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Multiple subfields of neuroscience research are beginning to incorporate

astrocytes into current frameworks of understanding overall brain physiology,

neuronal circuitry, and disease etiology that underlie sleep and sleep-related

disorders. Astrocytes have emerged as a dynamic regulator of neuronal activity

through control of extracellular space (ECS) volume and composition, both

of which can vary dramatically during different levels of sleep and arousal.

Astrocytes are also an attractive target of sleep research due to their prominent

role in the glymphatic system, a method by which toxic metabolites generated

during wakefulness are cleared away. In this review we assess the literature

surrounding glial influences on fluctuations in ECS volume and composition

across the sleep-wake cycle. We also examine mechanisms of astrocyte volume

regulation in glymphatic solute clearance and their role in sleep and wake

states. Overall, findings highlight the importance of astrocytes in sleep and

sleep research.
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1 Introduction

Throughout the central nervous system (CNS), extracellular fluid composition has a
prominent influence on neuronal activity patterns and, ultimately, the behavioral state
of the organism. A delicate balance of water, ions, neuromodulators, neurotransmitters,
and immunomodulators in the extracellular space (ECS) must be established and carefully
controlled – a function mostly attributed to glial cells (Simard and Nedergaard, 2004;
Syková, 2004; Hladky and Barrand, 2014). Given their close spatial orientation to neuronal
synapses and vasculature, and the expansive array of channels, transporters, and receptors
they express, astrocytes are well positioned to control ion homeostasis and other ECS
characteristics (Kim et al., 2015; Haidey et al., 2021). The composition and movement
patterns of cerebrospinal fluid (CSF) change dramatically over the course of the sleep-
wake cycle, reflecting the shifts in activity states of both neurons and astrocytes, as
well as astrocyte morphology (Ding et al., 2016; Sherpa et al., 2016; Forsberg et al.,
2022). Additionally, CSF parameters are frequently impacted in several disease states
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that also feature sleep disruptions, and fluid dysregulation may be
the factor linking these comorbidities (Taoka and Naganawa, 2021).
Despite a growing body of literature highlighting the contributions
of glia in sleep onset and regulation, a number of unknowns remain
regarding the mechanisms by which astrocytes contribute to these
changes in CSF parameters and overall state shifts.

1.1 Physiology of sleep and mechanisms
of sleep drive: a glial perspective

The cognitive and physiological consequences of sleep loss
have led researchers to conclude that sleep subserves vital
maintenance functions, including waste clearance from the brain
(Mendelsohn and Larrick, 2013; Xie et al., 2013; Lewis, 2021).
Sleep states are distinguished from wakefulness based on the
predominant frequency of cortical neuronal activity, measured by
electrocorticography (ECOG) or electroencephalography (EEG),
although oscillatory activity is also exhibited by subcortical
structures, like the thalamus, hypothalamus, and brainstem
(Halassa et al., 2010; Saper and Fuller, 2017; Lewis, 2021).
The onset of sleep is typically characterized by the transition
from high frequency, relatively desynchronized activity toward
synchronized, large amplitude, slow wave activity (SWA), which is
the predominant oscillatory pattern that characterizes non-rapid
eye movement (NREM) sleep (Vaidyanathan et al., 2021). Over
the course of NREM sleep, EEG patterns gradually shift toward
slower oscillations that span between defined frequency ranges,
with the deepest sleep characterized by delta waves (1–3 Hz) that
are thought to be generated by thalamocortical circuitry (Fuller
et al., 2006; Saper et al., 2010). Increased sleep intensity is associated
with increased time spent in SWA and incidence of delta waves,
and disruptions to NREM sleep have significant consequences
for cognitive function and overall brain health (Halassa et al.,
2009; Ju et al., 2017). From the deepest point of NREM sleep,
oscillations abruptly transition toward rapid eye movement (REM)
sleep, characterized by higher frequency activity, known as theta
oscillations (4–8 Hz).

Early efforts to characterize state transitions began with basic
observations that periods of prolonged wakefulness are followed by
periods of heightened fatigue and reduced latency to sleep (also
known as sleep rebound). However, the theory that sleep debt
results in a consistently increasing drive to sleep was contradicted
by reports of daily fluctuations in fatigue across a 72-h period of
sleep deprivation (Borbély, 1982). This resulted in the development
of a “two-process model” of sleep, which identified two parallel but
distinct cycles: a homeostatic “Process S” or “Factor S” that explains
the drive to sleep as a function of the amount of time spent awake,
and a state-independent “Process C” that is controlled by circadian
oscillators that modulate physiological conditions (Borbély, 1982;
Figure 1A).

Subsequent experiments utilizing behavioral assays and
extracellular fluid analyses refined the “Factor S” concept into
a somnogenic model of sleep drive, which specifies a variety of
sleep-inducing components, or somnogens, that build up over
the course of wakefulness and are reduced during sleep (Borbély,
1982; Krueger et al., 1990). Somnogens commonly include
neurotransmitters, hormones, and various pro-inflammatory

cytokines (Halassa et al., 2009; Schmitt et al., 2012; Bjorness et al.,
2016), although it is important to note that certain ions may
also have sleep-promoting effects (Ding et al., 2016). Somnogens
accumulate during waking neuronal activity, and also remain
elevated throughout the awake period. The slow and persistent
time course suggests that a majority of somnogens are likely not
released by synaptic activity, indicating a possible role for glia in
generating this buildup (Haydon, 2017). CSF flow rate is drastically
increased during sleep, suggesting that, in addition to serving
as a source for somnogens, astrocytes may also serve a critical
purpose in re-establishing equilibrium with respect to ECS volume,
accumulated ions, neurotransmitters, and other osmolytes (Xie
et al., 2013). In support of this theory, recent research has identified
an astrocyte-dependent system of metabolite clearance from the
brain, known as the glymphatic system (Iliff et al., 2012).

“Process C,” on the other hand, utilizes a circadian timeframe
that orchestrates cellular processes such as gene expression and
metabolism based on peripheral cues, including external lighting,
body temperature, and energy availability (Borbély, 1982; Prolo
et al., 2005; Pan and Kastin, 2017). All cells within the body show
circadian oscillations of some form in their cellular processes,
creating the larger cyclic framework necessary to maintain
circadian rhythm, and astrocytes are no exception (Prolo et al.,
2005; Lananna et al., 2018). Astrocytes have been shown to
play an important role in mediating rhythmicity of neurons in
several structures implicated in sleep-wake transitions, including
the thalamus, suprachiasmatic nucleus (SCN), the ventrolateral
preoptic area (VLPO) of the hypothalamus, and multiple regions
of the cerebral cortex (Lavialle and Servière, 1993; Crunelli et al.,
2002; Bellesi et al., 2015; Kim et al., 2020). Specifically in the SCN,
astrocyte morphology and transcription profiles show circadian
rhythmicity (Lavialle and Servière, 1993; Lananna et al., 2018),
and are thought to aid in the entrainment of neuronal circadian
oscillators through glutamatergic and immunomodulatory activity
(Leone et al., 2006; Duhart et al., 2013; Brancaccio et al., 2017).

It is important to note that the states of sleep and wake
themselves are not binary/homogeneous categories – there are
different levels of alertness and arousal that may occur during
wakefulness, and sleep itself is a dynamic state where the frequency
of neuronal oscillations fluctuates through the various phases
of sleep. Thus, additional factors must also be considered with
respect to the more transient changes within states that occur over
the span of minutes, rather than neuromodulator accumulation
or circadian shifts that span the entire day (Saper and Fuller,
2017; Lombardi et al., 2020). Astrocytes have been previously
shown to contribute to the spread of high-frequency, synchronous
excitatory activity in the context of seizures (Clasadonte and
Haydon, 2012; Kékesi et al., 2015), but their role in physiological
localized state changes is only beginning to be studied. A recent
report showed that inhibition of astrocyte signaling through block
of gap junctions drastically reduced generation of SWA (Szabó
et al., 2017). Astrocytes are important regulators of extracellular
glutamate concentration through glutamate uptake and release,
although the exact mechanisms of release are under debate (Angulo
et al., 2004; Sun et al., 2014; Fiacco and McCarthy, 2018).
Disruptions to glutamatergic activity in some wake-promoting
neuronal populations, including the supramammillary bodies and
select regions of the brainstem, have detrimental effects on
wakefulness and arousal (Saper and Fuller, 2017). Interestingly,
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FIGURE 1

Astrocyte volume changes during sleep and wakefulness. (A) The sleep-wake cycle is regulated by parallel systems. Circadian rhythm fluctuates
throughout the day, reaching maximal and minimal values at the midpoint of wake and sleep states, respectively. Sleep drive slowly rises to its
maximum throughout the wake state and diminishes to its minimum during the sleep state. Sleep pressure is defined as the distance between
circadian rhythm and sleep drive when aligned for time of day. Sleep pressure peaks just prior to entering the sleep state and is at its lowest upon
entering wakefulness (adapted from Borbély, 1982). Astrocytes appear to respond to maximal and minimal sleep pressure values, rapidly adjusting
their volume between sleep vs. wake states. (B) Astrocyte volume is inversely coupled to cerebral ECS volume such that increased astrocyte volume
during the wake state is associated with decreased ECS volume. These volume changes are osmotically driven and tightly coupled to extracellular
K+ concentrations. Extracellular Ca2+, Mg2+, and H+ also fluctuate across the cycle, displaying higher abundance during sleep. Cortical states exist
on a spectrum that coincides with these ionic concentrations, but distinct switches occur from wake to sleep and may also occur between different
stages of sleep and wakefulness. (C) Working model for role of astrocytes in state switches: in the maintenance of sleep-wake homeostasis, cortical
arousal signaling acts as a control center for cortical states. While neuromodulators like NE and DA directly stimulate astrocytes leading to process
thickening (Sherpa et al., 2016), their effects are greatly enhanced by inducing neuronally released K+. When astrocytes pump in K+ and osmotically
driven water, their volume rapidly expands and compaction of the ECS acts as an effector for arousal signaling to globally induce wakefulness. The
awake state leads to adenosine accumulation, a somnogen enhancing sleep drive and eventually decreasing the efficacy of arousal signaling to
produce a switch to the sleep state (open circle indicates negative feedback). Created with BioRender.com.

activation of these neurons has also been observed during REM
sleep (Saper and Fuller, 2017). Thus, rapid reorganization of
active neuronal populations may be considered a third process,
in addition to large-scale circadian and homeostatic shifts driving
transitions between and within states.

2 Choroid plexus, CSF production,
and barrier functions

There have been many proposed models to explain epithelial-
derived fluid and solute transport that have led to the current
choroid plexus epithelial (CPE) model of CSF production and
ion movement. One such proposal began with Reid (1902) on
epithelial-driven fluid flow in the intestines. Studies in the 1960s
saw the introduction of the Three-Compartment Model (Curran
and Macintosh, 1962), where a membrane highly permeable
to water but only semi-permeable to solutes separates luminal
space, connected to an intermediary cellular compartment that
also borders a nonselective and highly permeable interstitial
membrane. As solutes collect from the interstitial side into the
intermediate compartment, an osmotic gradient pulls water from

the luminal side into the middle compartment. Increased pressure
of the middle compartment then drives water into the interstitial
layer. This model did not include a cellular description of these
“compartments” but has contributed to subsequent descriptions
of fluid and solute transport across epithelia. The Glymphatic
Hypothesis was then introduced by Iliff et al. (2012), where an
emphasis on fluid circulation was proposed as vital for the removal
of hydrophilic waste metabolites including amyloid beta (aβ) and
other interstitial solutes.

