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The Astrocytic Calcium Signaling Toolkit (astroCaST) is a novel solution to a

longstanding challenge in neuroscience research: the specialized analysis of

astrocytic calcium events within fluorescence time-series imaging. Distinct from

existing neuron-centric tools, astroCaST is adept at detecting and clustering

astrocytic calcium events based on their unique spatiotemporal characteristics,

thus filling a gap in astrocytic research methodologies. This toolkit not only

facilitates the detection of such events but also extends its utility to provide

comprehensive end-to-end analysis. This feature is absent in most tools

targeting astrocytic activity. AstroCaST’s development was motivated by the

critical need for dedicated software that supports researchers in transitioning

from raw video data to insightful experimental conclusions, e�ciently managing

large-scale datasets without compromising computational speed. It o�ers a

user-friendly interface that caters to both novice and expert users, incorporating

both a graphical user interface (GUI) for detailed explorations and a command-

line interface (CLI) for extensive analyses. Expected outcomes from utilizing

astroCaST include the ability to process and analyze a significantly larger

volume of data. This enables a more profound and comprehensive analysis than

previously possible, addressing the demands of large-scale astrocytic studies.

In summary, astroCaST aims to advance astrocytic calcium imaging analysis,

o�ering a tailored, e�cient, and comprehensive toolset that enhances our

understanding of astrocytic functions and their implications in neuroscience.
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1 Introduction

Analyzing cytosolic calcium oscillations helps decode neuronal firing patterns, synaptic
activity, and network dynamics, offering insights into cell activity and states (Del Negro,
2005; Dombeck et al., 2007; Grienberger and Konnerth, 2012; Forsberg et al., 2017).
Furthermore, the changes in calcium activity may be indicative of cell responses to
downregulation of molecular pathways, epigenetic alterations, or even the effect of
treatments or drugs, and disease states (Zhang et al., 2010; Huang et al., 2013; Robil et al.,
2015; Britti et al., 2020; Lines et al., 2020; Miller et al., 2023). This makes dynamic calcium
activity recordings a crucial tool to investigate physiology and neurological disorders and
to design and develop therapeutic interventions.
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While we have seen major development in recent years in the
imaging tools available to study astrocytes, the software side has
been slow to catch up (Stobart et al., 2018a; Aryal et al., 2022;
Gorzo and Gordon, 2022). Currently several software packages
are available for researchers to analyze calcium activity recordings
from brain cells (Table 1). However, most of these packages are
primarily developed for neurons, and are often not suitable for
astrocytes. The challenge stems from astrocytes’ unique physiology,
marked by rapid microdomain calcium fluctuations (Stobart et al.,
2018b; Curreli et al., 2022) and their ability to alter the morphology
during a single recording (Baorto et al., 1992; Anders et al.,
2024). Astrocytes exhibit calcium fluctuations that are spatially
and temporally diverse, reflecting their integration of a wide range
of physiological signals (Smedler and Uhlén, 2014; Bazargani and
Attwell, 2016; Papouin et al., 2017; Denizot et al., 2019; Semyanov
et al., 2020).

The available toolkits specifically transcribing astrocytic activity
come with several shortcomings (Table 1). A major barrier is the
use of proprietary programming languages like Matlab, that hinder
widespread use. Additionally, slow implementations due to lack of
parallelization and Graphics Processing Unit (GPU) acceleration or
usage of RAM exceeding most standard setups impedes analysis
of long videos (>5,000 frames). While all compared toolkits offer
efficient event detection, most lack support to gain insight from the
extracted events.

AstroCAST, developed in Python for its versatility and ease
of use, addresses these shortcomings through a modular design,
allowing for customizable pipelines and parallel processing.
It optimizes resource use by only loading data as needed,
ensuring efficient hardware scaling. Its modular design enables
stepwise quality control and flexible customization. Finally,
astroCaST includes dedicated modules to analyze common
research questions, as compared to other packages that primarily
focus on event detection.

Here, we not only introduce astroCaST but also provide a
detailed guide for extracting astrocytic calcium signals from video
data, performing advanced clustering and correlating their activity
with other physiological signals (Figure 1). AstroCAST extends
beyond theory, having been tested with synthetic data, as well as
in-vitro, ex-vivo, and in-vivo recordings (Table 3). This underscores
AstroCAST’s ability to harness sophisticated computational
techniques, making significant strides in the study of astrocytes
and offering new opportunities for neuroscience research.

2 Methods

2.1 Requirements

It is imperative that the recordings specifically capture
astrocytes labeled with calcium sensors, either through transgenic
models or viral vectors. While the use of calcium dyes is possible,
their application may not guarantee the exclusive detection of
astrocytic events. The initial step of the astroCaST toolkit involves
preparing the video recordings for analysis. Our protocol supports
a range of file formats, including .avi, .h5, .tiff (either single
or multipage), and .czi, accommodating videos with interleaved
recording paradigms. To ensure reliable results, recordings should

be captured at a frequency of at least 8 Hz for One-photon
(1P) imaging and 1–2 Hz for Two-photon (2P) imaging. This
frequency selection is crucial for capturing events of the expected
duration effectively.

Regarding hardware requirements, our protocol is adaptable
to a variety of configurations, from personal computers to
cloud infrastructures, with certain modules benefiting from GPU
acceleration. At a minimum, we recommend using hardware
equipped with at least 1.6 GHz quad-core processor and 16 GB
of RAM to efficiently handle the data analysis. In cases where
the available memory is a bottleneck, astroCaST offers a lazy

parameter to only load relevant sections of the data into memory.
While this increases processing time, depending on the speed of
the storage medium, it allows users to analyze datasets that would
usually exceed the capabilities of their hardware.

On the software side, we advocate for the use of the Linux
operating system, specifically Ubuntu or AlmaLinux distributions,
for optimal performance. However, Windows or macOS can be
used with some functional limitations (Table 2). Be advised, that the
M1 and M2 Mac processors are currently not supported. Essential
software includes Python version 3.9, Anaconda or Miniconda,
and git for version control. Furthermore, we recommend the use
of ImageJ or an equivalent image viewer for analyzing the output
visually. This comprehensive approach ensures that researchers can
accurately extract and analyze astrocytic calcium signals, paving the
way for further understanding of their physiological roles.

2.2 Installation

To run the software, astroCaST and its dependencies must
be installed. There are multiple options to do this depending on
how much control users would like to have over the installation.
Of note, the following instructions install astroCaST with its full
functionality. If that is not desired or possible remove the -E all

or [all] flags.

2.2.1 Creating a conda environment (optional)
While not strictly necessary, we highly recommend to create a

fresh anaconda environment. This prevents common installation
errors and conflicts with existing environments.

> conda c r e a t e −n a s t r o python =3 .9 po e t r y
> conda a c t i v a t e a s t r o

2.2.2 Install from source (recommended)

> cd " / pa th / to / d i r e c t o r y / "
> g i t c l on e g i t@g i t hub . com : j a n r e i s i n g / astroCAST . g i t
> cd astroCAST
> po e t r y i n s t a l l −E a l l

2.2.3 Installation with pip (easiest)

# i n s t a l l c o r e f e a t u r e s

> p ip i n s t a l l a s t r o c a s t
# i n s t a l l w i th a l l f e a t u r e s

> p ip i n s t a l l a s t r o c a s t [ a l l ]
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TABLE 1 Comparison of computational tools for analyzing cellular calcium oscillations.

Cell type Model Validation Imaging Language Modular GUI

Suite2P (Pachitariu et al.,
2017)∗

Neurons In-vivo Comparison 2P Python ✓ ✓

FASP (Wang et al., 2017) Astrocytes In-vitro Synthetic — Java ✓ ✓

CHIPS (Barrett et al., 2018) Endothelial In-vitro — 2P
confocal

Matlab ✓ ✓

In-vivo

AQuA (Wang et al., 2018) Astrocytes In-vitro Synthetic 2P Matlab — ✓

In-vivo

CaImAn (Giovannucci et al.,
2019)

Neurons In-vitro User labels 1P, 2P Python ✓ ✓

In-vivo

Astral (Dzyubenko et al.,
2021)

Astrocytes In-vitro — 1P Python — ✓

Begonia (Bjørnstad et al.,
2021)

Astrocyte In-vivo — 2P Matlab ✓ ✓

CaSCaDe (Rupprecht et al.,
2021)

Neurons In-vivo Ground truth 1P, 2P Python ✓ —

In-vitro

Ex-vivo

MSparkles (Stopper et al.,
2022)∗

Astrocytes In-vivo Comparison 1P, 2P Matlab — ✓

Neurons Ex-vivo

astroCaST Astrocytes In-vivo Synthetic 1P, 2P Python ✓ ✓

Ex-vivo

This table highlights the diversity of approaches, including the programming language used, modularity of the tool, and the availability of a graphical user interface (GUI). Modular indicates
whether steps can be used in isolation and custom steps can be added. Notably, entries marked with an asterisk (*) are based on preprint sources.

