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1 Introduction

1.1 Types of viruses involved in CNS infections

Viruses are the most frequently identified cause of central nervous system (CNS)

infections (Said and Kang, 2023). A wide range of viruses including Herpesviridae,

Enterovirus, Arbovirus, Rhabdovirus, Paramyxovirus, Retrovirus, Flaviviruses can lead to

infections of the CNS such as meningitis, encephalitis or encephalomyelitis which occur

either immediately or later after a couple of days, weeks or even years (Solomon et al.,

2007; Bookstaver et al., 2017; Rocamonde et al., 2023).

1.2 Courses of viral-induced CNS infections

Different courses of viral-induced CNS infections are possible such as acute, long-term

persistent (chronic or relapsing), asymptomatic and late-onset neuroinflammation.

1.3 Mechanisms of CNS infiltration by viruses

1.3.1 Trojan horse strategy
Viral CNS infections manifest complex compared to infections in peripheral tissues,

and thus viruses have developed multiple strategies to overcome the natural protective

barriers of the CNS such as the blood-brain barrier (BBB) and the blood-cerebrospinal

fluid (CSF) barrier. Multiple viral routes to reach the CNS are described (Rocamonde

et al., 2023). Among the proposed mechanisms is a cell-associated transport using immune

cells, so-called Trojan’s horse strategy. Viruses like Human T-Leukemia Virus (HTLV)-

1, Measles Virus (MeV), Natural Nipah virus (NiV), Epstein-Barr Virus (EBV) can infect

peripheral dendritic cells, lymphocytes and macrophages which patrol the healthy CNS,

indicating that also viral-infected-immune cells can infiltrate into the CNS and contribute

to infection of CNS resident cells (Ousman and Kubes, 2012; Rocamonde et al., 2023).

1.3.2 Direct infection of endothelial cells
Further mechanisms of CNS infiltration include a direct infection of endothelial cells

by viruses or in an indirect way through endothelial cells by transcytosis, leading to BBB

disruption with increased permeability to lymphocytes (Afonso et al., 2008).
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FIGURE 1

Viruses use multiple routes to invade the central nervous system (CNS). Upon entry, the first immune response is initiated by resident microglia.

Microglia respond to viral infections through morphological reactivity, proliferation, phagocytosis of infected cells, antigen presentation, and various

receptor expressions. They release chemokines and cytokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and interferon (IFN)-γ,

which promote further innate and adaptive immune responses, including the regulation of T-cells. Microglia express various Toll-like receptors (TLRs)

that recognize viruses and can trigger type-I IFN production, leading to the transcription of IFN-stimulated genes and regulating the antiviral immune

response. As regulators of adaptive immunity in the CNS, microglia mediate T-cell responses. Antigen presentation by microglia is crucial for forming

protective T-cell responses against infections or malignancies and for generating pathogenic, autoreactive T-cell responses in autoimmune

conditions. The interaction between the T-cell receptor and major histocompatibility complex (MHC) molecules, which contain processed antigenic

peptides, on the surface of antigen-presenting cells (APCs) is essential for this process. Reactive microglia, functioning as APCs, share features with

peripheral macrophages and are vital components of both innate and adaptive immune responses. Upon reactivity, microglia up-regulate MHC and

co-stimulatory molecules, with MHC class I stimulating CD8+ cytotoxic T-cells and MHC class II stimulating CD4+ T-helper cells. T-cell activation

through antigen-presenting microglia can result in the production of IFN-γ and TNF, which further activate microglia to engulf healthy synapses

post-infection. Despite the immune privilege of the CNS, viruses can induce autoimmune diseases through mechanisms such as bystander activation

of autoreactive cells or molecular mimicry. Microglia contribute to demyelination, displaying both harmful and beneficial e�ects. Additionally,

astrocytes and neurons regulate microglial function through various soluble factors, highlighting the importance of cellular interactions. PAMPs

pathogen-associated molecular patterns; Created with BioRender.com.

