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Multiple sclerosis (MS) is a frequently disabling neurological disorder characterized 
by symptoms, clinical signs and imaging abnormalities that typically fluctuate 
over time, affecting any level of the CNS. Prominent lymphocytic inflammation, 
many genetic susceptibility variants involving immune pathways, as well as 
potent responses of the neuroinflammatory component to immunomodulating 
drugs, have led to the natural conclusion that this disease is driven by a primary 
autoimmune process. In this Hypothesis and Theory article, we discuss emerging 
data that cast doubt on this assumption. After three decades of therapeutic 
experience, what has become clear is that potent immune modulators are 
highly effective at suppressing inflammatory relapses, yet exhibit very limited 
effects on the later progressive phase of MS. Moreover, neuropathological 
examination of MS tissue indicates that degeneration, CNS atrophy, and 
myelin loss are most prominent in the progressive stage, when lymphocytic 
inflammation paradoxically wanes. Finally, emerging clinical observations such 
as “progression independent of relapse activity” and “silent progression,” now 
thought to take hold very early in the course, together argue that an underlying 
“cytodegenerative” process, likely targeting the myelinating unit, may in fact 
represent the most proximal step in a complex pathophysiological cascade 
exacerbated by an autoimmune inflammatory overlay. Parallels are drawn with 
more traditional neurodegenerative disorders, where a progressive proteopathy 
with prion-like propagation of toxic misfolded species is now known to play a 
key role. A potentially pivotal contribution of the Epstein–Barr virus and B cells 
in this process is also discussed.
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Introduction

Multiple sclerosis (MS) was identified as a clinical entity almost two centuries ago and to 
this day remains somewhat of an enigma in terms of its fundamental cause (Clanet, 2008; 
Gafson et al., 2012). MS afflicts ≈2.8 million people worldwide (Walton et al., 2020) and is one 
of the commonest causes of neurological disability among young adults with important 
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geographical differences (Compston and Coles, 2008; GBD 2016 
Multiple Sclerosis Collaborators, 2019). MS is somewhat unusual 
among neurological disorders as it may present with a relapsing–
remitting oscillatory course. The pathological hallmarks of relapsing 
MS are prominent inflammatory foci mainly evident in white matter, 
with lesions or “plaques” of demyelination characteristically 
disseminated in space and time. In a minority of patients, MS begins 
with a progressive course from onset where inflammation may be less 
prominent, though still plays a role in disability progression (Hughes 
et  al., 2018). Importantly, with time the majority of relapse-onset 
patients will transition to a clinically progressive course [known as 
secondary progressive MS (SPMS)] characterized by cytodegeneration, 
while the inflammatory component wanes with age (Compston and 
Coles, 2008).

The dichotomic subtyping of MS into “relapsing” and “progressive” 
forms is somewhat arbitrary, as it is now clear that degeneration and 
inflammation contribute to disability and pathology at all stages 
(Hughes et al., 2018; Kappos et al., 2020; Lublin et al., 2022). It is 
highly likely that the various phases of MS thus represent a continuum 
of the same disease, where autoimmune inflammation is most 
prominent early, gradually wanes with age, thus unmasking a 
progressive underlay of chronic cytodegenerative processes that are 
present from disease inception; recent consensus appears to be moving 
in this direction (Kuhlmann et al., 2023).

A decade or so ago, data began to emerge raising questions about 
the generally-accepted autoimmune etiology of MS, discussed in an 
opinion paper where we argued that MS might instead be a primary 
degenerative disorder (Stys et al., 2012). The intervening years have 
seen accumulating evidence in support of this alternate view of the 
disease. The aim of this commentary is to provide an update on this 
more recent evidence and to propose how our understanding of MS 
pathophysiology should evolve. As the reader will note, many of the 
headings are stated as questions themselves, emphasizing how much 
more still needs to be  learned. Nevertheless, we  argue that a 
“cytodegeneration” of the myelinating unit may be the most proximal 
event, which could be  potentially driven by a protein misfolding 
mechanism like most other neurodegenerative disorders. And like 
such disorders, we  will discuss recent evidence describing how 
progression of pathology throughout the CNS could be  based on 
prion-like spread of proteopathic seeds. The apparently essential role 
of Epstein–Barr virus is also summarized, including potential 
mechanisms for how this virus could trigger such a 
cytodegenerative proteopathy.

