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circular DNA as a transcription 
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Introduction: Mesenchymal stem cells (MSCs) have long been postulated 
as an important source cell in regenerative medicine. During subculture 
expansion, mesenchymal stem cell (MSC) senescence diminishes their multi-
differentiation capabilities, leading to a loss of therapeutic potential. Up to date, 
the extrachromosomal circular DNAs (eccDNAs) have been demonstrated to be 
involved in senescence but the roles of eccDNAs during MSC.

Methods: Here we explored eccDNA profiles in human bone marrow MSCs 
(BM-MSCs). EccDNA and mRNA was purified and sequenced, followed by 
quantification and functional annotation. Moreover, we mapped our datasets 
with the downloading enhancer and transcription factor-regulated genes to 
explore the potential role of eccDNAs.

Results: Sequentially, gene annotation analysis revealed that the majority of 
eccDNA were mapped in the intron regions with limited BM-MSC enhancer 
overlaps. We discovered that these eccDNA motifs in senescent BMSCs acted 
as motifs for binding transcription factors (TFs) of senescence-related genes.

Discussion: These findings are highly significant for identifying biomarkers of 
senescence and therapeutic targets in mesenchymal stem cells (MSCs) for future 
clinical applications. The potential of eccDNA as a stable therapeutic target 
for senescence-related disorders warrants further investigation, particularly 
exploring chemically synthesized eccDNAs as transcription factor regulatory 
elements to reverse cellular senescence.
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Introduction

Numerous diseases and toxic factors can impair cellular and 
organic functioning in animals, emphasizing the crucial role of adult 
stem cells in homeostasis and tissue repair (Hwang et al., 2009). While 
organ transplantation was historically the only option for tissue healing, 
stem cell transplantation is currently a viable route in regenerative 
medicine (Hu and Li, 2018). MSCs have gained popularity due to their 
self-renewal, differentiation abilities, and paracrine capabilities, making 
them important candidates for tissue regeneration (Keshtkar et al., 
2018; Lin et al., 2019). Their successful application has spread to a wide 
range of conditions, including liver damage, diabetes, and degenerative 
diseases (Chen et al., 2022).

Despite the potential of MSC-based therapy, senescence and 
senescence-related processes can restrict its efficacy (Wei et al., 2013). 
MSCs’ regenerative capacity is commonly acknowledged to decline 
with systemic age, perhaps contributing to senescence-related diseases 
(Ameh et al., 2022). Senescence MSCs, for example, prefer adipogenesis 
over osteogenesis, which reduces their bone-building capability 
(Marędziak et al., 2016). Furthermore, adult adipose-derived MSCs 
from older donors produce higher levels of pro-inflammatory 
cytokines, which may affect their immunomodulatory function 
(O’Hagan-Wong et al., 2016; Kizilay Mancini et al., 2017). Furthermore, 
MSCs’ replicative senescence limits their proliferative potential, which 
is critical for therapeutic applications that require large numbers of 
cells (Severino et al., 2013; Zhu et al., 2021). Understanding MSC 
senescence pathways is critical for improving therapeutic efficacy.

Senescence is characterized by a decrease in normal cell proliferative 
potential (Weng et al., 2022). Prolonged MSC culture induces DNA 
damage responses and repair mechanisms, eventually leading to cellular 
senescence (banimohamad-shotorbani et al., 2020). Notably, researchers 
have discovered the production of semi-stable eccDNA via DNA 
damage repair pathways, which could have ramifications for cellular 
function and aging (Wang et al., 2021). eccDNA is a form of double-
stranded, non-structured circular DNA that exists outside the cell 
nucleus. It encompasses a variety of repetitive sequences, including long 
interspersed nuclear elements (LINEs), short interspersed nuclear 
elements (SINEs), satellite DNA, long terminal repeats (LTRs), and gene 
segments (Qiu et al., 2021). EccDNA inherits in a non-chromosomal 
manner and is unequally partitioned into daughter cells due to the lack 
of centromeres (Turner et al., 2017). As a result, eccDNA levels vary 
rapidly with the environment and are involved in a range of biological 
processes, including cancer, drug resistance, and senescence (Cohen 
et al., 2006; Cao et al., 2021). Chronic eccDNA has been associated with 
chromatin imbalance, genomic instability, and other abnormalities that 
could lead to illness or death (Zuo et al., 2021). Previous studies and 
reviews have stated that the related mechanisms of eccDNA include 
gene amplification, aggregation to operate as a hub to promote 
transcription, and immune system activation via linked pathways 
(Paulsen et al., 2021; Wang et al., 2021; Li et al., 2022). However, the role 
of eccDNA in the regulation of human MSCs is unknown.