2.2.4 Container installation (last resort)
To install docker and create an account, follow the instructions

on the docker webpage: https://docs.docker.com/engine/install/

> docker p u l l anacgon / a s t r o c a s t : l a t e s t
> docker image l s
> docker run −v / pa th / to / your / d a t a : / home / d a t a − i t
−p 8888 : 8888 a s t r o c a s t : l a t e s t
# Op t i o n a l l y , s t a r t j u p y t e r no t e book from i n s i d e

t h e docker c o n t a i n e r :
> j u p y t e r−l a b −−a l l ow−r oo t −−no−browser
−−po r t =8888 −−i p= " ∗ "

2.2.5 Test installation
Both commands should run without any errors.

> python −c " impor t a s t r o c a s t "
> a s t r o c a s t −−he lp

2.3 Animal models

Our research utilized two transgenice mouse strains whose
background was changed to outbred CD-1 mice supplied by
Charles River Laboratories, located in Germany. The initial
transgenic lines were Aldh1l1-Cre (JAX Stock No. 029655:
B6N.FVB-Tg(Aldh1l1-cre/ERT2)1Khakh/J) and Ai148D mice (Jax
Stock No. 030328: B6.Cg-Igs7tm148.1(tetO-GCaMP6f,CAG-
tTA2)Hze/J). These strains were housed in a controlled

environment featuring a cyclical light-dark period lasting 12
hours each. Unlimited access to food and water was ensured. These
mice were housed at the Department of Comparative Medicine
at Karolinska Institutet in Stockholm, Sweden. Our experimental
protocols were in strict compliance with the European Community
Guidelines and received authorization from the Stockholm Animal
Research Ethics Committee (approval no. 15819-2017). Acute
slices from the pre-Bötzinger to the protocol previously established
by Reising et al. (2022).

2.4 Datasets used during development

AstroCAST was developed using publicly available datasets and
our own data. The data represents astrocytes studied ex-vivo, in-
vivo and in acute slices captured with 1P or 2P (Table 3). To ensure
transparency and provide a practical starting point, we offer a
collection of tested, default settings within a YAML file. This file,
designed to represent a first-approach configuration, is accessible
in our GitHub repository. Additionally, we provide the datasets
used in this manuscript, as well as pretrained models. A curated
list of pretrained models is accessible on our GitHub page under
denoiser models, and a comprehensive collection of models can be
downloaded via astroCaST. The file name of the model summarizes
the model and training parameters.

# download p u b l i c and cus tom d a t a s e t s

> a s t r o c a s t download−d a t a s e t s
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FIGURE 1

Schematic representation of the astroCaST toolkit comprising three major analytical phases for processing and analyzing astrocytic activity data. (1)

In the preprocessing phase, video input is converted into an HDF5 file format, with optional stages for motion artifact correction, noise reduction,

and background subtraction. (2) The event extraction phase involves the identification of astrocytic events, generating corresponding event traces

and metadata. Events can subsequently undergo optional filtering, frame extension, and signal normalization. (3) The analysis of experiments is

two-fold. For classification and regression, users may select from various feature vector embeddings including Feature Extraction (FExt),

Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN). For hierarchical clustering, the toolkit o�ers Pearson correlation and

Dynamic Time Warping (DTW) for the computation of event similarity, represented as a distance matrix. Dashed outlines denote optional steps within

the process. The presence of an open eye icon signifies supervised steps, while a closed eye indicates unsupervised steps. A line terminating in a

circle denotes need for additional user input.

TABLE 2 Availability of di�erent functionalities of astroCaST across operating systems.

Functionality Linux Windows MacOS (Intel) Docker

Preprocessing ✓ ✓ ✓ ✓

Motion correction ✓ ✓ ✓ ✓

Denoising ✓ #G ✓ ✓

Delta ✓ ✓ ✓ ✓

Detection ✓ ✓ ✓ ✓

UMAP outlier detection ✓ ✓ — ✓

Encoding - all ✓ ✓ ✓ ✓

DTW distance ✓ ✓ — ✓

Video player * ✓ ✓ ✓ —

A check mark (✓) denotes full compatibility and active support. An asterisk (*) indicates that the functionality is optional and can be installed upon user request (see below). A cross mark (—)
signifies that the functionality is not supported or available on the operating system. A half bullet (#G) indicates partial support, indicating that the functionality is expected to be available but is
not actively tested.
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TABLE 3 Overview of datasets employed in analysis.

Dataset Publication Experiment Imaging

Train/test astroCaST (section 2.4) Acute slices, GCaMP6f 1P (8 Hz)

ExVivo AQuA (Wang et al., 2018) Acute slices, GCaMP6f 2P (1.1 Hz)

Glusnfr AQuA (Wang et al., 2018) Acute slices, GluSnFR 2P (4–100 Hz)

InVivo AQuA (Wang et al., 2018) In vivo GCaMP6f 2P (2 Hz)

Cellscan_scim CHIPS (Barrett et al., 2018) Blood vessels 2P

" / pa th / to / download / d i r e c t o r y "

# download p r e t r a i n e d mode l s

> a s t r o c a s t download−models
" / pa th / to / download / d i r e c t o r y "

2.5 Benchmarking of astroCaST and AQuA

A novel synthetic video dataset was designed to evaluate the
performance of both astroCaST and AQuA. This dataset was
specifically developed following the implementation of astroCaST,
and was not used for the optimization of astroCaST. The choice
of a synthetic dataset is justified due to the lack of suitable
publicly accessible datasets with verified ground truth labels. Both
algorithms were run with their default settings, astroCaST with
settings from config.yaml and AQuA with preset 2 (ex-vivo),
to ensure unbiased performance comparison. The computational
analysis was conducted on the Rackham HPC cluster at UPPMAX,
Uppsala University, employing 12 CPU cores (Intel Xeon V4), 76.8
GB of RAM, and 20 hours of allocated wall time. A detection
was considered failed if it surpassed either the memory capacity
or time constraints. Within these parameters, AQuA successfully
processed video dimensions up to 5,000 × 800 × 800 pixels,
whereas astroCaST managed videos up to 5,000 × 1,200 × 1,200
pixels. Events were filtered to lengths between 5 and 1,000 frames
to eliminate evident anomalies.

3 Results

3.1 Using astroCaST

AstroCAST is designed to guide users through the entire
process of astrocyte calcium analysis, from the initial raw data to in-
depth analysis. It is a versatile toolkit that allows for a customizable
workflow as users have the flexibility to omit certain steps or
integrate additional analyses as their research demands. AstroCAST
serves as a robust companion for computational exploration
in neuroscience.

Central to the toolkit’s utility is the astroCaST Python package,
which offers direct access to all functionalities of the toolkit.
This enables users to incorporate astroCaST seamlessly into
their existing workflows or to automate processes within their
custom scripts. The toolkit is structured into three major blocks:
Preprocessing, Encoding, and Exploratory Analysis.

In the Preprocessing block, users can use a CLI, accessible via
commands such as astrocast --help directly in the terminal.
The CLI facilitates the use of a predefined configuration file
to streamline the preprocessing tasks. Moreover, an intuitive
“Argument Explorer” is incorporated to assist users in quickly
testing different parameters, enabling export of the resultant
configuration settings. For a hands-on introduction to this stage,
we have provided a Jupyter notebook, allowing users to engage with
the protocol interactively.

The Encoding and Analysis block adapts to the specific needs
of individual experiments, catering to diverse research objectives
such as comparing drug treatments, model systems, correlating
activities with stimuli, or monitoring changes over time. This
phase of the pipeline is supported by a dedicated GUI, which
offers an interactive environment for analysis and enhanced data
visualization capabilities.

Acknowledging the diversity in data analysis approaches within
astroCaST, subsequent sections will provide concise guidance to
interact with astroCaST and ensure that users can harness its
full potential.

3.1.1 Jupyter notebooks
Jupyter notebooks can be used to interactively run the analysis

and visualize the results. If you have cloned the repository (Section
2.2.2), an example notebook is included to follow along with the
steps described here.

> cd / pa th / to / astroCAST / no tebooks / example s /
> j u p y t e r l a b
# on MacOS t h e command might be

> j up y t e r−notebook

A browser window will open which displays the available
examples or can be used to create custom notebooks.

3.1.2 The command line interface (CLI)
The CLI is a useful selection of commands that enables users

to perform common analysis steps directly from the terminal.
Especially in the context of high-performance computing this
way of interacting with astroCaST is convenient. All parameters
can either be provided manually in the terminal or through a
configuration YAML file. We recommend using a configuration file
when preprocessing many videos to ensure that the results can be
compared. The configuration file must adhere to the YAML format
and can contain settings for more than one command. A default
configuration file can be found in the GitHub repository.
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# g e t l i s t o f a l l a v a i l a b l e commands

> a s t r o c a s t −−he lp
# g e t h e l p f o r i n d i v i d u a l commands

> a s t r o c a s t COMMAND −−he lp
# u s e manual s e t t i n g s

> a s t r o c a s t COMMAND −−PARAM−1 VALUE1 [ . . . ]
# u s e a c o n f i g u r a t i o n f i l e

> a s t r o c a s t −−c o n f i g ‘ / pa th / to / con f i g ’ COMMAND
[ . . . ]

3.1.3 The graphical user interface (GUI)
AstroCAST implements two GUIs, based on shiny (Chang

et al., 2024), to simplify the selection of suitable parameters for
the analysis. The commands below will either automatically open
a browser page to the interface or provide a link that can be copied
to a browser.