Mechanisms of myelin injury

Multiple sclerosis lesions are characteristically perivascular and 
exhibit prominent demyelination and bystander axonal damage. The 
prominent lymphocytic inflammation—at least in the earlier relapsing 
phase of the disease—is traditionally thought to be the primary insult 
with immune cells recruited into the CNS to induce recurrent chronic 
injury (Box 1). Although traditionally considered an inflammatory 
disorder of white matter, more recently it has become apparent that 
gray matter damage is also prominent and widespread, though the 
immune responses are less pronounced in this region, and therefore 
the radiological and pathological signatures more subtle; virtually all 
gray matter areas can be  involved including cerebral cortex, 

hippocampus, deep gray matter nuclei, cerebellum and even spinal 
gray matter (Calabrese et al., 2015; Möck et al., 2021; Ontaneda et al., 
2021). Notably, while neuronal elements (axons, neurons, dendrites, 
and synapses) are also damaged to a significant extent (Albert et al., 
2017; Möck et al., 2021), demyelination is a constant finding in both 
white and gray matter regions pointing to the myelinating unit (the 
myelin sheath and oligodendrocyte) as a key target in this disease.

While the cause of MS is still unknown even after decades of 
intensive investigation, the prominence of lymphocytic inflammation, 
particularly in the earlier relapsing–remitting inflammatory stage, 
naturally implicates adaptive autoimmunity as a primary driving 
force. Together with the observation that CNS myelin appears to be a 
major target, this spurred development of various animal models, with 
the experimental autoimmune encephalomyelitis (EAE) mouse model 
being the most popular (Baxter, 2007). EAE is predicated on a primary 
anti-myelin T cell response and therefore disease is most commonly 
induced by inoculating mice with myelin peptides together with 
adjuvant to stimulate an immune reaction against these extrinsically-
supplied myelin antigens (Robinson et  al., 2014). The ensuing 
pathology, largely consisting of macrophage and lymphocyte 
infiltration of mainly the spinal cord, recapitulates the inflammatory 
pathology of acute MS lesions in a number of respects, but differs from 
MS in important ways: many EAE variants exhibit only limited 
demyelination confined to the spinal cord white matter, contrasting 
with extensive brain pathology also prominently affecting cortical gray 
matter in MS. Moreover, EAE is characterized by a CD4 T lymphocytic 
preponderance in contrast to CD8 T cells in MS lesions (Day, 2005). 
Conceptually however, EAE presupposes that MS is also driven by a 
primary autoimmune attack originating in the periphery, and if this 
assumption proves incorrect, then this model may be fundamentally 
misleading with respect to the true etiology of MS.

Recently, a hybrid model (“cuprizone autoimmune encephalitis” 
or CAE) combining the myelin-toxic effects of cuprizone (Zirngibl 
et al., 2022) together with an immune stimulation identical to EAE but 
without extrinsic myelin peptides, provided proof-of-principle for the 
notion that a primary biochemical “dysmyelination” can result in a 
very typical inflammatory demyelinating white matter lesion in an 
immune-stimulated host (Caprariello et  al., 2018). Although the 
pathology in CAE was mainly targeted to the corpus callosum where 
cuprizone-mediated white matter injury is focused, very prominent 
lymphocytic inflammation, demyelination and axonal injury were 
observed that closely resembled an active MS lesion. In contrast to 
EAE where the primary stimulus is immune upregulation in the 
presence of extrinsic myelin antigens, the CAE model illustrates that 
MS-like pathology can also be generated by an upstream intrinsic 
myelin injury, releasing antigens which secondarily trigger white 
matter inflammation in an immune-predisposed host. This is an 
important insight because it sets the stage, at least in principle, for MS 
potentially being triggered by subtle injury to CNS myelin rather than 
by a primary autoimmune assault.