1.3.3 Nasopharyngeal route and axonal spread
Another route of CNS entry is through the nasopharyngeal

route with infection of pulmonary epithelium e.g., in case of

MeV with subsequent infection of lymphocytes and transmission

to endothelial cells, or in case of NiV with direct infection of

neurons in the olfactory bulb and using the anterograde viral

transport to disseminate in the direction of the ventral cortex

(Munster et al., 2012; Rocamonde et al., 2023). Furthermore,

axonal spread of Herpesviridae has been demonstrated as an

efficient way for CNS invasion. For example, Alpha-herpesvirus

such as herpes simplex virus 1 (HSV1) can disseminate from

infected neurons in both anterograde and retrograde directions,

while viral material controls the spreading direction (Taylor and

Enquist, 2015). Rabdoviridae including Rabies virus can also use

anterograde and retrograde transport to gain access to the CNS,

but there is no consensus on CNS entry and spreading routes for

Flaviviridae such as West Nile Virus (WNV) (Taylor and Enquist,

2015).

1.4 Glial responses to viral-induced CNS
infections

1.4.1 Role of astrocytes and microglia
A recent review discussed the glial responses to viral-induced

CNS infections (Rocamonde et al., 2023). Astrocytes, microglia

and oligodendrocytes are counted among the glial cells as

key players in CNS health and disease (Verkhratsky et al.,

2023). Microglia and astrocytes contribute significantly to the

innate immune system of the CNS, undergoing complex reactive

remodeling dedicated to the defense of the CNS (Escartin et al.,

2021; Paolicelli et al., 2022). Different forms of CNS pathology

including neuroinfection result in astroglial reactivity/reactive

astrogliosis which encompasses complex and variable structural,

molecular and functional alterations of astrocytes (Verkhratsky

et al., 2023). Microglia form the main group of resident immune

cells in the CNS, which contribute to maintaining CNS health

and homeostasis through core properties including surveillance,
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phagocytosis, and capacity for releasing soluble factors (Ransohoff

and Perry, 2009; Kettenmann et al., 2011). Pathologic events result

in reactive microgliosis and proliferation including microglial

phenotypical changes from the homeostatic ramified into the

reactive phenotype (Kettenmann et al., 2011; Paolicelli et al.,

2022). Further, a connection between the microglial role during

neuroinflammation and the development of neurodegenerative

mechanisms was discussed, pointing toward a continuum between

neuroinflammation and neurodegeneration (González-Scarano

and Baltuch, 1999; Hickman et al., 2018). Direct infection,

bystander activation, cell-cell interactions with involvement of glial

cells belong to the mechanisms contributing to development of

viral-induced neuroinflammation.

2 Microglia as potential key regulators
in viral-induced neuroinflammation

2.1 Microglia as key regulators

2.1.1 Microglial reactivity and immune response
In our opinion, we highlight the microglia as potential key

regulators in viral-induced neuroinflammation (Figure 1).

Microglia are involved in the control of non-specific

inflammation/innate immunity as well as adaptive immune

responses. In addition to their well-established phagocytic

function, microglia contribute to innate immune functions,

antigen presentation and CNS immunopathology (Aloisi,

2001; Borst et al., 2021). After the viruses enter the CNS, the

first immune response occurs through the resident microglia.

Depending on the type of microglial response, the course

of viral-induced neuroinflammation could be defined e.g.,

direct infection with acute or sustained neuroinflammation,

bystander activation of innate/adaptive immunity, viral clearance.

Several neuropathological and experimental study findings

demonstrated microglial reactivity and virus antigen detection

in microglia during the different courses (acute/chronic or

relapsing/asymptomatic and persistent/late-onset) of CNS

infection, confirming that various viruses can infect microglia

and/or lead to microglial immune response (Rocamonde et al.,

2023). Otherwise, the early involvement of microglia in the

viral-induced CNS-inflammation can determine the course

and outcome.

2.2 Toll-like receptors in microglial
reactivity

Accumulating evidence reveals that Toll-like receptors (TLR)

are crucial in the regulation of innate immune responses to

pathogens, recognizing a wide range of pathogen-associated

molecular patterns (PAMP) such as bacterial and viral gene

products (e.g., double-stranded RNA and DNA), bacterial

peptidoglycan, lipopolysaccharide. Previous findings confirmed

the expression of various TLRs by human adult microglia (Bsibsi

et al., 2002). Viral gene products and glycoproteins recognized

by TLRs in antigen-presenting cells can cause type-I interferon

(IFN) secretion with subsequent transcription of IFN-regulated

genes involved in antiviral immune response. Microglia TLRs

recognizing viruses can also trigger type-I IFN production similar

to dendritic/antigen-presenting cells, all this supporting the view

that microglia are key regulators of immune responses in the CNS

(Aloisi, 2001; Rocamonde et al., 2023).