# I d e n t i f y c o r r e c t s e t t i n g s f o r t h e e v e n t d e t e c t i o n

> a s t r o c a s t e x p l o r e r −− i npu t pa th / pa th / to / f i l e
−− h5−l o c / d a t a s e t / name
# E x p l o r e d e t e c t e d e v e n t s , i n c l u d i n g f i l t e r i n g ,

embedding and expe r imen t s
> a s t r o c a s t e x p l o r a t o r y−a n a l y s i s −− i npu t pa th
/ pa th / to / r o i / −− h5−l o c / d a t a s e t / name

3.1.4 The data viewer
For convenience astroCaST includes a data viewer, based on

napari (Ahlers et al., 2022), which allows for fast and memory
efficient visualization of data. Users can default to their image
viewer of choice, like ImageJ, if they choose to do so.

# v i ew s i n g l e d a t a s e t

> a s t r o c a s t view−da t a −− l a z y F a l s e / pa th / to / f i l e
/ d a t a s e t / name
# v i ew mu l t i p l e d a t a s e t s

> a s t r o c a s t view−da t a / pa th / to / f i l e / d a t a s e t / one
/ d a t a s e t / two
# v i ew r e s u l t s o f d e t e c t i o n

> a s t r o c a s t view−d e t e c t i o n−r e s u l t s −−v ideo−pa th
/ pa th / to / v i d eo −− l o c / d a t a s e t / name / pa th / to / d i r /
name . r o i

3.2 Preprocessing

3.2.1 File conversion
AstroCAST is designed to handle a wide range of common

input formats, such as .tiff and .czi files, accommodating the diverse
nature of imaging data in neuroscience research. One of the key
features of astroCaST is its ability to process interleaved datasets.
By specifying the -channels option, users can automatically split
datasets based on imaging channels, which is particularly useful
for experiments involving multiple channels interleaved, such as
alternating wavelengths.

Moreover, astroCaST supports the subtraction of a
static background from the video recordings using the
-subtract-background option. This feature allows for the
provision of a background image or value, which is then subtracted
from the entire video. Subtracting for example the dark noise of
the camera can significantly enhance the quality of the analysis.

For optimal processing and data management, it is
recommended to convert files to the .h5 file format. The .h5
format benefits from smart chunking, enhancing the efficiency
of data retrieval and storage. The output configuration can be
finely tuned with options such as -h5-loc for specifying the
dataset location within the .h5 file, -compression for selecting a
compression algorithm (e.g., “gzip”), and -dtype for adjusting the
data type if the input differs from the intended storage format.

Chunking is a critical aspect of data management in astroCaST,
allowing for the video to be divided into discrete segments
for individual saving and compression. The -chunks option
enables users to define the chunk size, balancing between retrieval
speed and storage efficiency. An appropriately sized chunk can
significantly improve processing speed without compromising on
efficiency. In cases where the optimal chunk size is uncertain,
setting -chunks to None instructs astroCaST to automatically
determine a suitable chunk size.

Lastly, the -output-path option directs astroCaST where to
save the processed output. While the .h5 format is recommended
for its efficiency, astroCaST also supports saving in formats such
as .tiff, .tdb, and .avi, providing flexibility to accommodate various
research needs and downstream analysis requirements.

# ( o p t i o n a l ) b rowse t h e a v a i l a b l e f l a g s

> a s t r o c a s t conve r t−i npu t −−he lp
# ‘−− c o n f i g ’ f l a g can be ommited t o u s e d e f a u l t

s e t t i n g s
> a s t r o c a s t −−c o n f i g " / pa th / to / c o n f i g "
conve r t−i npu t " / pa th / to / f i l e / or / f o l d e r "

We recommend to verify the conversion through a quick visual
inspection using the built-in data viewer (Figure 2) or an imaging
software of your choice (e.g., ImageJ). During this check, ensure
that the pixel values are within the expected range (int or float), the
image dimensions (width and height) are as anticipated, all frames
have been successfully loaded, de-interleaving (if applicable) has
been executed correctly, and the dataset name is accurate.

> a s t r o c a s t view−da t a −−h5−l o c " d a t a s e t / name "
" / pa th / to / your / ou tpu t / f i l e "

3.2.2 Motion correction (optional)
During imaging, samples will drift or warp which means that

the location of the astrocytes might change in the Field of View
(FOV). Depending on the amount of movement, this can have
detrimental consequences to the analysis. The motion correction
module of the CaImAn package (Giovannucci et al., 2019), is used
in the astroCaST protocol to correct these artifacts. We refer users
to the the jnormcorre documentation for detailed information, but
explain the commonly used parameters here.

A cornerstone of this feature is the ability to set the maximum
allowed rigid shift through the -max-shifts parameter. This
parameter is critical for accommodating sample motion, ensuring
that shifts do not exceed half of the image dimensions, thus
balancing between correction effectiveness and computational
efficiency. The precision of motion correction is further refined
using the -max-deviation-rigid option, which limits the
deviation of each image patch from the frame’s overall rigid shift.
This ensures uniformity across the corrected image, enhancing the
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FIGURE 2

The Astrocast Viewer interface, showcasing a video file of astrocytic calcium fluorescence captured within the inspiratory rhythm generator

(preBötC) in the medulla. The original recording, acquired at a 20X magnification with a resolution of 1,200 × 1,200 pixels, was performed at a

temporal resolution of 8 Hz. The TIFF-format video was subsequently converted to the HDF5 file format, with spatial downscaling by a factor of four

in the XY plane, as a preparatory step for further preprocessing.

accuracy of the motion correction process. For iterative refinement
of the motion correction, astroCaST employs the -niter-rig

parameter, allowing up to three iterations by default. This iterative
approach enables a more accurate adjustment to the motion
correction algorithm, improving the quality of the processed
images. To address non-uniform motion across the field of view,
astroCaST offers the piecewise-rigid motion correction option,
activated by setting -pw-rigid to True. This method provides a
more nuanced correction by considering different motion patterns
within different image segments, leading to superior correction
outcomes. Furthermore, the -gsig-filt parameter anticipates
the half-size of cells in pixels. This information aids in the
filtering process, crucial for identifying and correcting motion
artifacts accurately.

By carefully adjusting these parameters, researchers can
significantly enhance the quality of their imaging data, ensuring
that motion artifacts are minimized and that the resultant data is
of the highest possible accuracy for subsequent analysis.

# ‘−− c o n f i g ’ f l a g can be ommited t o u s e d e f a u l t

s e t t i n g s
> a s t r o c a s t −−c o n f i g " / pa th / to / c o n f i g " motion−
c o r r e c t i o n −−h5−l o c " d a t a s e t / name "
" / pa th / to / f i l e "

3.2.3 Denoising (optional)
Denoising is an optional but often beneficial preprocessing

step in image analysis. The denoising module is based on the

architecture suggested for DeepInterpolation (Lecoq et al., 2021)
and employs a Convolutional Neural Network (CNN) designed
to clean a target frame. The CNN uses adjacent frames as a
reference without exposing it to the target frame itself. This
approach enables the network to interpolate the desired signal from
the contextual frames. Since the noise is stochastic, the network
inherently learns to disregard it, effectively isolating and enhancing
the signal in the process.We have extended the original approach to
support videos of varying dimensions and facilitate straightforward
retraining protocols.

Training the denoising model is typically a singular task;
once the model is trained, it can be applied to multiple datasets
with no further adjustments. The duration of this initial training
varies from 1 to 12 h, contingent on data intricacy and available
computational power. Subsequent application of the model to
new data, known as inference, is considerably more expedient,
usually requiring minutes for each file. For convenience, we offer a
suite of pre-trained models tailored to different imaging modalities
(Section 2.4).

3.2.3.1 Training (optional)

To ensure the robustness and reliability of the denoising
process, it is crucial to carefully select the training dataset for the
denoiser. The approach to training should aim to minimize the
model’s exposure to the data it will denoise, which can enhance the
reliability of denoising and prevent overfitting.

One approach is to train the model on a separate data set
that will not be used in subsequent analysis. This method is
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advantageous because it allows the model to learn from a diverse set
of data, ideally encompassing all experimental conditions expected
in the study. However, it requires having a separate dataset that
is representative of the various modalities, which may not always
be available.

For smaller datasets or when data is limited, a transformation-
based approach can be applied. Training on all experimental data
but using rotated frames (90◦, 180◦, and 270◦) ensures that the
denoiser is exposed to the inherent noise and variability in the data
while mitigating direct exposure to the frames being denoised. This
approach is particularly resource-efficient but may result in a less
robust model due to the potential predictability of rotated frames.

Each of these methods has its merits and should be chosen
based on the specific context and availability of data within a
given study.