Using sequencing data from BM-MSCs, we investigate the link 
between eccDNA and senescence-related genes in this study. Our 
findings are intriguing because they imply that eccDNA acts as a 
motif, binding TFs to control gene expression. These findings have the 
potential to help researchers better understand the self-renewal 
capacities and aging trajectories of human MSCs, perhaps opening up 
therapeutic approaches to combat cellular senescence.

Materials and methods

Cell culture, eccDNA purification, and 
sequencing

Two distinct human BM-MSCs named (HUXMA-01001) from the 
second passage were obtained from Cyagen and maintained in the 
MesenCult™-ACF Plus Culture Kit (STEMCELL Technologies, # 
05448). BM-MSCs were passaged every 3–7 days to acquire Y51 and Y52 
samples (group Y5, representing young cells) of the fifth passage, and an 
additional 10 passages were performed to generate Y151 and Y152 
samples (group Y15, representing senescence cells). Each group was 
divided into two halves, one for Circle-Seq and the other for mRNA-Seq. 
The Circle-Seq eccDNA method for budding yeast (Møller et al., 2016) 
was used to purify the eccDNA fragments from cells, primarily using the 
Plasmid Mini AX kit for eccDNA enrichment. In summary, cells were 
lysed with Proteinase K (>0.1 U/μL, Life Technologies), and genomic 
DNA was extracted with Qiagen kits. The whole DNA was alkaline 
treated to separate chromosomal DNA, lipids, and protein by rapid DNA 
denaturing-renaturing, then column chromatography on an ion 
exchange membrane column (Plasmid Mini AX; A&A Biotechnology). 
Exonuclease (Plasmid-Safe ATP-dependent DNase, Epicentre) was used 
to remove the remaining linear DNA, which was aided by the rare-
cutting endonuclease MssI, which digested mitochondrial circular DNA 
(mtDNA, 16 kb) and created more accessible DNA ends for exonuclease. 
EccDNA-enriched samples were used as a template for phi29 polymerase 
(REPLI-g Midi Kit) amplifying DNA reactions. Amplified circular DNA 
was cleaned with AMPure XP beads and sonicated (Bioruptor) to 
achieve an average fragment size of 200–300 bp. Libraries for next-
generation sequencing were produced using the NEBNext Ultra DNA 
Library Kit for Illumina according to the manufacturer’s protocol (New 
England Biolabs) and sequenced on Illumina NovaSeq 6000 using PE150.

mRNA purification and sequencing

Total RNA of cells was extracted using the TRIzolTM reagent 
(Invitrogen, Carlsbad, CA, USA) as directed by the manufacturer’s 
instructions. The RNA concentrations were measured with the Qubit® 
RNA Assay Kit in the Qubit® 2.0 Fluorometer (Life Technologies, CA, 
USA). The NanoPhotometer® spectrophotometer (IMPLEN, CA, USA) 
and the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system 
(Agilent Technologies, CA, USA) were used to assess RNA purity and 
integrity, respectively. rRNA was removed by Epicentre Ribo-zero™ 
rRNA Removal Kit (Epicentre, USA). Epicentre Ribo-zeroTM rRNA 
Removal Kit (Epicentre, USA) was used to remove the rRNA. Ethanol 
precipitation was used to clean up the rRNA-free residue. The NEBNext® 
UltraTM Directional RNA Library Prep Kit for Illumina (NEB, USA) was 
then used to create RNA-seq libraries. The libraries were sequenced 
using 150 bp paired-end mode on the Illumina NovaSeq 6000 platform.

