
implicated in cerebellar circuit dysconnectivity and strongly correlated 
with CIAS (Yeganeh-Doost et al., 2011). The expression of the NR2C 
subunit in mature mf-GrC synapses (Mullasseril et  al., 2010) is 
regulated by NRG1 (Ozaki et al., 1997), which is a vulnerability gene 
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for CIAS (Douet et al., 2014). In addition, D-serine deregulation is 
significantly implicated in CIAS (Ma et  al., 2019). D-serine, a 
co-agonist of NMDAR on the glycine binding site (D'Angelo et al., 
1990), is oxidized by D-amino acid oxidase (DAO/DAAO), which can 
regulate the NMDAR function via D-serine breakdown. DAAOs are 
expressed mainly in cerebellum with little expression in the frontal 
cortex (Benzel et al., 2008; Jagannath et al., 2017).

In SZ subjects, a reduced expression of the monomeric form of 
mGluR5 was specifically revealed in the lateral cerebellum and 
associated with mood disorders in SZ (Fatemi et al., 2013; Matosin 
et al., 2014; Fatemi and Folsom, 2015).

Moreover, histological alterations were observed in cerebellar 
slices in a ketamine-induced SZ model in mice; the changes were seen 
mostly in neurodegenerating cerebellar areas, particularly in PCs 
showing apoptosis with pyknotic nuclei, irregular dark cytoplasm, and 
wide interstitial spaces around the cells. This effect was reversed in 
groups treated with Carpolobia lutea G. Don extract and clozapine 
(Omeiza et al., 2023). Notably, the recovery of tissue damage was 
associated with mitigation of positive, negative, and 
cognitive symptoms.

3.2.5 The cerebellar GABAergic system
GABA is the main inhibitory neurotransmitter in the cerebellum 

and the entire brain (Section 2.1). In the cerebellum, GABA helps 
regulate and balance neural activity, contributing to motor control, 
coordination, and cognitive functions. It was hypothesized that, in the 
cerebellum, the effectiveness of the GABAergic inhibitory system 
might be reduced in SZ to counterbalance NMDAR hypofunction 
(Yeganeh-Doost et al., 2011) contributing to cognitive impairment 
(Piras et  al., 2019). The cellular density of GABAergic Purkinje 
inhibitory neurons in cerebellum is decreased in psychotic patients 
(Maloku et al., 2010).

Early findings from clinical and preclinical trials showed alterations 
in cerebellar GABA signaling in SZ patients. The mRNA and protein 
levels of GABA synthesizing enzymes GAD67 and reelin, which are 
expressed in GABAergic interneurons, were downregulated (Guidotti 
et  al., 2000; Fatemi et  al., 2005; Bullock et  al., 2008). Like other 
neuromodulators, the alterations were not limited to receptor function 
and expression but also involved GABA levels. A higher concentration 
of cerebellar GABA was detected in SZ patients, and this was associated 
with lower phonemic fluency and a reduced number of switches 
between subcategories compared to healthy subjects (Piras et al., 2019). 
GAD56 and the presynaptic GABA transporter GAT-1 were also 
reduced along with PC density (Bullock et al., 2009; Maloku et al., 2010).

GABAAR containing α6 subunits (α6GABAARs) are located at 
cerebellar GoCs-GrCs synapses and extra-synaptic sites, where they 
regulate the precision of inputs required for cerebellar timing (Mapelli 
et al., 2014; Mapelli J. et al., 2022). These receptors have an impact on 
motor activity and are involved in cognitive processing and adequate 
responses to external stimuli in the cerebellum, eventually implicated 
in CIAS (Lee et al., 2022). The α6GABAARs were upregulated in post-
mortem cerebellar tissues and in a rat model induced by PCP (Bullock 
et al., 2009).