# e x p l o r e t h e p o s s i b l e p a r ame t e r s

> a s t r o c a s t t r a i n−d eno i s e r −−he lp
# t r a i n model from c o n f i g f i l e

> a s t r o c a s t −−c o n f i g c o n f i g . yaml t r a i n−d eno i s e r

The intricacies of training a custom model are beyond this
protocol, andwe refer to the original DeepInterpolation publication
(Lecoq et al., 2021) and our example notebook for users interested
in training their own model.

3.2.3.2 Denoising data

Once the neural network has been trained for denoising, it can
be employed on new data using the parameters that were set during
its training (Figure 3). If utilizing a provided pre-trained model,
these parameters are inferred from the model file.

For trivial input parameters, such as the model path and output
file location, the following flags are used: -model to specify the
model, -output-file to define the output file, -loc-in and
-loc-out to designate the input and output data locations within
the HDF5 file structure.

Network architecture parameters are crucial for ensuring
that the denoising process is compatible with the data’s specific
attributes. These parameters need to exactly match the parameters
during training. These include -input-size to set the dimensions
of the input data, -pre-post-frames to determine the number
of frames before and after the target frame used during denoising,
-gap-frames to optionally skip frames close to the target frame,
and -normalize to apply normalization techniques that aid the
network in emphasizing important features over noise.

Image parameters cater to the post-processing needs of the
denoised data. The -rescale parameter is used to reverse the
normalization applied during denoising, as subsequent analysis
steps often expect the pixel values to be in their original scale.
Furthermore, -padding adjusts the input data size to match the
network’s expected input dimensions, ensuring that no data is lost
or distorted during the denoising process.

While denoising imaging data can reduce noise, it is optional
and careful consideration of research needs beforehand ensures
that important biological signals aren’t inadvertently removed. It
may not suit analyses of fast transient signals (<300 ms) as it might
obscure crucial biological events (Héja et al., 2021; Cho et al., 2022;
Georgiou et al., 2022). Notably, increasing acquisition speed can
help preserve rapid events, as it provides the denoising model with
more frames to accurately identify rapid changes.

# l o ad a c o n f i g f i l e w i th p a r ame t e r s

> a s t r o c a s t −−c o n f i g c o n f i g . yaml d eno i s e
" / pa th / to / f i l e "

3.2.4 Background subtraction (optional)
Background subtraction, while optional, can significantly

enhance event detection in fluorescence imaging by mitigating
issues related to bright backgrounds, uneven lighting, or
pronounced bleaching effects (Figure 4). AstroCAST leverages
Radial Basis Function (RBF) interpolation for background
approximation, ensuring accurate background modeling even
in scenarios characterized by considerable signal fluctuations or
missing data segments.

To facilitate optimal subtraction outcomes without
introducing artifacts such as false positives or negatives,
default parameters are provided, but fine-tuning may be
necessary. An exploratory Jupyter notebook is available
for guidance on how parameter adjustments influences
the results.

The process begins with downsizing the video to manage
computational load while preserving essential features. Peaks
within each pixel’s time series are identified and marked as NaN
to exclude them from influencing the background model. The
RBFInterpolator, implemented in SciPy (Virtanen et al., 2020), then
estimates the background by interpolating these NaN values across
the XYZ dimensions of the video. After resizing back to its original
dimensions, the interpolated background is subtracted.

For initial image preparation, parameters such as
-scale-factor for adjusting video resolution, -blur-sigma and
-blur-radius for image blurring, are crucial. These adjustments
are preparatory steps aimed at enhancing the effectiveness of the
subsequent background subtraction process.

Peak detection is fine-tuned through parameters like
-prominence, -wlen for window length, -distance between
peaks, -width of peaks, and -rel-height defining the peak’s
cutoff height. These settings ensure precise identification
of significant peaks, contributing to the accuracy of the
background modeling.

The RBF interpolator constructs a smooth function from
scattered data points by combining radial basis functions centered
at data locations with a polynomial term (Fasshauer, 2007),
adjusted by coefficients that solve linear equations to fit the data.
Interpolation can be tunes with parameters such as -neighbors
for the interpolation neighborhood, -rbf-smoothing for
interpolation smoothness, -rbf-kernel to choose the kernel
type, -rbf-epsilon, and -rbf-degree for kernel adjustment,
facilitating a tailored approach to background modeling.

Background subtraction can be executed using either the
Delta F (-method ‘dF’) method, which directly subtracts the
background, or the Delta F over F (-method ‘dFF’) method,
which divides the signal by the background post-subtraction.
The choice between these methods depends on the specific
requirements of the imaging data and the desired outcome of
the subtraction process. However, it’s important to consider that
background subtraction may not be necessary for all datasets and
could potentially introduce biases in event detection. Comparative
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FIGURE 3

E�ect of denoising on astrocytic calcium imaging data. (A) A single 256 × 256 pixel frame prior to denoising, where background noise is evident. (B)

The same frame following denoising with enhanced clarity. (C, E, G, I) Pixel intensity over 400 frames (50s) before the application of the denoising

algorithm, showcasing the original signal variation, after normalization. (D, F, H, J) Corresponding traces after denoising, illustrating a stabilized

intensity profile, with preserved signal characteristics. The same normalization parameters were applied to both original and denoised traces to

ensure comparability of noise levels. Location of pixels are indicated with triangles in (A, B). The denoising algorithm was executed on a (128, 128)

field of view, incorporating a context of five adjacent frames for each target frame, with no gap frames. Parameters for the denoising model included

a training period of 50 epochs, a learning rate of 0.0001, momentum of 0.9, and a stack of three layers with 64 kernels of size three in the initial layer,

omitting batch normalization. During inference, a strategy of a 10-pixel overlap in all directions, complemented by “edge” padding, was employed.

analysis with and without this preprocessing step is recommended
to assess its impact accurately (Supplementary material).

> a s t r o c a s t s u b t r a c t−background −−h5−l o c "mc/ ch0 "
−−method " dF " " / pa th / to / f i l e "

3.3 Event Detection

AstroCAST employs an event-centric approach to event
detection, adapted from the AQuA package (Wang et al., 2018),
and leverages the capabilities of scikit-image and dask for
enhanced processing and analysis (van der Walt et al., 2014;
Dask Development Team, 2016). Building on the AquA algorithm,
astroCaST incorporates both spatial and temporal thresholding
techniques to identify and extract events effectively (Figure 5).
Spatial thresholding is executed based on either a single frame
or a small volume, facilitating the identification of significant

patterns or features in space. Concurrently, temporal thresholding
is implemented by scrutinizing individual pixels for peaks across
the time dimension, essentially tracking fluorescence changes
over time.

Following the thresholding process, a binary mask is generated,
which is used to label connected pixels, considering the full 3D
volume of the video. This allows for the integration of different
frames in the z-dimension to constitute a single event in a 3D
context, ensuring a comprehensive analysis of the events captured
in the video. Upon successful event detection, our protocol
generates a folder with a .roi extension, which houses all files
related to the detected events, offering an organized and accessible
repository for the extracted data.

The event detection step is the most critical aspect of
astroCaST and is sensitive to the choice of parameters. We have
therefore implemented an interactive interface to explore the
performance of each step during event detection given the relevant
options.AstroCAST will prompt a link to the browser-based
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FIGURE 4

Comparison before and after the application of background subtraction to fluorescence imaging data. (A, C) Fluorescence images before and after

background subtraction, respectively, illustrating the removal of extraneous noise. After subtraction, the background is close to zero and exhibits

overall lower noise levels. (B, D) Intensity traces corresponding to the marked points on the images are plotted over time (400 frames, 50s). These

traces highlight the e�cacy of background subtraction, with the post-subtraction traces approaching zero on the y-axis, thereby indicating a

substantial reduction of background, while signal amplitude is conserved. However, the signal shapes, especially in the red trace, exhibit slight

alterations post-subtraction. Moreover, the green trace reveals the inadvertent introduction of spurious events, serving as a cautionary example of

how background subtraction can inadvertently a�ect data integrity if parameters are not judiciously optimized.

interface. We recommend to select a short range of frames in the
video file to keep processing time during exploration short.

> a s t r o c a s t e x p l o r e r −− i npu t pa th " / pa th / to / f i l e "
−− h5−l o c " / d a t a s e t / name "

Once users are satisfied with the chosen parameters, they can
be exported to a YAML config file, that can be provided to the
astrocast CLI.

3.3.1 Detection module description
The detection module in AstroCAST applies a comprehensive

approach to identify astrocytic events by smoothing, thresholding,
and applying morphological operations on fluorescence imaging
data. This section outlines the key steps and parameters used in
the process.

3.3.1.1 Smoothing

AstroCAST incorporates a Gaussian smoothing kernel
to enhance event detection while preserving spatial features.
Adjusting the --sigma and --radius parameters allows for
the refinement of the smoothing effect, ensuring that events
are emphasized without compromising the integrity of spatial
characteristics. The smoothed data then serve as the basis
for subsequent detection steps, although users can opt out of
smoothing if desired.