The blood-cerebrospinal fluid barrier (BCSFB) is functionally
and morphologically distinct from all other blood–brain barrier
(BBB) regions in the brain and exists within the lateral, third, and
fourth ventricles containing choroid plexus (CP), the anatomical
regions of CSF production (Johanson et al., 2011; Hladky and
Barrand, 2014). Ion-rich CSF is secreted through cuboidal epithelial
cells of the CP, each bound by tight junctions of claudin
and occludin proteins, surrounding stromal cores of fenestrated
capillaries (Oresković and Klarica, 2010). CP epithelium anatomy
consists of an apical-basolateral cellular polarity, where an apical
surface dense with secretory microvilli faces outward into the
luminal space of the CSF filled ventricles, and at the other
pole, the basolateral surface is directly congruent with the blood
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containing capillaries (Johanson et al., 2011). The ependyma
contains a variety of channels and transporters that drive the
passage of ions, such as K+, Na+, HCO3

+, and Cl− from the
blood into the ventricles (Abbott et al., 2006; Oresković and
Klarica, 2010). Transmembrane sodium-potassium ATPase (NKA)
are located in higher concentrations on the apical surface (Spector
et al., 2015). Aquaporin, namely AQP1 water channels are also
present on both the apical and basolateral surfaces (Liddelow,
2015). Within the cytoplasm, carbonic anhydrase converts water
and carbon dioxide into hydrogen ions and bicarbonate, which
is exported into the lumen, attracting Na+ ions that are also
extruded via NKA, providing passive transport of water into the
ventricles (Oresković and Klarica, 2010). This concentration of
water and ions is hypertonic to the CP cytoplasm, which further
contributes to the osmotic gradient of water from the blood into
the ventricles as ultrafiltrate CSF. From the ventricles, CSF flows
through the subarachnoid space over the cortex, where it accesses
the parenchymal space along periarterial channels (Rennels et al.,
1985; Benveniste et al., 2017). This space is bordered on one side
by vasculature, and on the other side by astrocyte endfeet, and
it is in these spaces that arterioles make their contribution to
ECS composition through the formation of interstitial fluid (ISF)
(Benveniste et al., 2017).

Beyond CSF production and secretion, the CP has recently
been identified as an important circadian clock (Quintela et al.,
2018). Robust expression of period circadian clock 2 gene (Per2)
(Kim et al., 2018) has been identified in CP epithelial cells, where
independent oscillations mediated through gap junction (GJ)
coupling enter the CSF-containing ventricles, directly influencing
the SCN and circumventricular organs. Targeted deletion of
CLOCK:BMAL1, a transcription factor promoting Per2 prevented
its expression within CP epithelia (Myung et al., 2018). The CP’s
role as a circadian oscillator suggests that the SCN is not a top-down
mediator of downstream circadian rhythms, and that peripheral
non-neural CP Per2 oscillations may contribute a larger role in
coordinating circadian cycles. Changes in ventricular architecture
and CSF movement during sleep are congruent with CP Per2
production as a peripheral mediator of circadian patterns.

3 Astrocytes as drivers of water and
solute transport during sleep

Astrocytes exert considerable influence over fluid distribution
through the brain, carrying water, ions, and neurotransmitters
that support neuronal function (Kimelberg et al., 1990; Kofuji and
Newman, 2004). This fluid can be broken down into two distinct
but related types – CSF, the fluid that surrounds the entire brain
and flows through the ventricular system, and ISF, the fluid that
passes through the brain parenchyma, carrying ions, and other
components through the neuropil and clearing away metabolites
as they accumulate from neuronal activity (Louveau et al., 2017;
Hablitz and Nedergaard, 2021; Thomas, 2022). In addition to the
ionic and neurotransmitter components of CSF and ISF, the ECS
is also a site of accumulation for cellular waste products that
may be toxic in high concentrations, including lactate and protein
aggregates (Xie et al., 2013; Kress et al., 2014). These substances
are known to build up over the course of wakefulness, and their

clearance from the ECS relies on astrocyte-mediated exchange of
CSF and ISF through the periarterial and perivenous spaces that,
together, make up the glymphatic system (Iliff et al., 2012). The
efficiency of this clearance is improved during sleep, both due to
slower buildup of solutes, and to an increase in ECS volume fraction
(Xie et al., 2013). Thus, in addition to modulating ion fluctuations
that subserve sleep drive and sleep architecture, astrocytes are also
well-equipped to facilitate the restorative properties of sleep.

3.1 Astrocyte volume and morphology
changes during state transitions

Consensus exists within the field regarding the role of
astrocytes as effectors of arousal signaling (Pacholko et al.,
2020). Astrocyte volume change coincides with the maximum
and minimum of sleep drive, where sleep pressure is also at its
maximum and minimum, and state switches occur (Figure 1A).
Regulation of CSF components, specifically K+, controls cerebral
ECS volume and neuronal excitability (Figure 1B; Amzica
et al., 2002; Rasmussen et al., 2019; Walch et al., 2022). ECS
volume is inversely proportional to neuronal excitability such
that expansion of the ECS, which ultimately decreases cortical
tortuosity allowing for “washing” of ISF, is associated with the
sleep state (Xie et al., 2013; Tuura et al., 2021; Thomas, 2022).
This space then shrinks upon entering wakefulness (Haj-Yasein
et al., 2012; Ding et al., 2016; Sherpa et al., 2016). Astrocyte
morphology and ex vivo experimentation favor astrocytes as a
key contributor to ECS volume dynamics (Lauderdale et al., 2015;
Reed and Blazer-Yost, 2022; Walch et al., 2022). While cellular
volume is not dichotomous, rather existing on a continuum,
distinct stages of this spectrum may also occur within cortical
states. State changes are associated with an alteration of CSF
and ISF composition (Rasmussen et al., 2019; Forsberg et al.,
2022), which are subsequently accompanied by alterations in
astrocyte and ECS volume (Simard and Nedergaard, 2004;
Neprasova et al., 2007).

Astrocyte morphology during wakefulness is also distinct from
the sleep state regarding increased process number, expansion,
and proximity to the synaptic clefts (Figure 2; Bellesi et al., 2015;
Sherpa et al., 2016). The drive for this mechanism is attributed to
the need for astrocytic removal of K+ during wakeful neuronal
activity. The importance of astrocytic regulation of extracellular
K+ is well established in the literature (reviewed in Kofuji
and Newman, 2004). While local increases occur directly after
neuronal activity (Barron and Kim, 2019), arousal signals such
as norepinephrine (NE) globally elevate extracellular K+ in vivo
through an independent pathway (Ding et al., 2016; Rasmussen
et al., 2019). Elevated extracellular K+ produces intracellular
K+ accumulation generating osmotically driven astrocyte volume
increase (Walz, 2000; MacVicar et al., 2002; Walch et al., 2022).
Evidence suggests this K+ entrance into the cell is mainly via the
NKA (Wang et al., 2012; Larsen et al., 2014; Walch et al., 2020),
which is enhanced by adrenergic stimulation (Hertz et al., 2015),
leading to intracellular K+ accumulation and increased astrocytic
volume during wakefulness. This astrocytic activity decreases ECS
volume, increases ambient neurotransmitter concentrations, and
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FIGURE 2

Astrocytic volume and CSF component shifts from wake to sleep. Water exits arterioles through tight junctions, enters the perivascular space before
passing between smooth muscle cells, and finally enters the brain through or between the syncytium of astrocyte endfeet, facilitated by AQP4. Wake
state: during wakefulness, arousal signaling (e.g., NE) dominates and extracellular glutamate (Glu) and K+ concentrations increase. Accumulation of
K+ and water into astrocytes increases astrocyte volume and decreases overall ECS. Astrocytes help monitor and maintain vascular tone, allowing
for localized increases in cerebral blood flow coupled specifically to local changes in cortical activity. Wake-sleep switch (dotted arrows): long-term
arousal signaling and circadian rhythm increase somnogen concentrations (e.g., A, adenosine; Mel, melatonin) increasing sleep drive and eventually
switching the system to a sleep state. Sleep state: extracellular K+ decreases in sleep result in reduced astrocyte volume and increased ECS. Water
flux through brain parenchyma is greatly favored in the sleep state. Extracellular Mg2+, Ca2+, and H+ are increased but do not lead to osmotic
increase in astrocyte volume. Increased extracellular GABA and Mg2+ concentrations inhibit cortical activity while increased extracellular Ca2+

indicates decreased Ca2+ activity within cells. A slight increase in H+ may result from ECS volume increase and effective reduction of carbonic
anhydrase levels. Sleep-wake switch (dotted arrows): circadian-driven early morning cortisol spike reengages arousal signaling to induce ECS and
astrocyte volume conducive to the wake state. Created with BioRender.com.

enhances point-to-point synaptic transmission involving lower
affinity receptors during wakefulness.

Conversely, extracellular K+ is significantly lower during sleep
(Ding et al., 2016; Rasmussen et al., 2019). This reduction is not
simply due to the dilution of ISF; rather, a specific reduction in
K+ has been observed at sleep onset in healthy humans (Forsberg
et al., 2022). Astrocytes respond to the reduction in extracellular
K+ with both a reduction of intracellular K+ accumulation and
a reduction in osmotically driven water influx (Pasantes-Morales
and Schousboe, 1989; Walz, 2000; MacVicar et al., 2002; Walch
et al., 2022), allowing for widening of the ECS and facilitated
ISF movement through brain parenchyma throughout sleep (Xie
et al., 2013; Tuura et al., 2021; Thomas, 2022). One foundational
question remains: how is extracellular K+ reduced while we sleep?
While a small proportion may be cleared systemically through the
bloodstream (Bradbury and Stulcová, 1970), neurons could also
be potential candidates for K+ storage during sleep, as they are
significantly less prone to osmotic fluctuations to the same extent as
astrocytes (Hellas and Andrew, 2021). The mechanisms of nightly
ion fluctuations, as well as how these fluctuations affect astrocyte
volume, require further investigation.

3.2 Arousal signaling, Ca2+, and
adenosine

Cortical arousal signaling, integrating NE/dopamine
(DA)/histamine/acetylcholine/orexin pathways, paradoxically
modulates wake and sleep states (Figure 1C). Immediate effects
of arousal signaling are as expected: heightened release of
neuromodulatory neurotransmitters increases cortical excitability
in the wake state. In addition to direct neuronal stimulation,
adrenergic receptor activation on astrocytes directly modulates
astrocyte volume via process expansion which concurrently
reduces ECS volume (Sherpa et al., 2016) – anatomy reflective of
the wake state. However, downstream of these immediate effects
lies a negative feedback system wherein increased arousal signaling
raises the probability of eventual cortical state switching to sleep
(Poskanzer and Yuste, 2011). Therefore, it could be suggested that
classification of arousal signaling as strictly wake-promoting is
only part of the story, and a more fitting classification may be as a
regulator of sleep homeostasis.