Dysfunction in cerebellar GABAergic interneurons leads to reduced 
synchronization across brain regions, affecting cortical information 
processing (Yeganeh-Doost et al., 2011). The specific impairment of 
subsets of cerebellar GABA-expressing interneurons in SZ (Piras et al., 
2019; Lee et al., 2022) could disrupt the coordination between cerebellum 
and cortex contributing to neuropsychological deficits (Piras et al., 2019).

3.3 Cerebellar dysconnectivity and CIAS

The cerebellar cortical circuit is illustrated in Figure  3A. PCs 
integrate signals from the IO-cf and the mf-GrC-pf pathways, and 
project to DCN neurons which, in turn, projects back to various brain 
regions (D'Angelo and Casali, 2012). This way, the cerebellar cortex 
forms intricate connections with the cerebral cortex, basal ganglia and 
VTA that are core to CIAS and SZ. The disruption in cerebellar network 
communication, tied to deficiencies in dopamine, glutamate, and GABA 
transmission, has been indeed proposed to explain reduced connectivity 
in SZ patients (Giersch et al., 2016, Katz Shroitman et al., 2023; Figure 6).

3.3.1 CTCC loops and cognitive dysmetria
The cerebellum forms extensive connections with the forebrain via 

DCN and thalamus generating cerebello-thalamo-cortical circuits 
(CTCCs) that are thought to underly cognitive and affective functions 
(Schmahmann, 2016; Ribeiro and Sherrard, 2023). Functionally, the 
cerebellar and cerebral systems work in concert to refine the timing of 
neural operations (Castellazzi et al., 2014, 2018; Palesi et al., 2015, 2017, 
2018; Bohne et al., 2019; Fujita et al., 2020; Pisano et al., 2021; Li Y. et al., 
2022) (see Supplementary material). Through the thalamus, the 
cerebellum is implicated in coordinating the coherence of oscillations 
between cerebral cortical structures (Popa et al., 2014; Gambosi et al., 
2023; Heck et al., 2023). The cerebellum, as part of the CTCC, performs 
an error-detection duty and works as a modulator of cognitive 
information acquired from the cortex (Bang et al., 2018). SZ was early 
hypothesized to arise from a disrupted CTCC communication impairing 
the error detection function of the cerebellum (Andreasen et al., 1998; 
Andreasen and Pierson, 2008; D'Angelo and Casali, 2012), and a wealth 
of studies have recently focused on abnormal CTCC connectivity as a 
core pathology of SZ as well as other psychiatric disorders (Okugawa 
et al., 2004; Koch et al., 2010; Bang et al., 2018; Hanaie et al., 2018; Wang 
et al., 2018; Ding et al., 2019; Kim et al., 2021; Park et al., 2021). Lesions 
of the posterior cerebellum have been related to cognitive dysmetria and 
CIAS (Yeruva et al., 2021). A seminal work revealed the functional 
connectivity of DN with whole-brain and its association with cognitive 
impairments and other psychotic symptoms in patients with drug-naïve 
and first-episode SZ (Xie et al., 2021). The increased connectivity of DN 
with the bilateral postcentral gyrus and decreased connectivity of DN 
with the right inferior temporal gyrus and regional cerebellum (e.g., 
Vermis IV, V, and Crus I) were correlated with CIAS. The other hub of 
the CTCC is the thalamus, and altered functional connectivity between 
cerebellar hemispheres, mediodorsal nucleus, and lateral geniculate 
nucleus of the thalamus was reported in SZ (Collin et al., 2011; Liu et al., 
2011; Chen et al., 2013; Anticevic et al., 2014; Barch, 2014).