3.3.1.2 Identifying active pixels

Thresholding in AstroCAST is executed in two phases, spatial
and temporal, to classify pixels as active with high precision.
Spatial thresholding evaluates the entire frame to distinguish active
pixels, automatically determining a cutoff value. It incorporates
the mean fluorescence ratio of active to inactive pixels to mitigate
the incorrect identification of noise as events. The --min-ratio
parameter sets the minimum ratio threshold, and the --z-depth
parameter allows for the consideration of multiple frames to
improve threshold accuracy. Temporal thresholding analyzes the
video as a series of 1D time series, identifying peaks with a
prominence above a user-defined threshold. Parameters such as
--prominence, --width, --rel-height, and --wlen fine-tune
the detection of events over time, enhancing the separation of true
events from noise. Combining spatial and temporal thresholding,
users can choose tomerge or differentiate the active pixels identified
by each method, optimizing event detection based on specific
dataset characteristics.

3.3.1.3 Morphological operations

To address artifacts resulting from thresholding, such as holes
(false negatives) and noise (false positives), AstroCAST employs
morphological operations. Parameters like --area-threshold

and --min-size adjust the maximum hole size to fill and
the minimum size of active pixel clusters, respectively. These
operations, which also consider connectivity and the --z-depth
parameter, refine the detection outcome by smoothing gaps and
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FIGURE 5

Depiction of astrocytic event detection employed by astroCaST using spatial and temporal thresholding. (A) Binary mask of frame after application of

spatial threshold (min_ratio 1). (B) Binary mask of framer after application of temporal threshold (prominence 2, width 3, rel_height 0.9). (C) Frame

used for thresholding after motion correction, denoising and smoothing. (D) Events detected as identified by both spatial and temporal thresholding.

(E–G) Pixel intensity analysis for selected pixels [as indicated in (A–D)], with active frames color-coded in the plots. The frame shown in (A–D) is

indicated as a vertical dotted line.

removing minor artifacts, enhancing the clarity and segmentation
of detected events.

3.3.1.4 Additional options

Additionally, AstroCAST provides the option to exclude the
video border from active pixel detection (--exclude-border)
to mitigate motion correction artifacts. An experimental
feature (--split-events) is available for separating
incorrectly connected events, further improving the accuracy
of event detection.

3.3.2 Evaluating detection quality
AstroCAST offers a streamlined approach for assessing the

quality of event detection through its command-line interface.

> a s t r o c a s t view−d e t e c t i o n−r e s u l t s " / pa th / to / r o i "

Researchers can visually inspect the detection outcomes.
During this evaluation phase, it is crucial to determine whether
the detection process has successfully identified all expected events,
thereby minimizing false negatives, and to assess the correctness
of these events to ensure that noise has not been misclassified as
true events, which would indicate false positives. If the detection
results are not satisfactory, revising the event detection parameters
or adjusting settings in the preceding background subtraction step
(Section 3.2.4) may be necessary to achieve improved accuracy. For
a dynamic visualization that illustrates the successful identification
of events we included an example video (Supplementary material).

3.3.3 Comparison of astroCaST and AQuA
We evaluated the performance of astroCaST against the current

state-of-the-art astrocytic calcium imaging toolkit, AQuA, utilizing
a tailored synthetic dataset. Our findings reveal that astroCaST was
approximately ten times faster and using only half as muchmemory
as AQuA (Figures 6A, B). A notable feature of astroCaST is its
peak memory usage, which approaches a maximal limit, indicative
of its efficient memory management facilitated by lazy data
loading techniques. Both toolkits, however, exhibited tendencies
to overestimate the number of detected events (Figures 6C, D).
Despite this, the estimations made by astroCaST were consistently
closer to the true values. These tests were conducted using default
parameters for both toolkits to ensure an unbiased comparison.
However, adjusting parameters tailored to the dataset can improve
the detection accuracy of both toolkits. For example, filtering
the detected events from astroCAST using the signal-to-noise
ratio column yielded nearly identical detection matches to the
generated events.

3.4 Embedding

3.4.1 Quality control and standardization
After successful detection of events, users need to

control the quality of the result to ensure data integrity
for downstream analysis. In astroCaST this step optionally
includes filtering and normalization. AstroCAST also
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FIGURE 6

Performance comparison of astroCaST and AQuA on synthetic calcium imaging datasets. (A, B) Evaluation of computational e�ciency for astroCaST

and AQuA across synthetic video datasets of varying dimensions (100–5,000 frames, 100 × 100–1,200 × 1,200 pixels). (A) Graphical representation

of runtime for each algorithm. (B) Analysis of peak memory consumption during the event detection phase. A run was considered failed if it

exceeded available memory (76.8 GB). (C, D) Assessment of the accuracy in detecting astrocytic calcium events by astroCaST (C) and AQuA (D)

without initial preprocessing steps. Detected events smaller than 5 and larger than 1,000 frames were excluded for visualization purposes. The dotted

line marks the ideal correlation between the synthetic events generated and those identified by the algorithm.

features a dedicated GUI to guide selection of filter and
normalization parameters.

> a s t r o c a s t e x p l o r a t o r y−a n a l y s i s −−input−pa th
" / pa th / to / r o i / " −−h5−l o c " / d a t a s e t / name "

Here, we are going to showcase the steps using the astroCaST
python package directly. Users are directed to our example
notebook to follow along. Of note, large datasets might require
significant computational time. Hence, we recommend to utilize
dynamic disk caching, via the cache_path parameter, to mitigate
redundant processing.

from p a t h l i b import Path
from a s t r o c a s t . a n a l y s i s import Events , Video

# l o ad v i d e o da ta

v i d eo_pa th = ’ pa th / to / p r o c e s s e d / v i d eo . h5 ’
h5_ loc= ’ d f / ch0 ’ l a z y = F a l s e
# f l a g t o t o g g l e on−demand l o a d i n g ;

s l owe r but l e s s memory
v i d eo = Video ( d a t a=v ideo_pa th , l o c =h5_loc ,
l a z y = l a z y )

# l o ad e v e n t da ta

e v en t _p a t h = ’ pa th / to / e v e n t s . r o i ’
c a che_pa th=Path ( e v en t _p a t h ) . j o i n p a t h ( ’ c a che ’ )
eObj = Even t s ( e v e n t _ d i r = even t_pa th , d a t a =v ideo ,
c a che_pa th=cache_pa th )

The events object has an events instance, which
contains the extracted signal, as well as their associated
attributes (for example ‘dz’, ‘x0’) and metrics (for
example ‘v_area’, ‘v_signal_to_noise_ratio’). An
explanation of all columns can be found in the class docstring
help(Events).

3.4.1.1 Filtering

Typically, datasets undergo filtering to adhere to experimental
parameters or to eliminate outliers. Although a detailed discourse
on filtering protocols is outside this document’s scope, we address
several prevalent scenarios. For astrocytic events, imposing a cutoff
for event duration is beneficial, especially when distinguishing
between rapid and protracted calcium events. Moreover, applying
a threshold for the signal-to-noise ratio helps to discard events
with negligible amplitude. Although it seems optimal to include
as many events as possible, practical issues such as computational
limits and the risk of mixing important events with irrelevant
data require a selective approach. Additionally, filtering aids in
removing outliers, achieved either through manual adjustments
or an unbiased clustering method. It is vital to recognize that
the concept of an outlier is not universal, but intimately tied
to the specifics of the experimental design. Rigorous, context-
sensitive examination is crucial for accurate data interpretation.
We encourage users to venture beyond the preset analysis tools
of AstroCAST, engaging with their data through custom analysis
methods tailored to their unique experimental conditions.

from a s t r o c a s t . a n a l y s i s import P l o t t i n g
p l o t = P l o t t i n g ( e v e n t s =eObj )

# e x p l o r e d i s t r i b u t i o n

p l o t . p l o t _ d i s t r i b u t i o n ( column= ’ dz ’ ,
o u t l i e r _ d e v i a t i o n =3)

# f i l t e r ba s ed on u s e r c h o i c e

# h e r e : e v e n t s o f l e n g t h be tween 3 and 200 f r ame s

f i l t e r _ c h o i c e = { ’ dz ’ : ( 3 , 2 0 0 ) }
eObj . f i l t e r ( f i l t e r _ c h o i c e , i n p l a c e =True )
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3.4.1.2 Event extension

AstroCAST’s event detection module is designed to pinpoint
individual events with precise temporal accuracy. Often, this
precision means that the peripheral regions, or shoulders, of the
event peak might not be captured. Yet, these initial and concluding
slopes of the event can reveal crucial information about its nature.
To address this, astroCaST includes a feature that allows for the
extension of detected events to include adjacent frames.