Frontiers in Cellular Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fncel.2024.1401698
https://BioRender.com
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-18-1401698 June 22, 2024 Time: 16:14 # 6

Sriram et al. 10.3389/fncel.2024.1401698

A decrease in extracellular Ca2+ is associated with the wake
state (Ding et al., 2016; Ingiosi et al., 2020), which is an arrangement
conducive to greater Ca2+ signaling within astrocytes and neurons
which has been observed during wakefulness (Clapham, 2007;
Ingiosi et al., 2020). Notably, this astrocytic Ca2+ activity is
attenuated by anesthesia (Thrane et al., 2012), indicating a
connection with cortical states. Paradoxically, studies have linked
the rise in astrocytic Ca2+ activity during the wake state with
downstream mechanisms eventually promoting sleep. In fact,
it has been proposed that levels of astrocyte Ca2+ signaling
during the wake state are proportional to, or code for, sleep
need (Ingiosi et al., 2020). Some have found this astrocytic
signaling to modulate the REM stage of sleep, specifically
(Foley et al., 2017).

While most studies focus on NE activation of adrenergic
receptors increasing astrocytic Ca2+ signaling (Paukert et al., 2014;
O’Donnell et al., 2015), recent work also implicates DA as an
agonist for at least one adrenergic receptor class (Pittolo et al.,
2022), and serotonin (5HT) directly increases astrocyte Ca2+

signaling (Schipke et al., 2011) by working on 5-HT2B or 5-
HT2C receptor subtypes (Natsubori et al., 2023). It is important to
note that astrocyte output behavior in response to increased Ca2+

activity is likely based on location. In some astrocyte populations,
transient Ca2+-stimulated glutamate release increases prior to
local neurons switching to the sleep state (Poskanzer and Yuste,
2016). Astrocytic redistribution of glutamate from perisynaptic to
simple parenchymal spaces surrounding the astrocyte appears to
effectively induce sleep locally in the population of neurons it
interacts with. It has been hypothesized that the cytosolic syncytium
of astrocytes may be crucial for spreading this sleep signal to other
areas (Poskanzer and Yuste, 2016).

Global NE from locus coeruleus (LC) neurons not only
contributes to changes in astrocytes conducive to the wake
state of neural circuitry, but also induces nonselective cerebral
vasoconstriction despite the lack of direct communication with
vasculature (Cohen et al., 1997; Bekar et al., 2012). Many
studies have implicated astrocytes as the mediator of NE-
induced cerebral vasoconstriction (Cohen et al., 1997; Mulligan
and MacVicar, 2004; MacVicar and Newman, 2015). In this
way, astrocytes mediate the excitatory state of neurons while
simultaneously ensuring active circuits receive sufficient oxygen
and nutrients when only their local vasculature dilates. In
addition, pulsatility of cerebral blood flow in SWA during sleep
is mediated by astrocyte endfeet regulation of vascular tone (Fultz
et al., 2019; Marina et al., 2020). Therefore, astrocytes not only
regulate the distribution of CSF components within parenchyma,
but also modulate entrance of new osmolytes from systemic
circulation.

Alternatively, some have found that Ca2+-mediated astrocytic
release of ATP, which is rapidly metabolized extracellularly
into adenosine, precedes synaptic depression (Pittolo et al.,
2022). Because arousal signaling increases astrocytic catalysis
like glycogen breakdown (Coggan et al., 2018), a metabolic
accumulation of adenosine (a suggested somnogen) could also
result in an eventual switch to the sleep state when the threshold
for sleep drive is surpassed, bringing sleep pressure to its
maximum (Figures 1A, C). By monitoring adenosine accumulation
through an adrenergic homeostatic mechanism, it appears that
astrocytes may monitor the energy availability of brain tissues and

sustainability of a wakeful state (Agostinho et al., 2020; Garcia-
Gil et al., 2021). According to the “Process S” model proposed by
Borbély (1982), the drive for sleep would increase as the probability
of efficient cortical processing decreases. Somnogen levels and sleep
drive then decrease over the course of sleep as ISF washes through
the parenchyma.

Cortisol peaks early in the morning (Krieger et al., 1971;
Weitzman et al., 1971; Oster et al., 2017) and acts on the
LC to increase global NE release (Wang et al., 2015). This
is an attractive trigger for the exit of sleep (Figures 1C, 2).
Upon direct NE activation, astrocyte volume increases and
Ca2+ activity may play a role in initiating the wake state.
A simultaneous feedforward mechanism may then accelerate this
switch: NE-activated neurons release K+ into the ECS and an
osmotically driven increase in astrocyte volume occurs. This
could partially explain the phenomenon of sleep paralysis where
subjects are awoken, immobile, and often terrified (Stefani and
Högl, 2021). If night terrors in REM increase cortisol past the
threshold for stimulating arousal signaling, but somnogens and
other sleep-promoting factors have not yet fully cleared from
brain parenchyma, a partially wakeful state could result while
local cortical areas (like motor cortex) remain in the sleep
state.

3.3 Contributions of gap junctions to
movement of fluid and ions between
astrocytes

Gap junctions, or electrical synapses are intercellular protein
pores composed of apposing hexameric hemichannels, or
connexons in chordates, directly connecting the cytoplasm of one
cell to the cytoplasm of another. Unlike the 20–30 nm synaptic
cleft observed with chemical synapses, the electrical synapse is
an order of magnitude smaller, with respective cell membranes
roughly 2–3 nm apart (Goodenough and Paul, 2009). Each
connexon is composed of six individual connexin (Cx) protein
subunits (Eiberger et al., 2001). Research on the murine CNS
found that GJ are expressed in a number of cell types including
neurons, astrocytes, and oligodendrocytes (Rash et al., 2001), as
well Schwann cells in the peripheral nervous system (Cisterna
et al., 2019) and most tissues throughout the body proper. With an
average pore diameter of 1.4 nm, GJ permeability is constrained
to the passage of small molecules roughly 1 kDa or less (Weber
et al., 2004), allowing the direct exchange of water, ions, amino
acids, sugars, lactate, and signaling molecules such as adenosine,
ATP, cyclic AMP, cyclic GMP, and inositol trisphosphate (Veenstra
et al., 1994), while excluding larger proteins or macromolecules.
Formation of GJ are facilitated through three cysteine binding
domains located on each of two Cx extracellular loops, 36
total domains per connexon, producing anti-parallel β-Barrel
interactions along 24 total rods shared from two apposing
connexon hemichannels (Unger et al., 1999), establishing the
functional GJ channel. For healthy cells, this coupling conserves
both electrical current and molecular exchange with virtually no
loss into the ECS (Scemes et al., 2007).

Gap junctions are further organized into large densities
called GJ plaques often consisting of many thousands of
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individual functional channels (Loewenstein, 1981). Large GJ
plaque formations further contribute to inter-cell adhesion,
strengthening and stabilizing syncytia (Nakagawa et al., 2010).
GJ plaques are not static structures, and motility rates vary
as a function of Cx composition. GJ nexus formation depends
on the affinity of GJ-associated membrane proteins, either
interacting within the plaque or clustering along the periphery.
In the brain, Cx26, Cx30, and Cx43 are exclusively expressed
in adult astrocytes (Rash et al., 2001), establishing specificity
in targeting astrocyte-mediated GJ properties. Levels of Cx
expression vary greatly throughout the CNS. Immunolabeling has
shown high Cx30 expression in the cerebellum and thalamus,
and moderate expression in the cerebral cortex, while Cx43 is
abundant throughout the cerebral cortex and highly expressed in
hippocampal astrocytes (Nagy et al., 2004; Gosejacob et al., 2011).
Examples of GJ-associated proteins include zonula occludens-
1, claudin-1, occludin, the oncogenic signaling protein Src,
aquaporin-4 (AQP4), and other structural proteins including
tubulin (Duffy et al., 2002). In astrocytes, Cx43 GJ plaques
were shown to be considerably less motile and more stable
than Cx30 GJ due to unique cysteine interactions along the
cytoplasmic C-terminus domain. These cysteine interactions also
attract a clustering of peripheral AQP4 channels, forming a Cx43-
AQP4 peri-nexus, contributing to the anchoring of astrocyte
endfeet around vasculature and the regulation of the BBB (Cibelli
et al., 2021). Deletion of AQP4 in ex vivo hippocampal slices
produced a proportional upregulation of Cx43, suggesting a
compensatory mechanism for fluid regulation and K+ buffering,
highlighting the dynamic interdependence between AQP4 and
GJ in ECS homeostasis (Strohschein et al., 2011; Katoozi et al.,
2017). Especially in densely organized gray matter regions, water
diffusion faces greater resistance in the ECS than through astrocyte
syncytia. Accordingly, the co-organization of AQP4 and GJ coupled
astrocyte networks is an important means for fluid movement and
metabolite clearance in the brain (Asgari et al., 2015). Human
patients with chronic insomnia display loss of Cx30 and Cx43
along with decreased levels of AQP4, supporting a critical role
for astrocytes in the regulation of both sleep and fluid dynamics
(Yang et al., 2022).

Astrocytes use GJ to organize into large astrocyte-coupled
networks throughout the CNS, maintaining ECS homeostasis
through the uptake of key extracellular ions: K+, Na+, and
Ca2+. This net uptake is followed by spatial buffering, or the
long-distance redistribution of signaling ions, preventing their
accumulation around neurons and triggering hyperexcitability
(Orkand et al., 1966; Kofuji and Newman, 2004). Given that the
maintenance of K+ concentration within the ECS is intimately
tied to arousal signaling and ECS volume, GJ could represent a
significant contribution to the redistribution of K+ that occurs
across state transitions (Ding et al., 2016). Conversely, loss of
GJ coupling as a result of inflammatory signaling has been
shown to hinder K+ buffering, leading to tissue damage and
increased incidence of seizures in a mouse model of temporal
lobe epilepsy (Bedner et al., 2015). Ion uptake is maintained
through the timing of cascading waves traveling throughout
the network, which are ultimately expelled into the ECS and
neighboring capillaries, sustaining a stable inward ionic driving
force into astrocytes at active tripartite synapses where constant

ECS regulation is needed (Ma et al., 2016). The astrocytic GJ
network may influence sleep through the diffusion of somnogenic
substances, ions, and metabolites such as lactate, across the
parenchyma (Petit and Magistretti, 2016). Disruption of this
network through loss of Cx43 reduces activation of orexinergic
neurons responsible for wakefulness, resulting in abnormal
sleep architecture, with wake periods frequently interrupted by
bouts of NREM sleep (Clasadonte et al., 2017). Conversely,
sleep recovery following sleep deprivation is characterized by
an upregulation of Cx43, which authors speculate may reflect
an attempt to counteract fatigue by increasing ATP-release
mechanisms (Franco-Pérez et al., 2012). Inflammatory signaling,
which is a commonly observed consequence of sleep disruption,
also interferes with GJ function (Même et al., 2006; Bedner
et al., 2015). Taken together, these findings suggest that GJ
are well-positioned to make significant contributions to fluid
composition changes and solute transport across the sleep-
wake cycle, although the specific mechanisms require further
investigation. Additionally, disruption to GJ-mediated signaling
could prove consequential for the initiation and maintenance of
behavioral states, especially wakefulness.