Disease-modifying treatments

The success of the EAE model in recapitulating many autoimmune 
inflammatory aspects of relapsing MS spurred the development of 
many anti-inflammatory drugs. Thus, the mainstay of treatment for 
MS today is disease-modifying immunomodulation chiefly targeting 
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various aspects of T and B cell pathobiology (Yong and Yong, 2022), 
which has proven very effective at suppressing acute inflammatory 
disease (Hauser et al., 2020). Indeed, in more extreme cases with very 
aggressive inflammatory activity, a total “reset” of the patient’s immune 
system by autologous bone marrow transplantation has shown 
remarkable efficacy at stopping new relapses or MRI lesions and even 
modestly reversing clinical disability (Rush et  al., 2019), though 
currently this aggressive intervention is recommended only for 
patients with very active inflammatory disease (Miller et al., 2021).

Despite disease-modifying therapies being highly effective at 
arresting acute and peripherally-driven inflammation, benefits on 
progressive mechanisms of the disease—those most responsible for 
irreversible disability accumulation (Bjartmar et al., 2003)—appear to 
be  very limited (Filippini et  al., 2017; Chataway et  al., 2024). 
Intriguingly, emerging evidence suggests that some newer agents such 
as ocrelizumab (a B cell-depleting monoclonal antibody) and 
siponimod (a sphingosine 1-phosphate receptor modulator with anti-
inflammatory and neuroprotective properties) are beneficial in 
progressive MS, potentially with effects independent of suppressing 
acute inflammation (Montalban et  al., 2017; Kappos et  al., 2018; 
Arnold et al., 2022). For most disease-modifying drugs, however, the 
adage “no inflammation, little benefit” remains largely true (Lublin 
et al., 2022). Notably, a slowing or even reversal of disability stemming 
from potent medical immunosuppression or bone marrow 
transplantation should not be  necessarily taken as evidence of a 
primary immune pathogenesis, because reducing a toxic inflammatory 
overlay could independently slow a picture of underlying progressive 
degeneration. Taken together, if a primary autoimmune hypothesis of 

MS pathogenesis is correct, it is surprising that potent anti-
inflammation would not be more beneficial for the progressive phase. 
This paradox arises from the inherent complexity of MS pathogenesis 
which we  argue is driven by a “convolution” of relapsing/acute 
adaptive autoimmunity and chronic cytodegeneration (cyto-is used 
here rather than neuro-to underscore the point that myelin/
oligodendrocytes are the likely primary targets of this process), 
including an elaborate innate immune response (Figure 1).

“Inside-Out” vs. “Outside-In”

Because CNS pathology, especially that of white matter, so often 
involves damage to both myelin, glia, and axons, universally 
accompanied by an immune response, it is extremely difficult—but at 
the same time very important—to disentangle the precise sequence of 
events that trigger MS. The challenge is well illustrated by contrasting 
EAE and CAE summarized above. Even though the location of major 
pathology differs (mainly spinal cord in EAE vs. corpus callosum in 
CAE), in the former, a deliberately orchestrated primary autoimmune 
process directed at myelin antigens results in lymphocytic infiltration, 
secondary injury to white matter and a universal innate response, 
whereas in CAE, where the primary insult is a biochemical one 
deliberately targeting intrinsic CNS myelin, following immune 
stimulation, the resulting lesion is pathologically similar (Day, 2005; 
Caprariello et al., 2018). Without a priori knowledge of what insults 
were applied, and in which order, simply observing the final 
histological lesion renders it impossible to infer the underlying 
sequence of events nor the initial trigger. This is the situation that 
researchers face when trying to understand the fundamental 
pathomechanisms of MS, with the challenge summarized in Figure 2.