Quality control of eccDNA raw data and 
mRNA raw data and reads mapping 
statistics

Trimmomatic (Bolger et  al., 2014) was used to filter out 
low-quality reads and sequences containing ploy-N and adaptor 
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sequences from raw sequencing data from the Illumina 
NovaSeq 6000. BWA-MEM (Jung and Han, 2022) was used to 
align clean reads from the eccDNA database to the human 
reference genome (version hg38/GRCh38). Clean mRNA-Seq 
reads were aligned to the same genome as above using the TopHat 
v2.1.1 (Langmead et al., 2009) aligner. Samtools (Danecek et al., 
2021) was used to sort, index, and statistically analyze these 
Bam files.

The analysis of eccDNA and mRNA 
quantification and functional annotation

The BWA-MEM-matched reads were fed into the Circle-Map 
workflow (Prada-Luengo et al., 2019) to detect the circular DNA, 
and the split was utilized to screen for eccDNA. Each eccDNA 
contained at least one split read, which was chosen for further 
investigation. BEDTools v2.27.1 (Quinlan and Hall, 2010) was 
used to annotate eccDNA genes. For motif analysis, the  
MEME suite (Bailey et  al., 2015) was used with the 
default parameters.

The TopHat-matched reads were processed with StringTie v2.2.1 
(Shumate et al., 2022) to calculate the read counts of genes summarized 
from the mRNA level. The gene type was annotated with GENOME 
database (v30) (https://www.gencodegenes.org/human/release_30.html).

Gene differential expression

DESeq2 (Love et al., 2014), with default parameters, was used for 
gene differential expression analysis. Genes with an absolute value of 
log2FoldChange >1 and a p-value ≤0.01 were considered substantially 
enriched. The pheatmap library of Rscrip1 was used to generate 
heatmaps of substantially enriched genes.

The analysis of functional annotation and 
PPI

Based on the Metascape website (Szklarczyk et al., 2019), the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis and Gene Ontology (GO) analysis were carried out, 
which classified genes into hierarchical categories and exposed 
the gene regulatory network using a database of the most recent 
biological processes. To control the false discovery rate 
(FDR < =0.05) and identify significant KEGG pathways and GO 
keywords, the p-value was corrected using the Benjamini and 
Hochberg approach.

PPI analysis with relative GO/KEGG annotation of subset gene 
sets was performed using the STRING website (Shannon et al., 2003). 
The following networks were created using Cytoscape v3.9.0 (Chin 
et al., 2014), which was used to discover hub modules (cytoHubba) 
and hub subnetworks (MCODE) (Han et al., 2018).

1 https://cran.r-project.org/web/packages/pheatmap/index.html

The downloading of the datasets about 
enhancer and regulated genes by TF

The four BED files from ChIP-Seq on H3K27ac based on BM-MSCs 
(GSM1112792, GSM1112793, GSM1112797, and GSM1112798) were 
downloaded from NCBI. The intervals shared by the four datasets were 
used to create the final enhancer database through a customized pipeline. 
The regulated gene sets by known human TF were downloaded from 
Transcriptional Regulatory Relationships Unraveled by Sentence-based 
Text Mining (TRRUST) version2 website ⑯.