2.3 Microglial response to viral infections

Along with morphological reactivity, proliferation,

phagocytosis of infected cells and different receptor expressions,

microglial response to viral infections of the CNS includes release

of chemokines and cytokines such as interleukin (IL)-6, tumor

necrosis factor (TNF)-α, IL-1β, IFN-γ, promoting further innate

and adaptive immune responses (Furr and Marriott, 2012). The

ratio between pro-inflammatory and anti-inflammatory mediators

released by microglia can be crucial in demyelination e.g., TNF-α

and IFN-γ secretion resulted in oligodendrocyte apoptosis and

impaired proliferation of oligodendrocyte progenitor cells (Shi

et al., 2015).

Microglia are regulators of T-cell mediated immune responses

(Aloisi, 2001). Antigen presentation plays a crucial role in the

formation of protective T-cell responses in case of infection or

malignancy and of pathogenic, autoreactive T-cell responses in case

of autoimmunity. For this purpose, the T-cell receptor and the

major histocompatibility complex (MHC) molecules, containing

processed antigenic peptides, on the surface of antigen-presenting

cells interact with each other. Upon reactivity, microglia up-

regulate both MHC and co-stimulatory molecules. MHC class

I and MHC class II molecules lead to stimulation of CD8+

cytotoxic T-cells and CD4+ T-helper cells, respectively. During

CNS infection, microglia act as antigen-presenting cells with

consequent activation of T-cells producing IFN-γ and TNF,

which in turn promotes microglia for engulfment of healthy

synapses delayed after infection. Moreover, astrocytes and neurons

regulate microglial function via release of various soluble signaling

molecules suggesting the important role of cellular interactions

(Borst et al., 2021). Despite the immune privilege of the CNS,

pathogens can lead to autoimmune diseases through different

mechanisms including e.g., the bystander activation of autoreactive

cells or molecular mimicry. It has been proposed that initial

antiviral responses are involved in the generation of myelin-

specific CD4+ cells activated by epitopes that spread during

the chronic phase, resulting in bystander myelin damage. In an

experimental model of virus-induced demyelination, invasion of

Theiler’s murine encephalomyelitis virus (TMEV) into the CNS

persistently infected the microglial cells and led to CD4+ T-

cells-mediated immune response to myelin epitopes presented by

microglia with the result of autoimmune demyelinating disease

(Gerhauser et al., 2019). During demyelination, microglia can

have both harmful and beneficial effects. In mice infected with a

neurotropic coronavirus, microglia revealed a critical protective

effect on the initiation of remyelination and the attenuation

of immune-mediated demyelination (Sariol et al., 2020). Recent

findings show a link between EBV and multiple sclerosis (MS)

(Hassani et al., 2018; Bjornevik et al., 2022). EBV was detected as

transcriptionally active in the white matter and meninges of the

brain in most cases of MS (Hassani et al., 2018). In another study,
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EBV infection preceded MS onset and was associated with greatly

increased disease risk, supporting the involvement of the virus in

MS pathogenesis (Bjornevik et al., 2022). Astrocytes and microglial

cells in MS patients were also infected by EBV (Hassani et al.,

2018). The amoebic form was present in all microglia, indicating

the activated state of these cells. All these findings suggest that

microglia can regulate the virus-induced/associated demyelination

through different mechanisms and that viral clearance in the CNS

occurs most likely at the onset of neuroinflammation.

2.4 Protective and destructive e�ects of
microglia

Both protective and destructive effects of microglia can be

expected during the course of viral infections (Filgueira et al., 2021).