A fundamentally important debate in the field revolves around the 
“outside-in” (whereby a primary defect in the peripheral immune 
system promotes invasion of the CNS by autoreactive immune cells) 
vs. “inside-out” (arguing that a primary CNS degeneration triggers 
secondary autoimmune inflammation in an immune-predisposed 
patient) hypothesis (Sen et al., 2020; ‘t Hart et al., 2021; Giovannoni 
et al., 2022). This debate is reflected in a number of animal models and 
several human diseases, including careful analysis of human MS 
(Figure 3; Prineas, 1975; Barnett and Prineas, 2004; Henderson et al., 
2009). Regarding the former, transgenic mice that exhibit delayed 
demyelination and white matter degeneration from a variety of causes 
(e.g., myelin gene defects, peroxisome-deficient or α-synuclein 
overexpressing oligodendrocytes, or disruption of their gap junctions, 
to name a few) frequently show a secondary T- and occasionally a 
concomitant B-lymphocytic inflammation (Ip et al., 2006; Kassmann 
et al., 2007; Wieser et al., 2013; Wasseff and Scherer, 2015; Groh et al., 
2016; Traka et al., 2016; Williams et al., 2020). Interestingly, direct 
induction of oligodendrocyte cell death, with resultant demyelination, 
may not trigger an autoreactive T- or B-cell response (Locatelli et al., 
2012; Gritsch et al., 2014). Together these observations suggest that 
not just any degeneration of myelin, but a specific modification of its 
constituents is required to elicit a secondary adaptive 
immune response.

Citrullination of arginine residues in myelin basic protein 
(MBP)—and likely other CNS proteins as well—seems to be  one 
important post-translational modification associated with 
inflammatory demyelination. In the CAE model, pharmacological 

BOX 1 The immunobiology of MS

The immune-mediated biology of MS identifies a prominent role of 

peripherally-derived T and B cells in acute active demyelinating lesions, with 

microglia, macrophages and astrocytes mainly responsible for chronic 

inflammation (Rodríguez Murúa et al., 2022; Aliyu et al., 2024). Conventional 

thinking posits that a primary defect in adaptive immunity promotes recruitment 

and entry of peripherally activated lymphocytes into the CNS across a disrupted 

blood–brain barrier where a complex cascade of autoimmune/inflammatory 

processes culminates in edema, and destruction of myelin, axons and 

oligodendrocytes (for detailed reviews see Dendrou et  al., 2015; Rodríguez 

Murúa et al., 2022). Early in the course, remyelination of surviving axons can 

be robust, underpinning clinical remission. However, recurrent bouts of such 

inflammation and the toxic milieu that ensues, are thought to produce 

cumulative damage to myelin, oligodendrocytes and neurons, leading to 

progressive degeneration, atrophy and increasing disability, exacerbated by 

failure of myelin repair. Modern immunosuppressive medications are highly 

effective at curbing bouts of inflammation, but have surprisingly limited 

effectiveness on disease progression. To account for the continuing degeneration 

and atrophy in later stages, in the face of waning adaptive inflammation as the 

disease progresses, it has been proposed that the inflammation becomes 

“trapped” behind the blood–brain barrier, continuing to damage the CNS, but 

now being inaccessible to peripherally-administered immunosuppressants. 

Together with still prominent lymphocytic infiltration and inflammation in 

progressive MS, being particularly pronounced in the meninges and perivascular 

spaces, leads some investigators to conclude that inflammation primarily drives 

demyelination and degeneration at all stages of this disease (Lassmann, 2018).
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inhibition of citrullination is a potent suppressor of inflammatory 
demyelination after an immune stimulation, in the absence of any 
direct anti-inflammatory effect by the inhibitors themselves, indicating 
that proteins modified in this manner can be potent antigenic targets 
(Caprariello et  al., 2018). Moreover, there is a direct correlation 
between the degree of MBP citrullination and the aggressiveness of 
white matter inflammatory activity in MS patients (Moscarello et al., 
2007). Importantly however, animal studies collectively emphasize 
two key principles: first, an adaptive T- and B-cell response can 
be elicited by myelin that degenerates in a specific way, without any 
deliberate upregulation of the systemic immune system. Second, that 
such a reactive lymphocytic infiltration can exacerbate degeneration 
of white matter elements.