4 The glymphatic system

Significant early characterization of the glymphatic system
has shown that ions and larger solutes do not simply pass
through brain parenchyma through bulk diffusion; rather, they
are carried throughout specific pathways around perivascular
spaces, transporting a wide range of molecules through and out
of the brain (Iliff et al., 2012). Commonly used methodologies
to study fluid movement involve injection of inert markers,
such as 14C-inulin, whose pathways can be radioactively traced
through brain tissue. Initial observation of whole-brain coverage
of 14C-inulin supported the hypothesis that fluid and associated
solutes diffuse through the brain along a concentration gradient,
known as “bulk flow” (Proescholdt et al., 1999). However,
these authors acknowledged that diffusion was unlikely to be
the sole force, given the rapid time course of tracer coverage,
the uneven distribution of fluid to specific structures, and the
penetration of the tracer into deep structures despite high levels
of obstruction. This would be more characteristic of “convective
flow,” or the passage of solutes along a current, implying that
there must be some channel-like structure that allows fluid to
carry solutes toward specific structures that would supplement
transport through bulk flow (Proescholdt et al., 1999). A landmark
study by Iliff et al. (2012) set out to identify these routes using
high-resolution two-photon imaging of fluorescent tracers injected
into the parenchyma of anesthetized mice. They found that fluid
and small molecular weight dextrans enter the parenchyma from
perivascular spaces that are contiguous with the subarachnoid
space, bound on one side by endothelial cells and on the other
by astrocyte endfeet. Subsequent experiments emphasized the
importance of astrocytes by demonstrating that interfering with
AQP4, the water channel highly expressed in astrocyte endfeet,
compromised the penetration of tracers into the parenchyma
(Iliff et al., 2012).
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4.1 Astrocyte–vasculature interactions in
glymphatic clearance

As the brain cells that interact most closely with endothelial
cells, astrocytes are uniquely positioned to influence the
extravasation of solutes from brain vasculature into brain
parenchyma (Abbott et al., 2006; Díaz-Castro et al., 2023;
Verkhratsky and Pivoriūnas, 2023). They are also capable of
sensing vascular tone and perfusion pressure within cerebral
arterioles (Kim et al., 2015; Marina et al., 2020). Efforts to
characterize fluid distribution throughout the brain have focused
on the perivascular space as the location for fluid exchange, with
astrocytes pulling water and solutes out of, and driving toxic
metabolites into, these compartments (Iliff et al., 2012). The
pulsation of cerebral arteries is thought to be the main physical
force that enables CSF from the subarachnoid space to enter the
brain through deep penetrating arteries and mix with ISF in the
parenchyma (Iliff et al., 2013). In testing this hypothesis, Iliff et al.
(2013) showed that pharmacological reduction of this pulsation
slowed influx of an inert tracer into intact brain tissue, supporting
previous findings that blockage of main arteries supplying the
brain reduced the rate of CSF movement (Rennels et al., 1985).

Most of the restorative functions associated with sleep, like
glymphatic clearance, are thought to occur during low-frequency
neuronal activity characteristic of slow-wave sleep (SWS) (Hablitz
et al., 2019). Oscillatory fluctuations of vascular tone are closely
tied to neuronal rhythmic activities, especially slow-frequency
rhythmic activities with increased blood flow required to support
increased neuronal firing (Haidey et al., 2021; Loshkarev, 2021).
Simultaneous BOLD-fMRI (blood oxygenation level dependent
functional magnetic resonance imaging) and CSF tracing has
shown that large influxes of CSF from the fourth ventricle into the
brain are temporally coupled with low-frequency neuronal activity
and oscillations in blood volume in the sleeping human brain (Fultz
et al., 2019). While these findings suggest that pulsatory activity of
arteries could drive CSF into the parenchyma and into individual
astrocytes, it has yet to be thoroughly established whether this
pulsatory activity causes direct changes to astrocyte volume. Novel
imaging techniques, such as super-resolution shadow imaging, are
a promising step in understanding how CSF and ISF move, not only
through the parenchyma, but also through individual astrocytes
(Tønnesen et al., 2018; Arizono et al., 2021).

While much attention has been given to astrocyte–arteriole
interactions for the composition of ISF, less is known regarding
waste drainage through the perivenous spaces directly into cerebral
venules, or through arachnoid granulations that drain into the
venous sinuses and lymph (Hladky and Barrand, 2018; Hu et al.,
2023). Some tracer studies support the latter, showing that the
bulk of ISF outflow may be directed toward the deep cervical
lymph nodes, to merge with the fluid circulating through the
rest of the body (Ma et al., 2017, 2019; Liu et al., 2021). Given
that fluid and solutes are expelled from periarterial spaces by the
pulsating pressure of cerebral arterioles, it is possible that the
colloidal osmotic pressure created by ECS solutes and parenchyma
could provide the pulling force to draw ISF into perivenous spaces.
The state dependency of perivenous and lymphatic drainage have
only recently begun to be investigated, as are the consequences
of sleep deprivation (Eide and Ringstad, 2021). The specific

characteristics of astrocyte–venule interactions remain unknown,
though astrocytic water channels could hold the answers to the
pathways of fluid movement across the brain.

4.2 Role of aquaporin-4 in water and
solute transport

Reduction of astrocyte volume during sleep is vital to waste
clearance, providing both space and physical driving force for fluid
movement in the form of various water channels and transporters
(Mendelsohn and Larrick, 2013; Xie et al., 2013). Of all the putative
routes of fluid entry from the vasculature into the neuropil, the
water channel AQP4 has been the most thoroughly studied and
widely accepted avenue (Nagelhus and Ottersen, 2013; Mader and
Brimberg, 2019). The most abundantly expressed water channel
in the brain is AQP4, predominantly on astrocytic endfeet that
form one end of the Virchow-Robin space. The AQP4-rich endfeet
of astrocytes have unique access to fluid-filled perivascular spaces,
making them a robust potential mechanism for fluid intake from
the arteries and subsequent drainage through the venous system
(Manley et al., 2000; Reed and Blazer-Yost, 2022; Salman et al.,
2022). In the context of glymphatic transport, AQP4 may be
considered to serve three important functions: an entry route for
water, an outlet route for water, and as a mechanism for solute
transport across astrocytes (Solenov et al., 2004; Verkman et al.,
2006; Jin et al., 2013; Stokum et al., 2018; Walch et al., 2020).

The advent of AQP4 knockout mice has enabled a widespread
effort to characterize AQP4 expression and function, in both the
healthy and edematous brain (Ma et al., 1997). For a comprehensive
review of currently utilized AQP4 knockout strategies (see Mestre
et al., 2018). It is important to note that these strategies have
involved removal of astrocytic AQP4 constitutively throughout
brain development. Inducible models of astrocytic AQP4 removal
may better delineate the role of AQP4 in adult astrocytes and
glymphatic clearance where possible compensatory effects could
be minimized. Measurements obtained from live animals, as well
as from brain slices, have shown that AQP4-deficient animals
display a larger ECS volume without any change in underlying
neuropil structure, suggesting that fluid entry through AQP4 does
play a role in establishing initial baseline ECS volume in healthy
animals without affecting astrocyte process orientation (Yao et al.,
2008). Similar findings were also observed from in vivo recordings
of AQP4 knockout mice, which show decreased water diffusion
and enlarged interstitial spaces relative to AQP4 intact controls
(Gomolka et al., 2023). Key glymphatic system experiments
by Iliff et al. (2012) showed that CSF flow was significantly
decreased in mice with global AQP4 knockout, compared to AQP4-
intact controls. Pharmacological blockade of AQP4 also caused
a reduction of water influx from vasculature to parenchyma, as
well as a decrease in glymphatic clearance away from the brain
(Giannetto et al., 2024). Conversely, use of a novel AQP4 agonist
increased circulation of water throughout the ECS (Huber et al.,
2018). Taken together, these findings emphasize the significance of
AQP4 not only in the introduction of fluid into the parenchyma,
but also in the prevention of fluid accumulation by providing a
route for clearance away from the brain (Gomolka et al., 2023).
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The importance of functional AQP4 activity to overall brain
health can also be understood via various pathological contexts,
including brain inflammation, ischemia, and sleep deprivation.
Upregulation of AQP4 can be triggered by a lipopolysaccharide
(LPS)-triggered immune response (Alexander et al., 2008; Cao
et al., 2012; Sugimoto et al., 2015), and heightened levels of AQP4
are thought to be a key mechanism of cellular edema in models of
ischemic stroke (Papadopoulos et al., 2004; Warth et al., 2007; Yang
et al., 2008). Increased AQP4 expression also results in increased
susceptibility to cellular edema, ECS constriction, and mortality
(Yang et al., 2008). Accordingly, ablation or blockage of AQP4
has been shown to relieve some fluid accumulation within cells
(Manley et al., 2000; Pirici et al., 2017; Sun et al., 2022). While
the significance of AQP4 for water homeostasis in the brain has
been clearly demonstrated in these studies, reliance on constitutive
knockout makes it difficult to interpret whether the findings are due
to AQP4 loss in the context of the experiment, or due to secondary
changes to astrocyte physiology and vasculature characteristics as a
consequence of AQP4 loss during brain development.

Results from a variety of experimental models and pathological
conditions show that glymphatic clearance is significantly reduced
when AQP4 activity or expression is compromised (Teng et al.,
2018; Giannetto et al., 2024). However, the specific mechanisms
behind how AQP4 fits into the cycle of fluid dysregulation
and sleep disruptions observed across disease states is still
unknown. Ablation of AQP4 has been reported to have both
neuroprotective effects (Manley et al., 2000; Chmelova et al.,
2019) and detrimental consequences (Binder et al., 2006). Taking
into account contributions of AQP4 to solute concentration and
transport in the ECS, we propose the following hypothetical
framework for AQP4’s role in sleep-mediated glymphatic transport.
In normal healthy conditions with physiological expression of
AQP4, CSF passes into the parenchyma, merges with ISF, and
is then driven through the parenchyma by pulsatile activity of
intact vasculature (Iliff et al., 2012, 2013). Water, ions and solutes
would move through the variety of channels expressed on astrocyte
endfeet, including but not limited to AQP4 (Walch et al., 2020).
While this is likely a continuous process that occurs to some degree
across activity states, the widening of the ECS during sleep onset
allows ease of movement of ISF and solute transport through
the parenchyma. The ability of AQP4 to then act as an outlet
for water allows for water and solute discharge from perivenous
endfeet into the perivenous space to be recycled back into the
subarachnoid space. Again, some of these solutes may be passed
directly into the venules by channels and transporters within
endothelial cells, while some may require astrocytic endfeet to
facilitate their passage. Under these conditions, the upregulation of
AQP4, a well-characterized phenomenon in edematous astrocytes
(Vizuete et al., 1999; Warth et al., 2007; Zhang et al., 2015; Liu
et al., 2021), could be considered a compensatory mechanism for
expelling accumulated water from cells.