# e x t e nd e v e n t s

# u s e _ f o o t p r i n t : t o g g l e s b e tween maximum p r o j e c t i o n

( f o o t p r i n t ) or f i r s t / l a s t e v en t f rame
# e x t e nd : e i t h e r an i n t , ( i n t , i n t ) o r −1 f o r

e x t e n s i o n a c r o s s t h e f u l l v i d eo
eObj . g e t _ e x t e n d e d _ e v e n t s ( u s e _ f o o t p r i n t =True ,
ex t end =3 , i n _ p l a c e =True , load_to_memory=True )

3.4.1.3 Enforcing fixed-length events

Enforcing a fixed event length is a requirement for some
modules of astroCaST. However, enforcing a length will
significantly distort the actual event characteristics. Use length
enforcement cautiously, as it can alter your data and even overlap
with other nearby events. If required by your analysis, the toolkit
will prompt you to unify event lengths (for example CNN
Autoencoders). For diverse event durations, consider filtering
your data for similar lengths or analyzing short and long events
separately to maintain data integrity.

# e x t e nd e v e n t s

eObj . g e t _ e x t e n d e d _ e v e n t s ( e n f o r c e l e n g t h =15 ,
u s e _ f o o t p r i n t =True , ex t end =8 ,
i n _ p l a c e =True , load_to_memory=True )

3.4.1.4 Normalization and standardization

The final step before clustering involves normalizing the
signal. This process aims to mitigate the impact of technical
effects encountered during recordings, such as fluorescence
bleaching, and facilitating the comparison across multiple
experiments. Normalization is particularly critical when employing
machine learning algorithms, as it ensures data uniformity
and comparability.

AstroCAST offers a versatile normalization interface to
accommodate various research needs. This dynamic system
allows users to apply a series of operations such as subtraction,
division, and first-order differentiation to standardize data.
Operations can be tailored using common statistical functions
like the mean, median, or standard deviation. Additionally,
AstroCAST provides a ‘population_wide’ flag, offering users
the choice to normalize signals either individually or across
a collective dataset, thereby maximizing analytical precision
and flexibility.

# d e f i n e n o rma l i z a t i o n i n s t r u c t i o n s

# h e r e : t a k e t h e d i f f e r e n t i a l o f ea ch s i g n a l

# and th en d i v i d e by maximum va l u e in t h e p o p u l a t i o n

i n s t r u c t i o n s = {
0 : [ " d i f f " , { } ] ,
1 : [ " d i v i d e " , { "mode " : "max " ,
" popu l a t i on_w id e " : True } ]

}

# app l y t h e n o rma l i z a t i o n

eObj . no rma l i z e ( i n s t r u c t i o n s , i n p l a c e =True )

3.4.2 Event encoding
AstroCaST introduces a structured approach to address the

challenge of varying event durations, detailed here with increasing
complexity. The normalized timeseries are transformed into fixed-
length feature vectors suitable for clustering and further analysis.
This sequence of steps allows for a more focused analysis while
balancing the need for data integrity and computational efficiency.
Each alternative has advantages and disadvantages, notably the
ability to deal with variable length events (Table 4). It is essential
to re-train the encoding model whenever the dataset is changed, to
ensure optimal encoding.

3.4.2.1 Feature extraction

Feature extraction offers a simple yet powerful approach
to reduce timeseries data into a manageable set of
dimensions. The module employs a variety of metrics, like
mean, median, and Shannon entropy, accessible through
help(FeatureExtraction). While this method is length-
agnostic, it may overlook key features, due to the inherent
dimensional reduction. Further dimension reduction can be
applied using techniques like PCA, t-SNE, or UMAP.

import a s t r o c a s t . r e d u c t i o n a s red

# e x t r a c t f e a t u r e s

f e = red . F e a t u r e E x t r a c t i o n ( eObj )
f e a t u r e s = f e . a l l _ f e a t u r e s ( dropna=True )

# c l a s s i f y l a b e l s

hdb = c l u s t . HdbScan ( )
l b l s = hdb . f i t ( f e a t u r e s )

# v i s u a l i z e w i th UMAP

umap = red .UMAP( )
embedding = umap . t r a i n ( f e a t u r e s )
umap . p l o t ( d a t a=embedding , l a b e l s = l b l s ,
u s e _n ap a r i = F a l s e )

3.4.2.2 CNN Autoencoder

Using a CNN Autoencoder provides an advanced way to
maintain key features while reducing data complexity. The CNN
Autoencoder consists of an encoder that maps the timeseries to
a latent vector and a separately trained decoder, which performs
the inverse operation. After training, only the encoder is utilized
for event embedding. Note that this approach requires the input to
have a fixed length (see Section 3.4.1.3).

import a s t r o c a s t . a u t o en code r s a s AE

# c h e c k t h a t t r a c e s have f i x e d l e n g t h

i f eObj . _ i s _ r a g g e d ( ) :
r a i s e Va lueE r ro r ( )

t a r g e t _ l e n g t h = l en ( eObj . e v e n t s . i l o c [ 0 ] . t r a c e )

# P r e p a r e da ta

da t a = np . a r r a y ( eObj . e v e n t s . t r a c e . t o l i s t ( ) )
X_ t ra in , X_val , X _ t e s t = cnn . s p l i t _ d a t a s e t
( d a t a =da t a )

# c r e a t e and t r a i n model

cnn = AE . CNN_Autoencoder ( t a r g e t _ l e n g t h = t a r g e t _
l e n g t h )

cnn . t r a i n _ a u t o e n c o d e r ( X_ t r a i n=X_t ra in , X_va l=X_val ,
epochs =25)

# s a v e model

cnn . s a v e ( " cnn . pth " )
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TABLE 4 Evaluation of di�erent methodologies for embedding and distance calculations.

Feature Convolutional Recurrent Pearson Dynamic time

Extraction Autoencoder Autoencoder Correlation Warping

Abbreviation FExt CNN RNN pearson DTW

Fixed length — ✓ — — —

Normalization — ✓ ✓ — —

Training — ✓ ✓ — —

Memory limited — — — ✓ ✓

Wall time limited ✓ — — ✓ ✓

Parallelized — — — ✓ #G

Highlights the requirements and limitations. A (✓) indicates a necessary requirement, items with (—) are optional and a (#G) indicates a difference between operating systems.

# e v a l u a t e embedding p e r f o rman c e

cnn . p l o t _ e x amp l e s _p y t o r c h ( X_ t e s t , s h ow_d i f f =True )

3.4.2.3 Recurring Neural Network (RNN) Autoencoder

For encoding time series of variable lengths into consistent
latent vectors, the RNN Autoencoder stands out. This approach
is notably advantageous over CNN embeddings, as it eliminates
the need for uniform input lengths, offering a more flexible and
comprehensive encoding solution for diverse data sets. However,
this flexibility comes at the cost of increased computational
demand, complexity in parameter tuning and an overall decrease
in embedding quality.

import a s t r o c a s t . a u t o en code r s a s AE

# P r e p a r e da ta

pd l = AE . PaddedDataLoader ( d a t a=eObj . e v e n t s . t r a c e )
X_ t ra in , X_val , X _ t e s t = pd l . g e t _ d a t a s e t s ( ba t ch_
s i z e =16 , v a l _ s i z e =0 . 1 , t e s t _ s i z e =0 . 0 5 )
model_path = " pa th / to / s a v e / models / "

# t r a i n RNN

tRAE = AE . TimeSeriesRnnAE ( use_cuda=True )
tRAE . t r a i n _ e p o c h s ( d a t a l o a d e r _ t r a i n =X_t ra in ,

d a t a l o a d e r _ v a l =X_val ,
num_epochs =10 ,
# number o f t r a i n i n g e p o c h s

p a t i e n c e =10 ,
# e p o c h s t o wa i t b e f o r e e a r l y

s t o pp i n g s a f e _ a f t e r _ e p o c h =
model_path
)

# s a v e model

tRAE . s ave_mode l s ( " encoder . p th " , " decoder . p th " )

# e v a l u a t e embedding p e r f o rman c e

f i g , x_va l , y_va l , l a t e n t , l o s s e s = tRAE . p l o t _
t r a c e s ( d a t a l o a d e r =X_ t e s t , f i g s i z e = (20 , 2 0 ) )
f i g . s a v e f i g ( " tRAE_performance . png " )

3.5 The outcomes of experiments

The last step of the protocol is to evaluate the outcomes of
experiment (Table 5), utilizing various packages including scikit-
learn and dtaidistance (Pedregosa et al., 2011; McInnes et al., 2017,
2018; Meert et al., 2020). This section provides examples to inspire

various ways datasets can be analyzed. The best analysis approach
will depend on the nature of the study, thus we include examples of
common types of experiments (Figure 6). AstroCAST is designed
to be flexible andmodular, allowing for custom addition of analyses
tailored to the specific dataset. The examples in this section focus on
two primary types of analyses: comparing groups under different
conditions (Conditional Contrasts) and detecting coincidences of
independent stimuli (Coincidence Detection). When analyzing
data from multiple experiments (for example, different conditions)
the datasets can be combined with the MultiEvents class.

from a s t r o c a s t . a n a l y s i s import Mul t i E v en t s

# c o l l e c t l i s t o f e x p e r im e n t s

pa th s = [ " . / pa th /1 " , " . / pa th /2 " , . . . ]

# o p t i o n a l : d e f i n e g roup membership

groups = [ " group_1 " , " group_2 " ]