Both in first-episode and chronic SZ patients, altered cerebellar 
functional connectivity in RS fMRI was observed with broad cerebral 
regions, including association networks, the sensorimotor network, 
the limbic network, basal ganglia network, and the DMN (Liu et al., 
2011; Chen et al., 2017; Guo et al., 2018; Zhuo et al., 2018; Xie et al., 
2021; Feng et al., 2022). Critical connector hubs were identified using 
voxel-based analysis in the cerebellum, midbrain, thalamus, insula, 
and calcarine sulcus, with connectivity to multiple RS networks 
affected in SZ (Yamamoto et al., 2022). These findings were supported 
by cognitive task-dependent fMRI, in which SZ patients showed 
significantly increased connectivity between the cerebellum and left 
lateral parietal cortex compared to healthy participants (King et al., 
2023). Reduced blood flow in the CTCC during cognitive tasks in SZ 
was related to deficits in cerebellar inhibition of the DCN (Daskalakis 
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et  al., 2005). The strength of functional connectivity between the 
cerebellum and lateral parietal regions, such as the postcentral gyrus 
and supramarginal gyrus, was associated with negative symptoms, 
including socio-cognitive dysfunctions and cognitive decline in SZ 
(Guo et al., 2018; Brady et al., 2019; Park et al., 2021; Choi et al., 2023).

3.3.2 Cerebellar connectivity with basal ganglia
The cerebellum sends monosynaptic glutamatergic projections to 

dopaminergic and non-dopaminergic neurons of substantia nigra pars 
compacta (Washburn et  al., 2024). Moreover, the cerebellum and 
striatum communicate with the thalamus and cortex via monosynaptic 
and polysynaptic connections, producing cortico-striatal-thalamic-
cerebellar (CSTC) loops. Associative CSTC subdivisions showed 
consistent brain-wide bi-directional changes in SZ, hyperconnectivity 
with sensory cortices, and hypoconnectivity with association cortex. 
Such alterations were strongly related to cognitive impairment (Ji 
et al., 2019). A study of resting-state networks in SZ patients showed 
increased functional connectivity in the DMN associated with 
decreased connectivity in the cerebellar network (Rong et al., 2023). 
Connectivity of the cerebellum with basal ganglia and regions 
involved in visual, sensorimotor processing and reward was also 
altered (Yoshida et al., 2022).

3.3.3 Cerebellar connectivity with VTA
The cerebellum is connected to and transmits direct stimulatory 

signals to the VTA, a brain region responsible for the elaboration of 
rewarding experiences. Optogenetic activation of the cerebellum-VTA 
connections led to a sense of reward. In the three-chambers social task, 
these connections become more active when the animal engages with 
the social chamber during exploration. These data define a major, 
previously unappreciated role of the cerebellum in controlling the reward 
circuitry and social behavior, indicating that the cerebellum may mediate 
SZ symptoms through abnormal connections with the midbrain 
dopamine brain regions, such as VTA (Carta et al., 2019). Interestingly, 
recent RS fMRI imaging findings from first-episode SZ patients showed 
decreased static and dynamic functional connectivity of VTA and 
substantia nigra pars-compacta to cerebellar vermis (lobules VII and IX), 
thalamus, striatum, prefrontal lobe, and cingulate gyrus (Xue et al., 2023).

3.3.4 Cerebellar neurodevelopment and 
neuroinflammation

The cerebellum fetal development endures during childhood and 
influences the postnatal maturation of multiple cortical regions (Wang 
et al., 2014). Alterations in this process might, in turn, impact on 
SZ. Indeed, a combined volume reduction in cerebellum (lobules I–V, 
VIII) and sensorimotor cortex are associated with increased SZ 
externalizing symptoms (Miquel et al., 2019). Moreover, reduced grey 
matter volumes in cerebellum and functionally coupled cortical 
regions are associated with psychiatric symptoms in mid-childhood 
(Hughes et al., 2023). Interestingly, altered functional connectivity 
between cerebellum and medial PFC in SZ patients was linked to high 
childhood trauma scores (Dauvermann et  al., 2021). Moreover, 
increased connectivity between left lateral parietal cortex and 
cerebellum was correlated with low-grade systemic inflammation and 
high plasma IL-6 level, higher childhood neglect, and increased DMN 
connectivity (King et  al., 2023). Therefore, the main genetic and 
epigenetic factors of SZ may also act on the cerebellum driving a 
cascade of effects impacting the pathogenesis of the disease.