While it is important to understand factors that regulate
expression of AQP4, an equally influential component of its role
in the glymphatic system lies in its localization, or polarization,
to perivascular astrocyte endfeet (Nielsen et al., 1997; Nagelhus
et al., 1999). Endfoot AQP4 exists in multiple isoforms, which are
further organized into aggregations known as orthogonal arrays
of particles (OAPs) (Verkman et al., 2011). Disruptions to AQP4
localization have been reported to greatly impair solute transport

(Murlidharan et al., 2016; Mestre et al., 2020; Salman et al., 2022),
and is a common outcome in a variety of disorders, as well as
aging (Verkman et al., 2011; Alvestad et al., 2013; Murlidharan
et al., 2016; Palazzo et al., 2019; Kolenicova et al., 2020).
AQP4 mislocalization can occur through ablation of α-syntrophin,
which facilitates membrane insertion (Mestre et al., 2018), or
by interfering with isoform composition, which impedes OAP
formation (Palazzo et al., 2019; de Bellis et al., 2021). Understanding
how AQP4 organization and anchoring affects its function, as well
as how AQP4-interacting proteins are compromised in specific
disease states, may help further characterize the routes fluid follows
into and out of the brain. Additionally, despite what is known
about the significance of periarterial AQP4, studies to date have
not examined relative AQP4 expression at these sites compared to
venules, which serve as drainage pathways for accumulated water
and potential contaminants. Localization of AQP4 on perivenous
endfeet and its potential role in fluid drainage mechanisms remain
an understudied facet of glymphatic clearance, but could provide
key insights about solute clearance routes to limit fluid stagnation
within the parenchyma.

4.3 Glymphatic system dysfunction in
sleep disturbances and “fluidopathies”

Characterization of ISF/CSF distribution routes through the
parenchyma, and through individual cells, is a key step in
understanding diseases that arise from fluid contamination and
disruption to glymphatic clearance. This suite of conditions has
been collectively referred to as “fluidopathies” and includes physical
injury, hydrocephalus, BBB disruption, stroke, inflammation,
neurodegeneration, and glioblastoma (Taoka and Naganawa, 2021;
Xu et al., 2021). Because ECS composition and solute transport
are significantly affected by behavioral state (Xie et al., 2013; Ding
et al., 2016), sleep loss and circadian rhythm disruption may also be
considered fluidopathies, even in the absence of other pathological
states (Taoka and Naganawa, 2021). Sleep disturbances are often
reported in patients with TBI (Tapp et al., 2020), ischemic stroke
(Duss et al., 2023), Alzheimer’s disease (AD) (Ju et al., 2017),
and many other disorders (Taillard et al., 2021), suggesting that
disruptions to sleep might be strongly interlinked with glymphatic
dysfunction. The development of a novel method known as
“diffusion tensor imaging along the perivascular space” (DTI-
ALPS), has enabled non-invasive characterization of glymphatic
dysfunction in human patients based on impairments to water
diffusion along perivascular spaces (Taoka et al., 2017). DTI-ALPS
analysis has revealed significant glymphatic system impairments
in patients with normal pressure hydrocephalus (Bae et al., 2021),
glioma (Toh and Siow, 2021a), ischemic stroke (Toh and Siow,
2021b), Parkinson’s disease (PD) (Si et al., 2022), and temporal
lobe epilepsy (Lee et al., 2022). While sleep can be affected
as a secondary consequence of stress, pain, or other symptoms
associated with severe illnesses (Nijs et al., 2017), it is also important
to consider disordered sleep as a direct consequence of glymphatic
dysfunction, as shown by reduced DTI-ALPS indices in REM
sleep behavior disorder (Si et al., 2022) and in patients reporting
reduced sleep quality (Saito et al., 2023). While these imaging
studies provide valuable insights into how CSF is dysregulated
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in various fluidopathies, it is still unknown whether glymphatic
dysfunction is an underlying cause for these disorders, or whether
it is merely a symptom.

As astrocytes play a key role in regulating CSF composition
and facilitating its transport (Simard and Nedergaard, 2004; Ding
et al., 2016), it is important to consider the ways in which reactive
glia might contribute to glymphatic dysfunction. Alterations in
astrocyte function and morphology in response to a pathological
event is known as astrocyte reactivity or reactive gliosis (Pekny and
Pekna, 2014; Burda et al., 2016; Escartin et al., 2019, 2021). While
the reactive astrocyte population is extremely heterogeneous and
there is no single “reactive astrocyte” phenotype, these changes are
generally thought to entail alterations in astrocytes’ homeostatic
and neurotrophic functions (Escartin et al., 2019; Sofroniew, 2020).
Some common patterns observed in astrocytes across disease
states include hypertrophy, or increased branching of processes,
altered protein expression (including AQP4), disruptions to ionic
and neurotransmitter homeostasis (especially K+), and increased
secretion of immunomodulators, all of which have the potential to
affect BBB integrity and, by extension, perivascular space dynamics
(Vizuete et al., 1999; Wang and Parpura, 2016; Escartin et al., 2021).
Overall, maladaptive astrocyte functions, especially those functions
associated with ECS composition and fluid transport, are observed
in many of the fluidopathies listed above (Taoka and Naganawa,
2021; Reed and Blazer-Yost, 2022).

Aquaporin-4 plays a key role in facilitating passage of ISF
from periarterial spaces into the brain parenchyma (Haj-Yasein
et al., 2011; Iliff et al., 2012), and multiple lines of evidence
point to AQP4 dysregulation as a key mechanism for fluidopathy
formation. Early characterization of AQP4 expression has shown
that, in pharmacologically induced models of neurodegeneration,
astrocytes that express increased amounts of glial fibrillary acidic
protein (GFAP), namely, reactive astrocytes, also express increased
levels of AQP4 mRNA (Vizuete et al., 1999). Upregulation of AQP4,
which is observed during inflammation, cerebral, and cellular
edema, has been shown to exacerbate fluid accumulation both
within cells, and in the brain overall, preventing proper drainage
of water and potentially toxic metabolites (Aoki et al., 2003; Warth
et al., 2007; Alexander et al., 2008; Cao et al., 2012). Similarly, post-
mortem human tissue from patients with AD show that increased
AQP4 levels and increased distribution away from the endfeet were
strongly associated with higher aβ accumulation (Simon et al.,
2018). While these findings suggest that interfering with AQP4
might be an attractive target for the resolution of some types
of edemas by limiting further water entry into the parenchyma,
multiple reports have revealed negative effects of AQP4 KO on
glymphatic system function and astrocyte volume dynamics. One
group showed that AQP4 KO greatly impeded ISF flow in deep
brain structures, like the thalamus and caudate nucleus (Teng et al.,
2018). AQP4 knockout also suppresses ISF and CSF exchange
across the brain under conditions of hypoosmotic stress (Haj-
Yasein et al., 2011), subarachnoid hemorrhage (Liu et al., 2020),
and oxygen-glucose deprivation (Chmelova et al., 2019). Whether
this is due to a lack of parenchymal influx or a lack of perivenous
efflux/drainage is still unknown.

Sleep disruptions have further consequences for glymphatic
clearance. Zhang et al. (2020) found that in already sleep-deprived
mice, knockout of AQP4 further inhibited CSF flux, reduced
metabolite clearance, induced neuroinflammation, and caused

memory deficits in adult mice. In addition to reduced AQP4
expression in sleep-deprived mice, the AQP4 that was present was
not polarized to the vasculature, rather, it was evenly distributed
throughout the sampled tissue (Zhang et al., 2020). In a mouse
model of TBI, sleep disruption following injury increased stress,
disrupted AQP4 localization, and resulted in a longer lasting
inflammatory response (Tapp et al., 2020). In humans, patients
with chronic insomnia reported poorer sleep quality and had lower
serum levels of AQP4, suggesting impaired glymphatic clearance
(Yang et al., 2022). Understanding how water enters cells, and the
routes it takes as it passes through and then exits the brain, is a
critical step in determining how to relieve edema without trapping
excess fluid and toxic metabolites in the ECS and within cells.

While sleep loss alone has negative consequences for AQP4
characteristics and overall brain health (Kitchen et al., 2020),
sleep loss combined with AQP4 disruption results in even poorer
outcomes for cognitive performance and glymphatic transport
(Zhang et al., 2020). Not only would there be reduced entry of fluid
from perivascular spaces, but loss of AQP4 would also deprive the
astrocyte of an outlet for water, and any water entering the astrocyte
through other means would be trapped within the cell. Recent
reports suggest that, in a mouse model of TBI, poor sleep and AQP4
dysregulation interact to worsen behavioral outcomes and hinder
recovery (Tapp et al., 2020). Alternatively, the upregulation and loss
of endfeet polarization of AQP4 could mean that, instead of “used”
or “contaminated” ISF being drained out through perivenous
spaces, water is instead drained back into the parenchyma,
disrupting ion and neurotransmitter homeostasis in the ECS. Both
of these would result in cellular and/or cerebral edema, and buildup
of toxic metabolites in the ECS. In conditions like ischemic stroke,
where AQP4 is overexpressed in astrocyte endfeet (Aoki et al., 2003;
Murata et al., 2020), the increased opportunity for water entry could
be an underlying factor for astrocytic edema. This could result
in failure of astrocytes to shrink to accommodate ECS expansion,
which would also hinder glymphatic clearance that typically occurs
during sleep. This has been considered as a potential explanation
for the profound protective effects of AQP4 block or knockout in
such conditions (Manley et al., 2000; Pirici et al., 2017; Chmelova
et al., 2019). However, given the detrimental effects of AQP4 for
waste accumulation (Iliff et al., 2012; Mestre et al., 2018; Rainey-
Smith et al., 2018), caution should be used when investigating
AQP4 block or ablation as a clinical strategy. Overall, these data
suggest a narrow range for optimal AQP4 facilitation of glymphatic
clearance, and disruption of this balance in either direction could
have deleterious effects.

While glymphatic system impairment has been reported in
numerous disease contexts, only a limited number of studies have
examined the direct role of astrocytes in glymphatic clearance
routes (aside from AQP4, whose mechanisms have remained
controversial). Astrocytes, like other cells, respond to physical
changes in the extracellular matrix (ECM) by converting structural
changes of the parenchyma into intracellular signals through a
process known as mechanotransduction (Chen and Qiu, 2022;
Donnaloja et al., 2023). Extreme mechanical stress may be exerted
on parenchymal fluid routes in a variety of pathologies, like
TBI (Gomez-Cruz et al., 2024), and could potentially contribute
to the reduced glymphatic transport observed in fluidopathies.
Astrocyte endfeet are particularly sensitive to shear forces of ISF
flux driven by vascular pulsatility, especially where the BBB is
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compromised and flow velocity is reduced (Momin et al., 2021).
However, the impact of mechanotransduction and ECM rigidity on
astrocyte water transport remains a relatively understudied facet
of the glymphatic system. Candidates for glymphatic clearance-
related channels beyond AQP4 which may also be altered in
disease states include mechanosensitive transient receptor potential
(TRP) channels TRPA1 (Trotier et al., 2023) and TRPV4 (Liao
et al., 2023), Piezo-type mechanosensitive ion channel component
1 (Piezo1) (Ballesteros-Gomez et al., 2023; Trotier et al., 2023) or
even mechanosensitive NMDA receptors (Maneshi et al., 2017).
Even fewer studies have investigated solute transport capabilities of
reactive astrocytes in the context of sleep-associated fluidopathies.
Thus, it remains unknown whether astrocyte fluid dysregulation
directly interferes with glymphatic clearance by contributing to
CSF/ISF contamination and hindering flow, or whether astrocytic
damage and reactivity creates an environment that is more
conducive to the development of fluidopathies.