Results

Genome-wide sequencing of eccDNAs in 
BMSCs

In the study, eccDNA sequencing was performed on representative 
young cells (group Y5, comprised of Y51 and Y52 samples) and 
senescence cells (group Y15, encompassing Y151 and Y152 samples). 
The mapped reads were evaluated after stringent read filtering 
(Figure  1A). Detection of eccDNAs relied on abnormally mapped 
reads, which included split reads (reads mapped to two distinct 
locations on the reference genome) and discordant reads (paired reads 
facing outward on the reference genome) (Kang et al., 2023; Figure 1A). 
eccDNA from all four samples had bimodal size distributions with 
summits at approximately 200 bp (first peak cluster) and 1 kb (second 
peak cluster), with an augmentation of the first peak cluster observed 
in group Y15, showing a distinct eccDNA distribution in senescent 
BMSCs (Figure 1B). The vast majority of eccDNAs are derived from 
autosomal regions, with only a few coming from sex chromosomes 
(Figure  1C). The distribution of split reads supporting eccDNA 
exhibited a consistent pattern across all four samples. The median 
count of these split reads reached up to 10 (Figure 1D). Notably, the 
location of eccDNA varied among cells at different stages of growth, 
correlating with prior research on eccDNA in cancer (Noer et  al., 
2022). Analyzing the eccDNA distribution region on chromosome 4 
revealed that certain eccDNA elements were present in all samples but 
with varying frequencies, while others were unique to either group Y5 
or group Y15 cells (Figure 1E). The mapping of all eccDNAs across the 
genome revealed their extensive distribution (Figure 1F).

Genomic annotation of eccDNAs of BMSCs

To investigate the potential functional role of eccDNA, 
we conducted a comprehensive genomic distribution analysis. We first 
carefully examined the total mappable reads associated with eccDNA, 
classifying them into distinct genomic elements such as gene regions, 
satellite regions, simple repeat regions, LINEs, SINEs, and other RNA 
(Figure 2A). The fraction of reads mapped to each genomic element 
class relative to the total valid genome reads was computed. Notably, 
eccDNA reads came from a variety of genomic sites, including both 
genic and intergenic regions. We found an enrichment inside gene 
intronic regions in particular (Figure 2A). We discovered that over 
60% of eccDNA fragments were distributed within genes or 
overlapped with gene areas when deeply predicting from eccDNA 
readings (Figure  2B). Introns, which are known to alter gene 
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transcription rates by acting as regulatory elements such as enhancers 
and repressors (Le Hir et  al., 2003), appear to be  crucial in this 
situation. Previous research and review have shown that eccDNAs can 

be  an effective strategy for gene amplification, either by directly 
boosting copy number or by serving as trans-acting factors such as 
super-enhancers (deCarvalho et al., 2018; Xu et al., 2019). We collected 

FIGURE 1

Identification of eccDNA in cells at different cultural stages. (A) Cells from different cultural stages were collected and lysed from Y5 and Y15; DNA 
fragments were purified, amplified, sequenced, and analyzed. All mappable reads were analyzed. (B) Length distribution of eccDNA identified in all 
samples. (C) Number distribution of eccDNA on 23 chromosomes in four samples. (D) The reads count of split reads supporting eccDNA fragments. 
(E) Distribution of some eccDNAs on chromosome 4. (F) Overall chromosomal distribution of eccDNAs across the genome.
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enhancer area data for MSC from publicly available ChIP-seq datasets 
(GSM1112792, GSM1112793, GSM1112797, and GSM1112798) and 
evaluated its genome distribution using the H3k27ac antibody, a 
modification suggestive of enhancer activity. Surprisingly, the majority 
of enhancers (64.635% of the total) were positioned within gene 
intervals or overlapped with genes, with 75.933% of these enhancers 
placed within intronic regions (Figure  2C). Subsequently, 
we conducted a detailed analysis of the spatial relationship between 
eccDNA and MSC enhancers. This research found that 201 eccDNAs 
in the Y5 group overlapped with enhancers, while 3,792 eccDNAs had 
no overlap with enhancers. Similarly, 241 eccDNAs in the Y15 group 
overlapped with enhancers, but 3,900 eccDNAs did not (Figure 2D). 
Notably, 69 and 71% of eccDNAs overlapping with enhancers were 
discovered to be situated within genes in the Y5 and Y15 groups, 
respectively, with the Y5 group exhibiting an intronic eccDNA ratio 
of 45% and the Y15 group displaying 44% within intronic areas 

(Figure 2E). Furthermore, the enhancer area showed a strong peak at 
the enhancer locus, with lesser peaks both upstream and downstream, 
but there was no discernible pattern in the distribution of eccDNAs 
obtained from MSC for the enhancer region (Figure 2F). Furthermore, 
chromosomal mapping of eccDNAs revealed that they were 
distributed across the genome in intronic or untranslated regions 
(Figures 2G–I). In conclusion, our data imply that eccDNAs may not 
operate primarily as enhancers in grown MSC.