# l o ad combined d a t a s e t

comb ined_even t s_ob j = Mu l t i E v en t s ( e v e n t s _ d i r s =pa ths ,
g roups=groups ,

d a t a = " i n f e r " ,
l a z y =True )

Here, we are using sets of synthetic datasets to reproducibly
show the advantages and disadvantages of each analysis
approach. We encourage users to explore their own variations of
synthetic datasets.

from a s t r o c a s t . h e l p e r import DummyGenerator ,
S i g n a lG en e r a t o r

# g e n e r a l s e t t i n g s

z_ r ange = ( 0 , 10000)
# rang e o f f r ame s t h a t e v e n t s can be c r e a t e d

# C r e a t e s i g n a l g e n e r a t o r s

group_1 = S i g n a lG en e r a t o r ( t r a c e _ l e n g t h =(50 , 5 0 ) ,
n o i s e _ amp l i t ud e =0 . 0 01 ,
p a r am e t e r _ f l u c t u a t i o n s =0 . 0 1 ,
b=1 , p l a t e a u _ d u r a t i o n =1)

group_2 = S i g n a lG en e r a t o r ( t r a c e _ l e n g t h =(50 , 5 0 ) ,
n o i s e _ amp l i t ud e =0 . 0 01 ,
p a r am e t e r _ f l u c t u a t i o n s =0 . 0 1 ,
b=2 , p l a t e a u _ d u r a t i o n =6)

g e n e r a t o r s = [ group_1 , group_2 ]

# C r e a t e s t imu l u s t im i n g s

t im ing_1 = None # random e v e n t d i s t r i b u t i o n

t im ing_2 = l i s t ( r ange ( 0 , z_ r ange [ 1 ] , 1 0 00 ) )
t im i n g s = [ t iming_1 , t im ing_2 ]
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TABLE 5 Comprehensive overview of experiment types that are included in astroCaST, with their respective requirements.

Conditional contrasts Coincidence detection

Classifier Hierarchical Classifier Regression

Training required ✓ — ✓ ✓

User labels Group Group Timing Timing

Input type Embedding Distance Embedding Embedding

FIGURE 7

Performance of di�erent algorithms on analyzing various synthetic satasets. (A) Showcase of synthetic calcium events designed to represent various

levels of analytical di�culty, where color coding corresponds to events generated under di�erent parameter sets that simulate diverse conditions or

event types. All events include a random noise amplitude of 0.001 and parameter fluctuations of 0.01, subtly varying each event’s parameters. (B)

Conditional contrasts analysis assesses algorithmic e�ciency in distinguishing events from di�ering conditions (groups 0, 1, and 2). Events are

characterized using di�erent methods: FExt for Feature Extraction, CNN for Convolutional Autoencoder, and RNN for Recurrent Autoencoder. The

hierarchical clustering leverages distance metrics between events (Pearson correlation or dynamic time warping), depicted by the absence of training

dependency in gray. CNN’s inability to process variable-length events results in its omission in the final panel. (C) Coincidence detection analysis

gauges algorithm performance in predicting the occurrence of stimulus events. This encompasses two groups: one with events exclusively occurring

during a stimulus and another with randomly occurring events. The embedding classifier and prediction methods are consistent with (B), where the

classifier identifies stimulus occurrence, and regression determines the exact timing of the stimulus in coinciding events. Displayed scores represent

the lowest achieved in three replicates, adhering to cross-validation principles.

# C r e a t e s y n t h e t i c e v e n t s

dg = DummyGenerator ( name= " s y n t h e t i c _ e v e n t s " ,
num_rows=100 # number o f e v e n t s p e r g roup

z_ r ange=z_range , g e n e r a t o r s = g en e r a t o r s ,

t im i n g s = t im ing s ,
)
eObj = dg . g e t _ e v e n t s ( )

# c r e a t e embedding a s i n p r e v i o u s s t e p s
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3.5.1 Conditional contrasts
This module compares different experimental groups by

assessing whether the observed effects are condition-dependent
(Figure 7B). Common examples include application of different
drugs, samples from different animal models or different
brain regions.

3.5.1.1 Classifier (predict the condition)

Use classification algorithms to predict the condition of each
event based on its features. This provides an indication of how
effectively the conditions can be distinguished based on the
observed events. Feature embedding is necessary.

from a s t r o c a s t . c l u s t e r i n g import D i s c r im i n a t o r

# as sumes eObj and embedding was c r e a t e d p r e v i o u s l y

c a t e g o r i e s = eObj . e v e n t s . group . t o l i s t ( )
c l a s s i f i e r = " R andomFo r e s tC l a s s i f i e r "

# c r e a t e d i s c i m i n a t o r o b j e c t and t r a i n

d i s c r = D i s c r im i n a t o r ( eObj )
c l f = d i s c r . t r a i n _ c l a s s i f i e r ( embedding=embedding ,

c a t e g o r y _ v e c t o r =
c a t e g o r i e s ,
c l a s s i f i e r = c l a s s i f i e r )

# e v a l u a t e t h e outcome ( m e t r i c s and c o n f u s i o n

mat r i x )
s c o r e s = d i s c r . e v a l u a t e ( show_p lo t= F a l s e )
pr in t ( s c o r e s )

3.5.1.2 Hierarchical clustering (overlap with conditions)

Hierarchical clustering groups similar events together.
Similarity between event traces is assessed by either Dynamic Time
Warping (DTW) or Pearson Correlation, basically calculating
a distance between all events. The aim is to see if these groups
correspond to different experimental conditions, which would
indicate that the conditions have distinct profiles. Hierarchical
clustering does not depend on feature embedding and can be safely
performed on the normalized event traces. The Linkage module
will return barycenters, which can be understood as a consensus
event shape for each cluster, and a cluster_lookup_tablewhich
maps the identified clusters to the events. Clusters can be defined by
either a set number of expected clusters (criterion=‘maxlust’,
cutoff=expected_num_clusters) or maximum distance
(criterion=‘distance’, cutoff=max_distance).

from a s t r o c a s t . c l u s t e r i n g import Linkage ,
D i s c r im i n a t o r

# s e t t i n g s

c a t e g o r i e s = eObj . e v e n t s . group . t o l i s t ( )
c o r r e l a t i o n _ t y p e = " dtw " # or ‘ p e a r s on ’

# c r e a t e l i n k a g e o b j e c t and c r e a t e c l u s t e r s

l i n k = L inkage ( )
r e s u l t = l i n k . g e t _ b a r y c e n t e r s ( eObj . e v en t s ,

c u t o f f =num_groups ,
c r i t e r i o n = ’ maxc lu s t ’ ,
d i s t a n c e _ t y p e
= c o r r e l a t i o n _ t y p e
)

# e v a l u a t e outcome ( m e t r i c s and c o n f u s i o n mat r i x )

b a r y c e n t e r s , c l u s t e r _ l o o k u p _ t a b l e = r e s u l t
eObj . a d d _ c l u s t e r i n g ( c l u s t e r _ l o o k u p _ t a b l e ,
column_name= ’ p r e d i c t e d_ g r oup ’ )
p r e d i c t e d _ c a t e g o r i e s = eObj . e v e n t s . p r e d i c t e d_ g r oup .
t o l i s t ( )

s c o r e s = D i s c r im i n a t o r . compute_ s co re s ( c a t e g o r i e s ,
p r e d i c t e d _ c a t e g o r i e s ,

s c o r i n g =
" c l u s t e r i n g " )

pr in t ( s c o r e s )

3.5.2 Coincidence detection
This module focuses on identifying whether certain conditions

or events coincide with or predict other phenomena (Figure 7C).
Common examples would be neuronal bursts or observed
animal behavior.

3.5.2.1 Classifier (predict incidence occurred)

Similar to the classifier used in conditional contrasts, this
module predicts whether a specific incidence or event has occurred.
This is particularly useful for identifying causal relationships or
triggering events.

from a s t r o c a s t . c l u s t e r i n g import

Co in c i d en c eDe t e c t i o n

# as sumes eObj and embedding was c r e a t e d and t h e

s t imu l u s t im i n g s a r e known
cDe t e c t = Co i n c i d en c eDe t e c t i o n ( e v e n t s =eObj ,

i n c i d e n c e s = t iming ,
embedding=embedding )

# p r e d i c t c l a s s e s and e v a l u a t e outcome

_ , s c o r e s = cDe t e c t . p r e d i c t _ c o i n c i d e n c e
( b i n a r y _ c l a s s i f i c a t i o n =True )
pr in t ( s c o r e s )

3.5.2.2 Regression (timing of incidence; coinciding events

only)

Regression analysis can be used to predict when an incidence
occurred based on the event embedding. This analysis aims to
establish whether astrocytic events correlate with the incident in
question, or vice versa.

from a s t r o c a s t . c l u s t e r i n g import

Co in c i d en c eDe t e c t i o n

# as sumes eObj and embedding was c r e a t e d and t h e

s t imu l u s t im i n g s a r e known
cDe t e c t = Co i n c i d en c eDe t e c t i o n ( e v e n t s =eObj ,

i n c i d e n c e s = t iming ,
embedding=embedding )

# p r e d i c t c l a s s e s and e v a l u a t e outcome

_ , s c o r e s = cDe t e c t . p r e d i c t _ i n c i d e n c e _ l o c a t i o n ( )
pr in t ( s c o r e s )

4 Discussion

In the field of neurobiology, it is important to acknowledge
the substantial gap in open-source, customizable tools tailored for
the comprehensive characterization and dynamics of astrocytes.
This scarcity significantly hinders the advancement of our
understanding of the complex functions carried out by these glial
cells. Their function extends far beyond their traditional role of
supporting neuronal activity (Ransom et al., 2003; Montalant et al.,
2021). Thus, the development and refinement of specialized tools
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such as astroCaST represents a step forward in addressing this
limitation. Unlike previous methodologies that regard astrocytes
as mere adjuncts to neuronal studies, astroCaST aimed to
meticulously and explicitly address the uniqueness of astrocyte
research (Table 1).