4 Summary, conclusions, and 
perspectives

4.1 Summary and key findings

Since the original proposal for the cerebellar involvement in SZ 
25 years ago (Andreasen et al., 1998; Andreasen and Pierson, 2008), 
a large body of evidence has accumulated showing that the 
schizophrenic brain exhibits various abnormalities in most brain 
regions controlling cognitive processing (Karlsgodt et  al., 2010; 
Zhao et al., 2018; Sone et al., 2022; Javitt, 2023). On one hand, the 
cerebral cortex and forebrain regions have revealed alterations in 
micro- and macro-structure, development, neurotransmission, 
plasticity, and connectivity. On the other, the hypothesis of the 
involvement of the cerebellum in SZ is gaining credit. The 
cerebellum is involved in multiple aspects of cognitive processing 
(Schmahmann, 2016; D'Angelo, 2018; D'Angelo, 2019; 
Schmahmann, 2019; Jacobi et  al., 2021; Ciapponi et  al., 2023; 
Nguyen et al., 2023) and is connected functionally and anatomically 
to brain regions that are core domains of CIAS, such as PFC, basal 
ganglia, and VTA. Cerebellar alterations can either be  primary 
(genetic and epi-genetic) or secondary (compensatory) in origin 
and emerge on different scales (Figures 3–6):

 (1) Reduced cerebellar volume, more accentuated in specific 
areas, reflecting decreased grey matter and white 
matter thickness.

 (2) Microcircuit and cellular alterations, including reduced cell 
density (GrC, PC, and inhibitory interneuron), reduced PC 
dendritic branching, altered synaptic vesicular transport, and 
increased connectivity at climbing fiber/PC synapses.

 (3) Reduced connectivity with other brain structures, including 
PFC, basal ganglia, and VTA.

 (4) Reduced functional activation of specific areas during 
cognitive tasks.

 (5) Dopaminergic hypofunction, serotonergic unbalance, 
glutamatergic and GABAergic dysfunction.

A potential explanation of this broad set of alterations is that 
any changes in brain circuits bring about both direct effects and 
compensatory responses in various system components, which then 
reverberate across scales. Altered bidirectional connectivity in 
psychosis may stem from neurodevelopmental disruptions or 
compensatory mechanisms, influenced by neurotransmitter systems 
abnormalities. Dopaminergic dysregulation may disrupt cerebellar 
E/I balance and dopaminergic projections to cortical regions, while 
upregulated serotonin receptors promote synaptic pruning and 
plasticity, possibly leading to hyperconnectivity. Glutamate and 
GABA elevation in the cerebellum might influence 
hyperconnectivity by modulating excitatory and inhibitory 
neurotransmission thus inducing plasticity and connectivity. As a 
result, these micro-scale modulations of neuronal activity shift 
network dynamics in response to ongoing demands. These 
alterations, occurring during neurodevelopment and persisting into 
adulthood, may disrupt normal connectivity patterns, contributing 
to psychosis manifestation and progression. This cascade of effects 
puts cerebellar alterations at the core of the extended brain 
dysfunction characterizing CIAS.
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4.2 Cerebellar therapeutic targeting

The cerebellum may provide a promising target for innovative SZ 
treatments (Parker et al., 2014; Cao and Cannon, 2019; Hua et al., 
2022). The specific expression of certain synaptic receptor subtypes 
(e.g., D1R, and NR2C/DAAO, mGluR5, GABAa6,) in the cerebellar 
circuit might be exploited.

Cerebellar D1R is a promising therapeutic target for CIAS going 
beyond the more common D2R antagonists (Goldman-Rakic et al., 
2004). D1R agonists were found to enhance blood oxygenation level-
dependent (BOLD) signals in the cerebellum in addition to striatum, 
thalamus, and PFC, while D1R antagonists did the opposite (Kimura 
et al., 2023). This observation suggests revisiting the Weinberger’s view 
that D1Rs are principally located in PFC where they are hypo-
activated causing negative symptoms (Weinberger, 1987; Slifstein 
et al., 2015; Rao et al., 2018; McCutcheon et al., 2020), by integrating 
cerebellar D1R hypofunction as a potential cause of CIAS.