4.4 Effects of aging and
neurodegenerative disease on
glymphatic clearance

The brain undergoes many structural changes over the
course of aging that, even without age-related disease or
neurodegeneration, can result in deteriorating neuronal health
and cognitive decline. Some of these behavioral outcomes, like
worsening memory, are thought to be associated with poorer
sleep quality reported by the aging population (Voumvourakis
et al., 2023). As efficient fluid circulation and waste transport are
intimately tied to sleep quality, the impact of aging on glymphatic
system function is becoming an increasingly important facet of
geriatric research (Iliff et al., 2012; Xie et al., 2013; Kress et al.,
2014). The structure of vasculature and perivascular spaces that, in
part, drive glymphatic clearance may also be affected by disease,
as well as aging (Iliff et al., 2013; Jessen et al., 2015). Fico
et al. (2022) reported that pulsatility of cerebral vasculature is
reduced in otherwise healthy aged adults, suggesting a decreased
driving force for fluid throughout the brain. Aging brains are
characterized by elevated and persistent levels of inflammation
(Jiang and Cadenas, 2014; Gordleeva et al., 2020), meaning that
astrocytes are also more likely to express reactive phenotypes,
such as hypertrophy, GFAP upregulation, and AQP4 dysregulation
(Cotrina and Nedergaard, 2002; Zeppenfeld et al., 2017; Clarke
et al., 2018; Palmer and Ousman, 2018). Given these impacted
functions, we may hypothesize that, much like other fluidopathies,
age-related deterioration likely affects astrocytic ion and water
homeostasis in a way that impacts their capacity for glymphatic
clearance (Syková et al., 2000).

Aging dramatically increases risk for neurodegenerative
disorders, many of which feature some degree of fluidopathy, such
as AD, PD, and dementia (Kress et al., 2014; Wang and Mourrain,
2020; Taillard et al., 2021). A common feature of neurodegenerative
disease is the aggregation of misfolded proteins, and aβ has been
used as the primary biomarker for CSF clearance and glymphatic
efficacy (Iliff et al., 2012; Bondareff, 2013; Kress et al., 2014;
Ju et al., 2017; Mestre et al., 2018; Simon et al., 2018; Zhang et al.,
2020; Silva et al., 2021). Taken together, the findings from these

studies show that increased aβ accumulation is often a result of
poor CSF/ISF transport, which is associated with worsened sleep,
as well as dysregulated AQP4 expression and localization. Buildup
of toxic metabolites also includes components associated with
aβ plaques, including amyloid precursor protein (APP) and Tau
(Zhang et al., 2020; Silva et al., 2021). Insufficient sleep further
drives accumulation of aβ by reducing opportunities for clearance
of toxic metabolites (Gordleeva et al., 2020). This finding has
even been replicated in humans, with Ju et al. (2017) reporting
that specific disruption of SWA, even for one night, is strongly
associated with increased aβ.

In summary, sleep homeostasis, glymphatic clearance, and
healthy astrocytes are all vital for maintaining normal brain
function. Conversely, disordered sleep, CSF contamination and
stagnation, and astrocyte malfunction have the potential to interact
to cause significant decline in overall brain health. Many of these
homeostatic functions are compromised both during healthy aging
and in neurodegenerative disease. It is yet unknown whether sleep
deprivation or disruption creates an environment that is conducive
to astrocyte reactivity and subsequent cognitive decline, or whether
the reprogramming of astrocytes to a disordered state causes
alterations in neuronal activity leading to sleep disruptions. It could
be a combination of both, wherein one feeds into the other to
amplify development of pathology.

5 Astrocytic control of
immunomodulators in physiological
and pathological conditions

In addition to the ions and neuromodulators that circulate
throughout the brain’s interstitial space, CSF also carries various
immunoactive substances that serve important roles in the sleep-
wake cycle (Besedovsky et al., 2019). It has been commonly
reported, both anecdotally and in regulated experimental
environments, that infection and disease are often accompanied
with abnormal sleep experiences (Pollmächer et al., 2002;
Besedovsky et al., 2019). The converse is also true: in both human
and animal models, sleep deprivation and disruption, even in the
short term, has been reported to induce neuroinflammation (Nijs
et al., 2017; Manchanda et al., 2018; Garofalo et al., 2020). Studies in
both human and animal models have identified multiple cytokines
whose concentrations fluctuate in a circadian pattern, and whose
circulation is critical to the initiation and maintenance of sleep
(Pappenheimer et al., 1975; Krueger et al., 1990; Pollmächer
et al., 2002; Wilson et al., 2002). Astrocytes endogenously express
receptors for somnogenic cytokines, which when blocked, have
functional consequences for sleep (Opp et al., 1992; Figure 2).
Astrocytes have also been identified as significant sources of IL
(interleukin)-6 (Frei et al., 1989; Norris and Benveniste, 1993),
TNFα (tumor necrosis factor α), and IL-1 (Yu and Lau, 2000;
Vezzani et al., 2008). This suggests that astrocytes can contribute to
immune signaling even in the absence of injury, pathogen, or other
immune triggers (Wilson et al., 2002). Numerous studies have
observed that neuroinflammation resulting from sleep disruption
causes direct activation of astrocytes, as well as indirect astrogliosis
through the activation of microglia (Hsu et al., 2003; Bellesi et al.,
2017; Liddelow et al., 2017; Manchanda et al., 2018; Drew et al.,
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2023). Conversely, treatment with LPS, a robust instigator of
systemic inflammation, has been shown to cause dramatic shifts in
sleep architecture by increasing the ratio of NREM to REM sleep, a
sign of sleep disruption (Krueger et al., 1986; Moldofsky et al., 1986;
Lancel et al., 1995). Using this framework, it can be considered that
immune responses and sleep disruptions together form a positive
feedback loop, in which each condition aggravates the other. Given
the role of astrocytes in the brain immune response and in the
facilitation of sleep, these cells may hold clinical significance as an
exit pathway from positive feedback of sleep disruption.

5.1 Somnogenic cytokines and their
effects on sleep induction and duration

The observation that increased amounts of slow-wave sleep
accompanying the febrile response to bacterial pyrogens led
researchers to focus their efforts on substances that trigger immune
responses, namely the class of peptides known as cytokines
(Krueger et al., 1990). Interleukins (IL) are a subset of cytokines
that have specifically been shown to trigger an immune response
both directly and indirectly, by initiating other signaling cascades
(Krueger et al., 1990, 1998). Early reports have shown that
administration of human endogenous pyrogen (an early name for
IL-1) into rabbit cerebral ventricles caused prolonged periods of
SWS under a mechanism that occurs concurrently with a fever
response (Krueger et al., 1984). These findings were replicated by
a study administering astrocyte-derived IL-1, which showed that
SWS was enhanced at the expense of REM sleep (Tobler et al.,
1984). An important extension of this finding is that block of
the fever response still resulted in extended SWS, emphasizing
that the role of cytokines is independent from body temperature
effects on sleep architecture (Krueger et al., 1984). To extend
these correlational findings, a subsequent study found that specific
activation of the IL-1β receptor in rats and rabbits potentiated
SWS, and that antagonism of the IL-1β receptor blocked or reduced
these effects (Opp et al., 1992). These sleep-promoting effects
appear to be attenuated by anti-inflammatory cytokines, such as
interleukins-4, 10, and 13, which actively repress activity of pro-
inflammatory cytokines and inhibit NREM sleep (Kushikata et al.,
1999; Kubota et al., 2000; Besedovsky et al., 2019). For example,
administration of IL-13 and TGF (transforming growth factor)
into rabbit cerebral ventricles inhibited NREM sleep (Kubota et al.,
2000). While a mechanistic explanation for this has yet to be
explored, the authors suggested that anti-inflammatory cytokines
may promote sleep either through the direct inhibition of sleep-
promoting factors, or through the production of sleep inhibitory
substances (Kubota et al., 2000).

These findings suggest that the actions of certain cytokines
are consequential for sleep, especially slow-wave activity that
accompanies NREM sleep. The concentrations of these cytokines
may build up as a result of increased wakefulness, as do
the somnogens discussed above, but evidence also suggests
circadian fluctuations of sleep-promoting cytokines (Norris and
Benveniste, 1993; Krueger et al., 1998; Duhart et al., 2013). IL-
1 levels in the plasma peak immediately preceding SWS onset
(Moldofsky et al., 1986). Subsequent experiments showed that, in

addition to IL-1 (specifically IL-1β), increases in TNFα and IL-
6 activity were also strongly correlated with SWS (Krueger et al.,
1998; Vgontzas et al., 1999). Despite these findings, increased
understanding of the sleep-promoting effects of cytokines in
physiological concentrations remains an ongoing area in need of
further study.

As major participants in CNS immune signaling, astrocytes
secrete cytokines in response to various immuno- and
neuromodulators, some of which exert robust sleep-promoting
effects (Wilson et al., 2002; Sofroniew, 2014; Figure 2). High
concentrations of NE, which has been shown to build up as a
consequence of sleep deficiency, can directly cause astrogliosis
(Griffith and Sutin, 1996), cause increased protraction of astrocyte
processes into the ECS (Sherpa et al., 2016), and, in extreme cases,
trigger both small and pathological elevations in IL-6 (Norris
and Benveniste, 1993). Immune factors are also able to directly
influence circadian activity within astrocytes, with Duhart et al.
(2013) showing that TNFα activation of astrocytes in the SCN
alters expression of proteins that regulate their own internal
clocks, which could have significant consequences for phase
shifts within sleep, as well as overall state changes between sleep
and wakefulness. On the other hand, melatonin, a robust sleep-
promoting hormone, has a neuroprotective effect in attenuating
astrogliosis (Babaee et al., 2015; Yawoot et al., 2022; Dorranipour
et al., 2024) and associated immune responses in animal models
of TBI, obesity, and hypoxia (Kaur et al., 2008; Babaee et al., 2015;
Dorranipour et al., 2024). Importantly, it has also been shown to
reduce edema (Kondoh et al., 2002; Li et al., 2014), potentially
through interfering with AQP4-mediated swelling (Li et al., 2014).
Other somnogenic substances, like nitric oxide and histamine, have
also been examined for their contributions to the immune response
and, independently, their role in the sleep-wake cycle (Chao et al.,
1996; Krueger et al., 1998; Hsu et al., 2003). However, the specific
participation of astrocytic immunomodulatory signaling in the
context of sleep has yet to be thoroughly explored.