RNA-seq revealed senescence-related 
gene expression in cultivated BMSCs

We investigated the effect of extended culturing on gene 
expression in BMSC cell lines in depth. We detected 525 substantially 
upregulated mRNAs and 293 significantly downregulated mRNAs 

FIGURE 2

Distribution of eccDNA in different genomic element regions. (A) Distribution of eccDNA reads in the genome region revealed their various genomic 
locations, including the gene region, LINE region, SINE_Alu region, LTR region, satellite region, simple repeat, and others. (B) The bar graph shows 
eccDNA fragment distribution in gene and non-gene regions. (C) The relationship between enhancer region and gene regions. Those ChIP-seq data of 
H3K27ac with labeled enhancers (GSM1112792, GSM1112793, GSM1112797, and GSM1112798) were downloaded, and the distribution of all enhancers 
was analyzed. (D) The pie chart shows the overlap between eccDNA and MSC enhancers in the Y5 and Y15 groups. (E) Genomic distribution of 
eccDNAs that overlapped with enhancers. (F) The distribution of enhancers and the relationship between enhancers and eccDNA location. (G–I) 
Chromosomal location of eccDNAs.
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(p-value ≤ 0.01, |Log fold change| ≥ 1) in the Y5 and Y15 groups using 
rigorous RNA-sequencing analysis (Figure 3A). Following that, these 
differentially expressed genes (DEGs) were subjected to a thorough 
biological process and enrichment analysis. Surprisingly, cell 
morphogenesis related to differentiation, cell population proliferation, 
and hemopoiesis were the major functional modules among 
upregulated candidates in the Y5 group (Figure 3B). The upregulated 
DEGs in the Y15 group, on the other hand, were enriched in processes 
such as system function regulation, collagen degradation, rheumatoid 
arthritis, neuronal synaptic plasticity regulation, inflammatory 
response, and immune cell morphogenesis involved in Th17 cell 
differentiation (Figure 3C).

EccDNA has long been implicated in the senescence process of 
yeast, as well as mammalian cells and tissues (Hull et  al., 2019). 
We  found 17 senescence-related genes that exhibited significant 
differential expression in our study by combining 406 senescence-
related genes from the National Senescence Database with the 818 
discovered DEGs (Figure 3D). Notably, the Y15 group had higher 
levels of Adenylyl Cyclase Type 8 (ADCY8), VEGF-specific membrane 
receptors (FLT1), bone morphogenetic protein (BMP6), and GM-CSF 
receptor (CSF2RB) expression than the Y5 group (Figure  3E). In 
contrast, the Y15 group had lower levels of vascular cell adhesion 
molecule-1 (VCAM-1), FOXO1, and androgen receptor (AR) 
(Figure 3E).