Cerebellar NMDA receptors may be  targeted using DAAO 
antagonists that exploit D-serine sensitivity (Kölker, 2018). 
Luvadaxistat, a potent DAAO inhibitor, is being developed for the 
treatment of CIAS and was recently tested with some success in SZ 
patients (O'Donnell et al., 2023).

Cerebellar α6GABAARs may be  targeted by selective positive 
allosteric modulators, which proved to alleviate positive, negative, and 
cognitive impairment in SZ in preclinical studies and rescued PPI by 

attenuating GrG activity (Chiou et al., 2018; Lee et al., 2022; Sieghart 
et al., 2022).

Moreover, invasive and non-invasive neuromodulation methods 
have been proposed to specifically target the cerebellum (Heath et al., 
1980, 1981; Aparício et al., 2016; Laidi et al., 2020; Hua et al., 2022; 
Pilloni et  al., 2022). TMS and tDCS can modulate PCs and then 
regulate DCN activity (Koch, 2010) and neural plasticity (D'Angelo 
et al., 2016). In preclinical studies, low-intensity rTMS caused PC 
dendrite and spine changes (Morellini et al., 2015) and tDCS regulated 
the PC output (Grimaldi et al., 2014; Pope and Miall, 2014; van Dun 
et  al., 2016). Interestingly, the effectiveness of these stimulations 
extended beyond the local circuit to extracerebellar networks causing, 
for example, changes in dopamine release (Fonteneau et al., 2018). 
Improvements in SZ cognitive symptoms were detected following 
cerebellar stimulation in different clinical trials (Escelsior and 
Belvederi Murri, 2019). For example, rTMS on posterior cerebellum 
could boost functional connectivity of the cerebellar-prefrontal 
circuitry ameliorating clinical symptoms (Brady et al., 2019; Singh 
et al., 2019; Basavaraju et al., 2021; Chauhan et al., 2021). It has been 
proposed that rTMS corrects alterations in error processing, which 
depend on information transfer and integration in the cerebellar-
cortical circuitry (Hengyi Cao and Cannon, 2019). Interestingly, 
optogenetic stimulation of thalamic synaptic terminals of lateral 
cerebellar projection neurons in a rodent model of SZ-related frontal 
dysfunction rescued timing performance as well as medial frontal 

FIGURE 4

Key structural and functional alterations in the SZ brain. The illustration summarizes the most prominent cerebellar structural and functional alterations 
observed in CIAS. Structural alterations are characterized by an overall reduction in volume, accompanied by a decrease in grey matter and white 
matter thickness (for microscopic alterations see Figure 3). Reduced functional activation in CIAS is observed in cerebellar lobules IV, V, VI, Crus I and II, 
VIIB, VIIIA, and VIIB. Each lobule is color-coded for clarity. In schizophrenia (right panel), the affected lobules are colored in pale shades.
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activity (Parker et al., 2017), suggesting that pathway-specific targeting 
is needed to improve the specificity of physical interventions on 
the cerebellum.

4.3 Open issues

There is still a large gap in our understanding of cerebellar 
involvement in SZ, especially concerning the initial alterations and 
their subsequent development, propagation, and compensation.

First, although abnormalities in the cerebellar neurotransmitter 
system have been documented, the intricate interconnections among 
these systems await elucidation. Open issues concern potential 
alterations in E/I balance and synaptic plasticity (Mapelli L. et al., 
2022), whose exploration would require physiological investigations 
in animal models of SZ (Section 2 in Supplementary material). Of 
special interest is understanding how cerebellar hypo-dopaminergic 
function might influence the glutamatergic and GABAergic systems 
and how this, in turn, modulates cerebellar E/I balance and 
determines the PC output. This is also true for cerebellar serotonin 
shortages observed in CIAS, and a full revisitation is needed for the 
cholinergic system (Zhang et al., 2016).