Another class of cytokines influencing sleep, prostaglandins
(PG), are thought to act as secondary inflammatory mediators in
response to other cytokines (Krueger et al., 1990; Pentreath et al.,
1990). These molecules enable communication between systemic
immune responses and cerebral endothelial cells, especially during
episodes of fever (Kis et al., 2006). One subtype of prostaglandins,
PGD2, is widely considered to have sleep-promoting effects (Ueno
et al., 1983; Krueger et al., 1990). Continuous administration of
PGD2, but not PGE2, in rats has been shown to increase the
amount of time spent in NREM sleep (Ueno et al., 1983). Another
group replicated these results with the added finding that, despite
altered NREM:REM ratio, the NREM sleep was physiologically
indistinguishable from naturally occurring sleep (Hayaishi et al.,
2004). Recent work investigating the mechanisms underlying the
sleep-promoting effects of PGD2 has shown that PGD2-mediated
adenosine release activates sleep-promoting neurons within the
VLPO (Scharbarg et al., 2023). Disruption of PG signaling can have
significant impacts on sleep architecture. Mice lacking the ability
to produce PGs fail to show homeostatically increased periods
of NREM sleep following sleep deprivation (Matsumura et al.,
1991; Hayaishi et al., 2004). Astrocytic expression of transporters
for PGs have been shown to increase when stimulated by LPS,
further facilitating passage of PGs across the BBB and into the
brain parenchyma (Kis et al., 2006; Tachikawa et al., 2012).
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Under the combined effects of ATP and the cytokines IL-1β,
TNFα, and IFNγ (interferon γ) (which each have their own well-
documented somnogenic effects), the precursors for PG production
in astrocytes were markedly increased (Xu et al., 2003). A summary
of somnogens in the brain extracellular space is provided in Table 1.

Astrocytes are directly involved in the signaling pathways
associated with the cytokines affecting sleep discussed above (see
Sofroniew, 2014 for a thorough review). The same substances
that may act as somnogens in a homeostatic context may, in
a pathological state, alter astrocyte function in a manner that
dramatically reshapes sleep patterns both acutely, and over the
long term. These functions include regulation of ECS volume,
turnover of neuromodulators and somnogenic cytokines, and
transport of fluid. Are these merely parallel phenomena that occur
coincidentally, or can one influence the other? Do circulating
immunomodulators, both those that fluctuate on a circadian basis,
and those that build up during standard periods of wakefulness,
contribute to the acute astrocytic structural changes that are
observed across states? An immune response triggered by LPS
alone has been shown to be sufficient to cause cerebral edema
(Alexander et al., 2008; Cao et al., 2012). Astrocytes possess
the receptors and intracellular signaling molecules necessary for
responding to cytokines (Wilson et al., 2002; Vezzani et al., 2008;
Sofroniew, 2014), but it is unknown whether they are only able
to respond to these substances if they are highly concentrated,
or if they can also undergo structural changes to constitutively
circulating levels that occur physiologically. Opp et al. (1992), for
example, found that a 12 nanomole dose, but not a 6 nanomole
dose of human IL-1β administered to rabbits produced a robust
increase in the amount of time spent in NREM sleep. However,
it is difficult to ascertain whether this administration represents
a pathological increase, and what this increase might mean for
astrocyte function. Additionally, it is difficult to determine what
would constitute a pathological increase, given species differences,
the diversity of ECS composition across brain regions, and the
currently available methodologies for sampling ECS in vivo.
Observations from various pathogenic models, especially those in
cases of cellular or cerebral edema, may provide some insight
into how neuroinflammation and maladaptive astrocyte swelling or
shrinking may interact to alter sleep architecture.

5.2 Effects of sleep disruption on
cerebral immune function

Pharmacological or pathological disruptions to cytokine
signaling have been repeatedly shown to interfere with normal
sleep, providing important clues as to how an overactive immune
response may increase risk of developing sleep disturbances
or sleep loss (Besedovsky et al., 2019; Irwin, 2019). Astrocytes
already affected by sleep disruption may create an environment
that facilitates development of other pathologies, which can in
turn have adverse consequences on the homeostatic functions of
astrocytes. Astrocytes that undergo this “reprogramming” are said
to become reactive, and display a wide range of functional and
morphological alterations that distinguish them from their healthy
counterparts (Pekny and Nilsson, 2005; Escartin et al., 2021). This
state is extremely diverse with respect to disease type, severity,

and progression, but can manifest as changes in GFAP expression,
uncoupling/loss of communication via gap junctions, recruitment
of proinflammatory cytokines, an increase in BBB permeability,
loss of ion buffering capabilities, proliferation and formation of
glial scars (most typically in cases of tissue damage), aberrant
calcium signaling, and hypertrophy (Pekny and Nilsson, 2005;
Kuchibhotla et al., 2009; Sofroniew, 2020). Decrease of extracellular
Ca2+ or depletion of intracellular Ca2+ stores may cause disruption
to the BBB, making it more permeable to infiltrating cytokines
and disrupting the neurovascular unit (Shigetomi et al., 2019).
Uncoupling of reactive astrocytes results from the loss of connexins
that span the gap junction that joins two astrocyte processes
together (Williamson et al., 2021). All these outcomes can lead to
reduced buffering and redistribution of small molecules and ions,
such as K+, suggesting that reactive astrocytes impact the ECS
composition differently than healthy ones.

There is ample evidence that sleep deprivation is detrimental
to brain function and overall health, creating a pro-inflammatory
environment facilitating further sleep loss (Zhu et al., 2016; Nijs
et al., 2017; Wadhwa et al., 2017). Initial experiments characterizing
the effects of sleep deprivation on immunomodulators in rodent
serum revealed a significant increase in the sleep-promoting and
pro-inflammatory cytokines IL-1, TNFα, and IL-6 (Hu et al.,
2003). An important consideration in these experiments is that
the observed effects were a result of sleep deprivation specifically,
as non-sleep related physical stress did not produce these same
effects (Hu et al., 2003). These findings are extended in models
of chronic sleep deprivation (less than 6 h of sleep over a 24-h
period), which show increased levels of inflammatory cytokines
(Manchanda et al., 2018), worsened performance on cognitive
measures (Manchanda et al., 2018; Zhang et al., 2020), and
enhanced activation of astrocytes and microglia (Kim et al., 2014;
Bellesi et al., 2017; Manchanda et al., 2018; Drew et al., 2023).
Even sleep fragmentation, which does not detract from overall
sleep duration or alter sleep architecture, activates an immune
response that alters cognitive abilities and negatively impacts
subsequent sleep (Ramesh et al., 2012). Taken together, these
findings suggest that while disruption of cytokine signaling may
have profound effects on sleep onset and sleep duration, sleep
loss itself has the potential to reciprocally dysregulate astrocytic
cytokine secretion.

The astrocyte marker GFAP has been shown to be instrumental
in defining astrocyte structure and alterations in its expression
have been used as a classic hallmark of reactive astrocytes. Most
often observed is an increase in GFAP expression which may
be a sign of hypertrophy or increased branching of astrocyte
processes (Escartin et al., 2021). In the healthy rodent SCN,
GFAP expression has been shown to fluctuate rhythmically over
24 h periods, even when deprived of external cues (Lavialle
and Servière, 1993). Interestingly, astrocytes also display an
aberrant phenotype in response to sleep disruption exhibited
by GFAP upregulation (Hsu et al., 2003). Proteomic analysis
of astrocytes in sleep-promoting areas, like the VLPO of the
hypothalamus, shows that sleep deprivation can increase the
number of reactive astrocytes (Kim et al., 2014), suggesting
that sleep loss can lead to proliferative astrogliosis, considered
to be an extreme reactive astrocyte response typically observed
in the formation of glial scars (Sofroniew, 2014; Zhang et al.,
2020). Increased branching or enlargement of reactive astrocyte
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processes could reasonably be expected to reduce the volume of the
ECS, which could prove consequential for sleep-wake homeostasis
by increasing concentrations of circulating cytokines, ions, and
neurotransmitters, and hindering their movement. Sleep loss has
been shown to result in increased interactions between astrocytic
processes and synapses (Bellesi et al., 2015), placing astrocytes in
a position to either facilitate return to homeostasis or contribute
to detrimental loss of supportive functions. The characterization of
astrocyte structural changes in conditions of sleep deprivation have
yet to be fully explored and so the consequences of these alterations
remain speculative.

5.3 Edema, inflammation, and sleep
disruption

As discussed above, multiple disease states may feature, or
even arise from, dysregulation and contamination of fluid within
the brain (Taoka and Naganawa, 2021). Cellular edema (also
known as cytotoxic edema) is typically associated with pathological
conditions that result from ionic imbalances and associated fluid
movement into cells (Stokum et al., 2015). Cerebral edema is
a multifaceted form of fluid accumulation that is said to arise
from the combined effects of vasogenic edema, the mass exodus
of ions and other solutes from perivascular spaces, and cytotoxic
edema (Stokum et al., 2016; Sepehrinezhad et al., 2020). All edema
subtypes result from a wide array of pathological triggers that create
unique profiles of swelling and neuroinflammation which can also
induce varying forms of reactive gliosis (Sofroniew, 2014; Escartin
et al., 2021). These changes are also distinct from hypertrophy and
remodeling of processes, which often occurs in reactive astrogliosis,
a state that likely often accompanies cerebral edema due to tissue
damage and/or inflammation.

Cellular edema mainly results from ISF being driven into cells
from the neuropil, while CSF is responsible for the overall tissue
swelling characteristic of cerebral edema (Iliff and Simon, 2019;
Mestre et al., 2020). However, much of the literature surrounding
these conditions does not clearly distinguish between the two,
and it is unclear how they might differ from one another in a
pathological context. For example, the breakdown of the physical
barriers that normally separate ISF from CSF may cause CSF
stagnation, or otherwise compromise the functionality of the
glymphatic system (Benveniste et al., 2017). Due to this ambiguity,
throughout this section we will use “fluid” as a general term to
refer to the water and solutes occupying the ECS. Edematous
astrocytes are key effectors of fluid composition within the diseased
or damaged brain, and thus represent a key target in understanding
why sleep disorders in various brain pathologies have such high
comorbidities. Much of the evidence for the detrimental effects of
astrocytic edema on sleep comes from studies on ischemic stroke,
which results from blocked perfusion of blood and oxygen to
the brain (Mestre et al., 2020). Cytotoxic edema and astrogliosis
are well-documented hallmarks of the brain damage that results
from an ischemic event (Pivonkova and Anderova, 2017; Menyhárt
et al., 2022; Tang et al., 2022). Reactive astrocytes are known
to produce numerous cytokines, many of which participate in
somnogenic signaling (Krueger et al., 1990; Sofroniew, 2014).
Sleep disturbances have been observed in both animal models

of ischemic stroke, and in human patients (Sharma et al., 2022;
Duss et al., 2023), although the mechanisms underlying them are
not well established.