eccDNAs are the potential binding site of 
TFs

Intricate motif sequence in genome-wide spread often harbors 
specialized functions, such as mediating protein interactions or 
orchestrating specific TFs to regulate target gene expression (Bader and 
Hogue, 2003; Traut, 2005). Using the MEME suite web tool (Bailey et al., 
2015), we performed motif analysis on eccDNA sequences to investigate 
the function of eccDNA in the culture of BMSCs. We  identified 8 
enriched motifs in 785 eccDNAs from the Y5 group and 5 enriched 
motifs in 508 eccDNAs from the Y15 group (Figure 4A). These motifs 
often operate as binding sites for particular proteins, such as TFs, which 
then control the regulation of related genes. Upon closer examination, 
motif-binding TF proteins were found in every group. As illustrated in 
Figure 4B, 32 TFs emerged in the Y5 group and 46 in the Y15 group, 
with a notable overlap of 17 TFs between the groups. Notably, there was 
a considerable overlap of 17 TFs between the groups. Remarkably, 5 of 
the 61 TFs showed significant variation in gene expression levels; these 
five TFs were all in the Y15 group (Figure 4B). An extensive web of 
physical interactions within specific protein sets was revealed by 
protein–protein interaction (PPI) network research. This result implied 
that these TFs carry out their activities through mutual contacts, either 
by joining forces to create protein complexes or by working in tandem 
(Figure 4C). Furthermore, major biological processes associated with 
senescence, such as positive regulation of cell death, apoptotic processes, 
and regulation of cell death, were identified by GO analysis of 
TF-regulated genes in the Y15 group. The pathways found in the Y5 
group, on the other hand, included RNA processing, mRNA transport, 
and control over cytoplasmic translation (Figures 4D,E).

The understanding of TF function and its impact on gene 
expression is dependent on the discovery of TF-target regulatory 
connections. By searching TRRUST for TF-regulated genes, 

we discovered 34 DEGs in the Y15 group and 14 DEGs in the Y5 group 
that were controlled by TFs from corresponding motifs (Figures 5A,B). 
Three senescence-related genes were discovered in the DEGs of the 
Y15 group and one in the Y5 group. Combining PPI networks and 
putative co-regulations for specific DEGs and TFs (Figures 5C–H) 
highlighted the mutual regulatory linkages and distinctions between 
the two groups. Furthermore, the Y15 group had a distinct functional 
module enriched with genes and TFs linked with senescence, which 
was conspicuously absent in the Y5 control group. This module 
exhibited a significant level of enrichment in interactions, comprising 
the bulk of senescence-related genes and TFs. Fluid shear stress and 
atherosclerosis (Shaaban and Duerinckx, 2000), complement and 
coagulation cascade (Anderson et  al., 2010), rheumatoid arthritis 
(Serhal et  al., 2020), apoptosis, and renin secretion (Bauer, 1993; 
Figure 5I). These findings provide compelling support for the central 
role of eccDNA in shaping the genetic landscape during BMSC 
cultivation, ultimately governing cellular senescence.

Discussion

The senescence of stem cells increases in tandem with the 
increasing functional deficits that characterize aging (Lei et al., 2021). 
Although the involvement of MSCs in senescence-related disorders 
and cellular treatment has been proposed clinically, there are barriers 
to their application (Al-Azab et al., 2022). Ex vivo growth of MSCs, for 
example, promotes oxidative stress and cellular senescence, resulting 
in poor in vivo engraftment and functions (Denu and Hematti, 2016; 
Yoon et  al., 2022). Premature senescence of MSCs, in particular, 
represents a key issue for clinical applications, as senescence MSCs 
adopt a senescence-associated secretory phenotype, which alters the 
therapeutic effectiveness (Al-Azab et  al., 2022). To utilize the 
regenerative potential of cultivated MSCs for therapeutic therapies, 
cellular senescence must be prevented, and the mechanisms behind 
cellular senescence must be understood. We expanded the current 
understanding of MSC senescence at the eccDNA level and reported 
the first eccDNA profiles of young and senescence BMSCs since 
genomic mistakes constitute the first “on switch” of MSC senescence 
and eccDNA synthesis is dependent on DNA organization and damage 
repair (Kundrotas et  al., 2016; Paulsen et  al., 2018). Furthermore, 
we revealed that eccDNA can act as a TF-binding motif to regulate 
senescence-related gene expression in BMSCs in an enhancer-
independent manner, and the genetic properties of eccDNAs may 
point to a novel route for therapeutic therapy of senescence-
related disorders.