Microglial response to inflammation with production of cytokines

and chemokines is crucial for attracting peripheral immune cell

populations such as monocytes, neutrophils, dendritic cells and

T-cells into the CNS. Microglia and T-cells were present in the

injured CNS in both the early and late post-injury phase, whereas

other peripheral immune cells were detected in the CNS only in

the early phase after nerve injury and subsequently disappeared

(Jin and Yamashita, 2016). Reactivity of microglia surrounding

infected neurons was associated besides the morphological changes

with an increase of pro-inflammatory cytokines such as CXCL10,

CCL5, IL-6 and TNF-α, which contribute to recruitment of T-

cells (Jin and Yamashita, 2016). In lethal coronavirus encephalitis

in mice, depletion of microglia using an inhibitor of colony-

stimulating factor 1 receptor (CSF1R) resulted in exacerbation of

infection and confirmed that microglia are involved in inhibition

of virus replication during the early phase after infection, with an

impact on subsequent survival and morbidity/mortality. Moreover,

the T-cell recruitment was insufficient after microglia depletion,

supporting the critical role of microglia in the early innate

and virus-specific T-cell responses and in the host defense

against viral encephalitis (Wheeler et al., 2018). Also in mice

infected with neuroinvasive WNV, reactive microglia controlled

viral growth and reduced mortality (Stonedahl et al., 2020).

Microglia can directly identify WNV viral particles in the CNS

through various signaling pathways such as TLR3, resulting

in antiviral response with cytokine release and recruitment of

CD8+ T-cells important for the limitation/termination of the

infection. Expression of matrix metalloproteinases such as MMP9

and intercellular adhesion molecule ICAM-1 by microglia may

contribute to WNV invasion into the CNS by disrupting the

BBB and leakage of potentially infected leukocytes into the brain

(Stonedahl et al., 2020). In the long term, the recruited antiviral

CD8+ T-cells differentiated in memory CD8+ T-cells producing

IFN-γ and sustained in the virus-cleared CNS (Garber et al.,

2019). IFN-γ signaling was necessary for microglial reactivity,

which contributed to synaptic damage/synaptic elimination with

involvement of complement-dependent mechanisms, leading to

neurological impairment during recovery from WNV encephalitis

(Garber et al., 2019; Stonedahl et al., 2020). The WNV-induced

memory deficits were effectively prevented by microglia-specific

deletion of IFN-γ receptor, suggesting that the interaction between

T-cells and microglia is a key event involved in the development

of post-infectious cognitive dysfunction after recovery from

Flavivirus encephalitis (Garber et al., 2019). In addition, type-I

IFN receptor signaling of astrocytes and neurons is also involved

in microglial reactivity during viral encephalitis (Chhatbar et al.,

2018).

2.5 Role of microglia in COVID-19

Recently, brain neurotropism has been demonstrated for

SARS-CoV-2, inducing the Coronavirus Disease 2019 (COVID-

19) pandemic (Tremblay et al., 2020). Many cell types in the

CNS, including endothelial cells, neurons and glial cells such as

astrocytes and microglia, express receptor angiotensin-converting

enzyme 2, to which the SARS-CoV-2 binds (Tremblay et al.,

2020). Neuropathological findings of COVID-19 cases were

related to dysfunctional interactions between microglia and

T-cells, microglial nodules in the perivascular CNS compartment

as well as significantly higher microglial reactivity in the

brain stem (Theoharides and Kempuraj, 2023). Furthermore,

microglia and astrocyte subpopulations during COVID-19

infection corresponded to pathological cell states that have

been previously detected in human neurodegenerative disease

(Yang et al., 2021). The additional involvement of microglia

in neurodegenerative processes emphasizes the complex role

of microglia in the continuum between neuroinflammation

and neurodegeneration (González-Scarano and Baltuch, 1999;

Hickman et al., 2018).

3 Conclusions

In summary, the existing evidence support our opinion

that microglia are a key crucial factor in the development of

viral-induced neuroinflammation, regulating the initiation of

the innate and adaptive immune responses with an impact

on viral replication, spreading and elimination. In line with

this, depending on the type of microglial response, the course

of viral-induced neuroinflammation could be defined e.g.,

direct infection with acute or sustained neuroinflammation

or bystander activation, impact on demyelination etc. Future

research should focus on microglial profiles associated with

distinct disease courses and signaling pathways involved

in intercellular interactions of microglia during viral

CNS infection.
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