Given the importance of fluid composition in sleep-wake
transitions, we can speculate that the altered expression of channels
and transporters on edematous reactive astrocytes could be one
potential source of ionic imbalance that leads to sleep disruption.
Potassium regulation is an extremely critical function of astrocytes
(Kofuji and Newman, 2004), and the loss of GJ coupling combined
with failure of the NKA could cause K+ levels to rise far above
baseline levels, which aside from being neurotoxic could prevent
K+ from falling to the levels required to facilitate a state shift
into sleep (Ding et al., 2016; Forsberg et al., 2022). Elevated K+

levels themselves have been consistently shown to cause astrocytic
swelling as K+ and water accumulate in the cell (Pasantes-Morales
and Schousboe, 1989; Walch et al., 2020), generating a feedback
loop of cellular edema and excitotoxicity that could exacerbate
disruptions in sleep-wake homeostasis. Additionally, failure of
excess K+ to clear away could also contribute to a persistently
enlarged ECS, which is characterized by significantly reduced
glymphatic clearance (Xie et al., 2013). The daily fluctuations in
K+ and adrenergic receptor activation are associated with the
routine, readily reversible astrocytic volume changes that facilitate
glymphatic clearance during sleep (Xie et al., 2013; Sherpa et al.,
2016). Extending these findings to pathological conditions, we
may hypothesize that prolonged adrenergic receptor activation
and resultant K+ elevations may accompany extended cellular
edema, reduced solute transport, and poorer sleep outcomes.
Accordingly, inhibition of adrenergic signaling has been shown
to resolve edema and improve glymphatic clearance in a mouse
model of TBI (Hussain et al., 2023), as well as restore K+

homeostasis in ischemic stroke (Monai et al., 2019, 2021). While
measurements of potential sleep disruptions were beyond the
scope of these studies, they are a frequently observed symptom
of fluidopathies (Taoka and Naganawa, 2021), and so warrant
further investigation. Additionally, these studies utilized general
antagonism of adrenergic receptors, preventing assessment of
astrocytic adrenergic signaling specifically. This is noteworthy
considering that (reactive) astrocytes in these conditions are
significant mediators of altered K+ homeostasis and tissue edema
(Stokum et al., 2016; Monai et al., 2021).

The involvement of astrocytes in cellular and cerebral
edema suggests a bidirectional interaction – excess fluid in
the ECS has the potential to be osmotically driven into
individual cells, and astrocytes possess mechanisms that allow
them to expel ions and neuroactive substances back into the
ECS through volume regulatory processes. What happens, then,
when astrocyte volume regulatory functions are compromised
as a result of the inflammatory environment associated with
edema? Given the frequent comorbidities of both types of
edema and sleep disruptions (Besedovsky et al., 2019; Garofalo
et al., 2020; Duss et al., 2023), the combined effect of
edema and neuroinflammation could have significant negative
consequences on astrocyte contributions to sleep architecture by
altering their ability to regulate ECS volume and composition.
However, there remain relatively few studies that specifically
investigate maladaptive astrocyte volume regulation as a direct
cause of, or direct result from, sleep deprivation and associated
neuroinflammation.
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The interface between astrocytic edema and
neuroinflammation is also explored in studies of hepatic
encephalopathy (HE), which features astrogliosis and cell
swelling that is exacerbated by a peripheral immune response
and oxidative stress (Jayakumar et al., 2014; Sepehrinezhad
et al., 2020). HE may occur as a symptom of acute liver failure
(ALF), or from more severe stages of cirrhosis, and commonly
features sleep disturbances (Wright et al., 2007; Elsherbini
et al., 2022). In this condition, the predominant threat to brain
health arises from failure of the liver to filter out ammonia
from the plasma, which results in its infiltration into the brain
parenchyma and the formation of an ionic gradient that drives
fluid into astrocytes (Sepehrinezhad et al., 2020). Interstitial
concentration of ammonia (and by extension, pH) is tightly

regulated by astrocytes and plays an important role in the BBB
(Sepehrinezhad et al., 2020).

Overall, astrocyte volume regulation is critical in regulating
CSF volume and composition across the sleep-wake cycle (Xie
et al., 2013; Ding et al., 2016; Sherpa et al., 2016; Chmelova et al.,
2019), a balance which is often disrupted in pathogenic states
caused by injury, inflammation, and sleep deprivation. Astrocyte
fluid dysregulation could serve as a linking mechanism between
conditions of cellular edema, neuroinflammation, and associated
sleep disturbances. Fluid accumulation in any space of the brain
can have drastic consequences for overall brain health by increasing
intracranial pressure, disturbing the osmotic balance, and causing
herniations within the brain, all of which could lead to significant
tissue damage (Wang and Parpura, 2016). As discussed earlier,

TABLE 1 Summary of somnogenic factors in the ECS and their effects on sleep and astrocyte function.

Somnogenic
factors

Role in behavioral state Pathological consequences
when dysregulated

Main sources

Norepinephrine – Promotes wakefulness and arousal
– Increases extracellular K+

– Modulates astrocyte and ECS volume

– Astrogliosis
– Increased cytokine production

Neurons (Locus Coeruleus)

Adenosine – Promotes sleep
– Inhibits wake–promoting circuitry
– Elevated prior to sleep

– Astrogliosis Astrocytes, neurons (ATP
metabolite)

Melatonin – Promotes sleep – Alleviates astrogliosis, edema caused by
spinal cord injury, ischemia, others?

Pineal Body

Histamine – Promotes wakefulness – Increased cytokine production Neurons (hypothalamus)

Dopamine – Promotes arousal – Loss of dopaminergic neurons contributes to
PD (inflammation and reduced glymphatic
efficacy)

Neurons (hypothalamus,
brainstem)

Orexin – Promotes arousal – Loss of orexinergic neurons contributes to
PD (inflammation and reduced glymphatic
efficacy)

Neurons (hypothalamus)

Calcium (Ca2+) – Elevated during sleep – Increased BBB permeability Neurons, choroid plexus/
vasculature

Potassium (K+) – Elevated during wake
– Decreased during sleep
– Elevations in K+ cause astrocyte swelling

– Hyperexcitability and excitotoxicity Astrocytes, neurons, choroid
plexus/ vasculature

IL–1 – Promotes NREM sleep – Astrogliosis
– Promotes inflammation
– Upregulates AQP4
– Exacerbates edema caused by ALF, others?

Astrocytes, microglia

IL–6 – Promotes sleep – Astrogliosis
– Promotes inflammation
– Exacerbates edema caused by ALF, others?

Astrocytes, microglia

IL–13 – Inhibits sleep – Anti–inflammatory Microglia

TNFα – Promotes NREM sleep
– Upregulated in sleep deprivation

– Astrogliosis
– Promotes inflammation
– Exacerbates edema caused by ALF, others?

Astrocytes, microglia

PGD2 – Promotes NREM and REM sleep
– Increases adenosine levels

– Astrogliosis
– Increased BBB permeability

Mast cells (choroid plexus)

PGE2 – Inhibits sleep – Astrogliosis Astrocytes, microglia

NO – Promotes sleep
– Triggers adenosine release

– Astrogliosis
– Neuronal damage

Neurons (NOS)

While the concentrations of these factors fluctuate over the course of the sleep-wake cycle, pathological overproduction, upregulation, or depletion of these can have detrimental consequences
for astrocytic function. Overall, there are numerous substances whose direct contributions to astrocyte volume changes remain unknown. It is important to note that this is not an exhaustive
list of all somnogenic factors that may be involved in the astrocytic modulation of sleep.
IL, interleukin; TNF, tumor necrosis factor; PGD, prostaglandin; NO, nitric oxide; NOS, nitric oxide synthase.
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hypertrophy without fluid accumulation could still affect ECS
volume and composition to sufficiently disrupt sleep onset and
sleep maintenance. While the relationship between cellular edema
and hypertrophy is still unclear, the resulting changes to solute, ion,
and immunomodulator concentrations could be highly influential
to sleep-wake transitions and sleep architecture.

6 Discussion

In summary, astrocytes are critical effectors of ECS volume
and composition, including ion homeostasis, neurotransmitter
concentration, CSF/ISF transport, and immunomodulators, all of
which can impact cognitive function and overall brain health. Fluid
contamination and stagnation, sleep disruption, inflammation, and
reprogrammed astrocyte function are all implicated in a multitude
of diseases and disorders, although it has been difficult to establish
causal relationships between these dysfunctional states. Where past
focus has been attributed mainly to neuronal activity, astrocytes are
now being incorporated into current frameworks of understanding
sleep mechanisms and pathologies.

A number of factors should be considered when interpreting
sleep research. First, it is important to note that “sleep” and “wake”
themselves are not binary categories – there is variation within each
state with respect to levels of arousal. The underlying neuronal
activity between “awake and at rest” and “awake and active,”
for example, could arise from significantly different ECS profiles
(Saper et al., 2010). Usually, sleep in experimental conditions
is defined by either REM or NREM sleep, which means that
comparisons between wake, NREM, and REM sleep, as well
as transitional periods between states, remain an understudied
aspect of ECS dynamics. Further complicating this matter are
the physiological sleep stages compared to the various methods
of inducing sleep experimentally. In mouse research, sleep is
hard to disentangle from anesthesia-induced unconsciousness,
usually due to experimental constraints that prevent the mouse
from initiating and maintaining sleep without stress from the
experiment. There is still great debate in the literature about the
effects of anesthesia, and whether this can be truly comparable
to a sleep state. Many real-time in vivo measurements of CSF
dynamics cannot be conducted in such a way that the animal can
maintain natural sleep. In addition, there appears to be a great
amount of variability in terms of the methods used to measure
sleep. Xie et al. (2013) showed that effects of ketamine/xylazine
anesthesia on CSF flow are comparable to sleep, while Hablitz et al.
(2019) showed that xylazine, an α2 adrenergic receptor agonist, is
associated with increased SWA and more pronounced glymphatic
clearance, while isoflurane anesthesia suppresses both delta power
and glymphatic clearance.

Last, common measures of ECS volume do not directly examine
the volume contribution of astrocytes specifically, nor do they
examine the influence of somnogens on astrocyte morphology
(Table 1). Rather, they are an indirect quantification of ECS
volume. Historically, one of the main challenges with cellular
and extracellular volume dynamics has been measurement of
volume changes in real time. While much of the evidence points
to astrocytes as a key cell type underlying state-dependent ECS

fluctuations, methodological constraints prevent establishing a
direct causal relationship between the two. A method of probing
the volume changes of individual astrocytes in vivo and in
real time along with state changes would help close this gap.
Recently, imaging technology has evolved to allow for higher
resolution imaging of ECS, as well as the finer astrocyte processes
that infiltrate it, in real time (Tønnesen et al., 2018; Arizono
et al., 2021; Arizono and Nägerl, 2022; Denizot et al., 2022).
If applied in conjunction with behavioral assays and/or in vivo
electrophysiology, these techniques could reveal valuable insights
into astrocyte volume and ECS dynamics in synchrony with
measures of cortical activity. New imaging techniques are also
being applied in human patients in order to evaluate the impact
of diseases and disorders on sleep quality and other aspects of
brain health, like vascular integrity, fluid transport, and cognitive
function (Taoka et al., 2017). These advances could help address
vital outstanding questions regarding the role of astrocytes in sleep,
and in the development of disorders associated with sleep and
fluid dysregulation.
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