Previous studies have found that eccDNA levels may significantly 
increase during the human senescence process (Qiu et al., 2021). 
EccDNA sequencing has a wide variety of applications in human 
senescence. The entire understanding of the composition, structure, 
and function of eccDNA was identified by sequencing to provide 
support for the prevention and therapy of aging-related illnesses 
such as cancer and cardiovascular disease. Hull et al. (2019) proved 
that the accumulation of the copper-resistance gene CUP1 eccDNA 
is related to age-linked genetic change. Importantly, the eccDNAs 
discovered in this study may be produced from any genome and are 
roughly proportionate to the overall abundance of gene and 
non-gene sections in the genome, as previously reported (Wu et al., 
2022). Previous research has demonstrated that the size distribution 
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of eccDNA ranges from 10’s to 100’s of 1,000’s of base pairs in 
examined eukaryotes, including normal human tissues, cancer, 
plasma, and serum (Møller et al., 2020; Gerovska and Arauzo-Bravo, 
2023). We found abundant eccDNAs in BMSCs ranging in size from 
0.01 to 1,000 kb, with the majority ranging from 0.1 to 10 kb and 
exhibiting two different peaks approximately 300 bp and 1 kb. 
Furthermore, the length of eccDNAs in senescent BMSCs was 
shorter than in youthful cells, which could be attributed to changes 
in the senescence microenvironment. The highest density of eccDNA 
distribution, on the other hand, was discovered on chromosome 1, 
which is the longest chromosome (Hwang et al., 2013). The least 

amount of eccDNA was observed on chromosome Y, which has a 
low gene density. Moreover, certain eccDNA segments appear 
differently in young and senescence BMSCs, indicating their role 
during MSC senescence. When we mapped eccDNA to different 
types of genomic elements to study their formation preferences, 
we found that eccDNA was most abundant in intron regions. The 
pattern found here differed from that previously reported in the 
literature for eccDNAs in mice, human plasma, and cancer cells 
(Zhu et al., 2022), probably due to the distinct cell type; however, the 
specific explanation remains unknown. We  hypothesized that 
eccDNA might interact with enhancers to regulate 

FIGURE 3

Functional analysis of differentially expressed genes and identification of senescence-related genes. (A) Volcano plot of significantly differentially 
expressed genes between the Y5 and Y15 groups. (B,C) GO and KEGG enrichment analysis results of upregulated genes in the Y5 and Y15 groups. 
(D) Overlap analysis between senescence-related genes from the National Aging Database and DEGs. (E) Clustered heatmap of differentially expressed 
senescence-related genes in Y5 and Y51 groups. Red, upregulation; blue, downregulation.
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senescence-related gene expression in BMSCs because 
transcriptional regulation elements such as enhancers and repressors 
were always distributed in the intron region and eccDNA could 

enhance gene amplification in various cells (Li et al., 2012; Wu et al., 
2019; Molin et al., 2020). Surprisingly, overlap analysis revealed very 
little connection between eccDNAs and BMSC enhancers.

FIGURE 4

EccDNA affects TF-binding pathways. (A) Motif scan in the Y51 group and Y15 group. (B) The bar plot uncovers the expressional difference of known 
TF binding to the enriched motif context as above. (C) The PPI network relationship between found known TFs. (D,E) GO analysis found TFs in the Y15 
and Y5 groups, respectively.
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We performed motif analysis on the eccDNA sequences to look 
for potential control mechanisms of eccDNA during MSC senescence 
and discovered that particular patterns could enhance TF. The GO and 
KEGG pathway analyses of differentially enriched TFs in senescence 
BMSCs revealed enrichment in “aging,” “positive regulation of cell 
death,” “regulation of apoptotic process,” “regulation of cell death,” and 
“response to hormones,” all of which have been linked to cell 
senescence (Sui et  al., 2016). Meanwhile, no senescence-related 
pathways were found to be enhanced in young BMSCs, implying that 
a particular eccDNA might be used as a BMSC senescence biomarker.

In conclusion, we first showed that senescent human BMSCs 
have a distinct landscape and eccDNA expression pattern when 
compared to young BMSCs, and eccDNA has significant potential to 
be employed as a therapeutic target for senescence-related disorders. 
Given the remarkable stability of eccDNA, future research should 
look into the potential of chemically produced eccDNAs as TF 
regulatory factors to reverse senescence.
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