AstroCAST offers comprehensive options for analyzing and
interpreting activity events repurposing existing tools from various
data science domains for astrocyte research. This approach
highlights the importance of leveraging accumulated knowledge
across fields to enhance the efficiency and breadth of astrocyte
studies. Moreover, the advances in bioimaging dataset processing
are still lagging behind other big data analysis approaches.
Addressing this gap, astroCaST is a dedicated machine-learning
driven toolkit that can be used to identify, denoise and characterize
the dynamics of a set cell population. Compared to other available
tools, astroCaST was specifically developed for astrocytes [Suite2P
(Pachitariu et al., 2017), CaImAn (Giovannucci et al., 2019), and
CaSCaDe (Rupprecht et al., 2021)] and is open-source [CHIPS
(Barrett et al., 2018), AQuA (Wang et al., 2018), Begonia (Bjørnstad
et al., 2021), and MSparkles (Stopper et al., 2022)]. Moreover, it
includes timeseries clustering which none of these tools provide.
Specifically, astroCaST is tailored for astrocytes by being agnostic
to the spatial location of events. It first identifies active pixels
across the dataset and subsequently groups these pixels into
coherent events, a methodological approach similar to that used by
AQuA (Wang et al., 2018), thereby enhancing its applicability and
accuracy in astrocytic calcium imaging studies.

We conducted a comparative analysis of event detection
capabilities between astroCaST and AQuA, two advanced
toolkits for astrocytic calcium imaging (Figure 6). Notably,
AQuA encountered limitations related to both memory and
computational time. In contrast, astroCaST demonstrated a robust
performance, thereby allowing for the analysis of significantly
larger datasets. Both astroCaST and AQuA tended to overestimate
the number of detected events. This characteristic is advantageous
when using default parameters as we did, as it is preferable to detect
more events, which can subsequently be filtered, than missing
potential events. Missing events would necessitate re-running
the analysis, increasing both the computational burden and the
time to results. While our comparison utilized a synthetic dataset,
which is advantageous for controlled testing and benchmarking,
this highlights the need for publicly available, expert-scored
experimental data. Access to such datasets would facilitate more
robust tool development and validation, ensuring that these
computational tools can be reliably used across various research
settings. The comparative analysis reveals that both toolkits excel
with small datasets, yet astroCAST offers significant advantages
in speed, memory efficiency, and accuracy when handling
larger datasets.

We also assessed how different embeddings and analysis
approaches handle the intricate dynamics of astrocytic calcium
events. To address method performance we focused on accuracy,
generalization to new data, and computational efficiency (Figure 6).
In evaluating the robustness of the event encoding methods,
we generated three synthetic datasets, performed the analysis,
and chose the lowest score for each method and embedding
variant. This approach provides a lower boundary of performance,

demonstrating the robustness of our methods to varying datasets
and conditions.We first tested two control groups of signals
derived from the same signal population. This design ensures
that both groups are indistinguishable, as they possess identical
characteristics. This dataset validates that astroCaST does not
access or infer information beyond what is present in the data itself.
Therefore, while astroCaST can memorize details from the training
dataset, it appropriately fails to generalize this memorization to
unseen, yet identical, data.

Feature extraction (FExt) emerges as a quick and
straightforward method, albeit less effective with complex
event types. Convolutional Neural Networks (CNNs) offer speed
and accuracy but falter with astrocytic events’ intrinsic variable
lengths. Attempts to enforce fixed lengths or extend events risk
altering their inherent shapes and producing spurious results.
Recurrent Neural Networks (RNNs) show promise in dealing with
variable event lengths but are challenging to fine-tune. This can be
seen by their subpar performance in the triplet condition (accuracy
of 0.56). Pearson correlation analysis proved inadequate, with all
clustering algorithms failing to differentiate between events with
significant variances (0.5 prediction accuracy), except for the trivial
case involving variable lengths. Dynamic Time Warping (DTW)
excels in handling variable lengths but is slower and slightly less
accurate (0.94 accuracy compared to others’ 0.99) for fixed-length
events. However, avoiding an embedding step compensates for
the slower processing speed, albeit with a significant memory
constraint as the number of events increases [O(n2) complexity].
In summary, while each approach has its strengths and weaknesses
in processing astrocytic calcium imaging datasets, our findings
highlight the crucial balance between accuracy, adaptability to
variable event lengths, and computational demands.

The intended audience of astroCaST are bioinformaticians
or neuroscientists with a solid foundation in programming.
Proficiency in Python and familiarity with executing command
line tools are essential prerequisites for effectively utilizing this
toolkit. Importantly, troubleshooting code is a necessary skill set
for circumnavigating potential challenges during data processing
and personalizing experimental implementation. Prior experience
in image analysis, time series clustering, and machine learning
is advantageous but not mandatory. However, to decode the
intricacies of astrocytes, it is essential employ a multidisciplinary
team skilled in both experimental neuroscience and
computational analysis.

In our experience, astroCaST’s GUI responsiveness was a key
limitation, indicating an area of fine-tuning for future versions.
Furthermore, the toolkit could not pass the threshold of “inference-
of-cell” implementation, which would assign events to individual
cells. Thus, the “Functional Units” module currently exists as an
experimental feature, but it lacks proper validation and testing due
to insufficient biological data (e.g., sparse GCaMP6f expression
recordings or post-imaging staining).

However, astroCaST can facilitate several key outcomes
for researchers working with astrocytic calcium imaging data
analysis. On the technical front, the tool is designed to
handle large-scale datasets effectively. For example, in time-
lapse recordings of astrocytes at 20X magnification and 1,024
× 1,024 pixel resolution, astroCaST is equipped to identify
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up to 1,000 astrocytic events per 100 frames. As the analysis
progresses, users should find that the software can comfortably
manage up to 100,000 events using the algorithms provided. This
performance equates to the comparative analysis of around 7
time-lapse videos, each with a 20-minute recording time. Future
work will highlight the biological insights and capabilities of
astroCAST.

The astroCaST toolkit has proved to be effective in analyzing
calcium events in fluorescence imaging data. We have tested
the system in depth on acute slices, as well as available public
data for in-vivo and cell culture recordings (Table 3). There
are, however, challenges that might be considered as limitations.
For example, due to its design agnosticism toward cell shape,
astroCaST cannot firmly attribute events to individual cell. This
allows for the analysis of recordings even when cells overlap or
change morphology. Furthermore, issues that originate from the
difficulty to distinguish close bordering events, the computational
complexity, the event length and data dimensionality, and others,
may also need fine-tuning. We acknowledge that users might
encounter some of these, and we make suggestions for each
in the troubleshooting section. We regard astroCaST’s flexible
modular design as crucial for overcoming challenges, empowering
researchers to translate astrocytic calcium signaling into biological
insights.

AstroCAST is designed to handle larger datasets, analyzing
more events than previously possible in astrocyte-specific
studies with enhanced efficiency. This is achieved without
compromising computational time. From an innovation
standpoint, astroCaST offers more than just event detection.
Users can expect a cohesive, end-to-end analytical workflow
that guides them from raw video data to insightful experimental
conclusions. The software brings structure and flexibility to the
often-challenging variable-length timeseries analysis, setting
it apart as a unique tool in the field of astrocytic calcium
imaging. AstroCAST not only enhances our ability to probe
astrocyte activity, but also holds the promise of unveiling
previously unexplored aspects of their role in neural circuitry
and brain development and function. This demonstrates the
potential for future synergistic integration of advanced imaging
techniques, such as calcium imaging, with established and
high-resolution methods like immunohistochemistry or spatial
transcriptomics, offering a wealth of new possibilities for in-depth
astrocytic analysis.

Use of Generative AI

During the preparation of this manuscript, we utilized the
generative capabilities of OpenAI’s ChatGPT-4. The AI’s primary
role was to assist in proofreading and language refinement
to ensure clarity, conciseness, and readability of the text.
While the AI provided suggestions for language adjustments,
the final manuscript content was thoroughly reviewed, curated,
and approved by the authors. We, the authors, take full and
complete responsibility for the integrity and accuracy of the
manuscript content.
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