Secondly, several questions regarding how cerebellar circuits 
operate in the context of CIAS-related circuits remain open. The main 
one is whether the universal cerebellar transform (Ito, 2008; D'Angelo 
and Casali, 2012) is altered and how, in turn, this impacts cognitive 
performance in SZ. Related to this is the differentiation of activity and 
neuromodulation among specific cerebellar regions (Ciapponi et al., 
2023). This is particularly pertinent to the posterior lobules, which 
hold a pivotal role in cognitive processing.

Thirdly, it is not clear how shortages in cerebellar connectivity 
with other brain regions, including cerebral cortex, basal ganglia, and 
VTA, impact SZ. In turn, cerebellar dysconnectivity is related to 
neurodevelopment changes. Dysconnectivity may be, again, either a 
primary or a secondary event in SZ pathogenesis and bring about 
plastic changes that modify brain functions at system level.

4.4 Perspectives

Cognitive and negative symptoms are principal contributors to 
disability in SZ, but they are yet poorly treated by current therapies. The 
cerebellar involvement in CIAS (Section 4.1) is disclosing a promising 
target for therapeutic interventions (see Section 4.2). Thus, addressing 

FIGURE 5

Neurotransmitter alterations in the SZ cerebellum. The figure illustrates the cerebellar neurotransmitter systems and their hypothetical relationship with 
SZ. Hyperfunctioning and hypofunctioning are identified with red and blue arrows, respectively. Cerebellar dopaminergic system: dysregulation of 
dopamine receptors (DR), particularly D1R and D2R, would decrease dopaminergic transmission. Alterations also involve aberrant dopaminergic 
projections and overall downregulation of dopamine signaling. Cerebellar glutamatergic system: the hypothesis focuses on the hypofunction and 
downregulation of glutamate receptors, particularly NMDAR and mGluR5. It further includes the acceleration of glutamate transmission, release, and 
related enzymes, suggesting an altered glutamatergic system in the cerebellum. Cerebellar GABAergic system: the hypothesis involves various aspects, 
such as decreased GABAergic projections, aberrant levels of synthetic enzymes (like GAD67 and GAD56), and elevated GABA concentration. It also 
highlights specific GABA receptors, particularly α6 GABAAR, along with lower expression of GABA transporters, such as GAT-1. Cerebellar cholinergic 
system: there is no direct evidence for the involvement of the cerebellar cholinergic system in CIAS. Cerebellar Serotonergic system: some alterations 
were found in SZ, such as 5-HT1AR upregulation and 5-HT2AR downregulation.
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gaps in knowledge is necessary to achieve a more comprehensive 
understanding of CIAS and its underlying mechanisms (see Section 
4.3). In addition to MRI and electrophysiological recordings in humans, 
the precise analysis of neuronal activity and synaptic transmission and 
plasticity in animal models is needed to explain SZ-related alterations 
in connectivity, E/I balance, and synaptic plasticity, as well as in the 
GABAergic, glutamatergic, dopaminergic, serotonergic, and cholinergic 
systems of the cerebellum. Computational models can then be used to 
further understand the complex and heterogeneous nature of this 
disorder (Amunts et al., 2022; D'Angelo and Jirsa, 2022; Monteverdi 
et  al., 2022, 2023) paving the way for precise and personalized 
therapeutic approaches, especially in treating cognitive shortages.
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FIGURE 6

The main aspects of cerebellar dysconnectivity in SZ. In the scheme, different cerebellar projections show either increased (red arrows), decreased 
(blue arrow), or normal (green arrows) functional connectivity. Note the reduced functional connectivity with the prefrontal cortex and inferior 
temporal gyrus, the reduced functional connectivity with VTA, and the increased functional connectivity with the parietal cortex (see text for details).
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