A number of diseases can exhibit similarities to MS, both 
relapsing–remitting or primary progressive, often to the point of 
misdiagnosis even by specialists (Table 1). Of note, many of these 
cases exhibit CSF oligoclonal bands, Gd-enhancing lesions on MRI 
and clinical response to immunosuppression—all features very typical 
of MS—indicating that secondary immune responses to a primary 
trigger can play a significant role in the final clinical phenotype. 
Importantly, as in the animal studies described above, it is highly likely 

that this immune response is secondary to a known underlying 
genetic/biochemical defect that results in degeneration of white 
matter. One interpretation that is often cited regarding such case 
reports is that these were examples of a dysmyelination resulting from 
a defined gene defect or an acquired/sporadic condition, with 
coincidental MS (Pfeffer et al., 2013; Cloake et al., 2018; Bargiela and 
Chinnery, 2019). Because the cause of MS is unknown, and because 
we do not have a specific test to exclude this disease with certainty, this 
conclusion can never be  completely dismissed. However in our 
opinion, the low probability of MS coincidence with another rare 
disease, together with the animal studies where MS is never a 
consideration, makes it more likely that these human examples align 
with an “inside-out” model (Figure 2), where a primary biochemical 
derangement of myelin, coupled with an immune predisposition, 
culminated in a MS-like phenotype.

To further support the above argument, consider the 
adrenoleukodystrophy/adrenomyeloneuropathy disease spectrum. 
Neurologically, ALD/AMN can manifest with highly variable 
phenotypes, ranging from very aggressive and rapidly fatal 
inflammatory CNS demyelination in young boys to a more slowly 
progressive adult form either with cerebral white matter inflammatory 

FIGURE 1

Complex interplay of peripherally-driven acute inflammation and chronic CNS cytodegeneration in MS. All phases of MS exhibit varying intensities of 
both components, and it is the final “convolution” of the two that determines the clinical phenotype. (A) If both components are weak, the mean rate 
of progression (dashed red line) will be slow, and inflammatory attacks infrequent (CIS) or even subclinical (RIS). (B) Even if the underlying 
cytodegeneration is moderate, more aggressive autoimmunity will result in more frequent inflammatory relapses (RRMS), which may contribute to a 
more rapid rate of progression because of the additional tissue damage from acute inflammatory episodes. With immune senescence, many relapsing 
patients transition into a course of disease where only PIRA drives disability worsening (SPMS). (C) If the cytodegeneration is strong from onset but with 
muted autoimmunity, the disease assumes a monotonic progressive trajectory (PPMS). (D) Aggressive MS (Iacobaeus et al., 2020) could result from a 
double-hit of vigorous adaptive autoimmunity on a background of strong cytodegeneration, with both processes contributing by additive mechanisms. 
Therefore, both acute inflammatory relapses (“relapse associated worsening,” RAW) and underlying primary cytodegeneration (PIRA) contribute to CNS 
tissue damage and disability (Portaccio et al., 2024), making it very difficult to disentangle their respective contributions. Importantly, current therapies 
mainly address mechanisms related to acute/adaptive autoimmunity (green shading), and are expected to be largely ineffective (red) or only partially 
effective (orange) when immune dysregulation is relatively less important.
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lesions, or a more indolent progressive myelopathy and peripheral 
neuropathy (Moser, 1997). Examples exist of brothers, harboring the 
same mutation, with one afflicted by the aggressive childhood form 
while the other suffering from a slowly progressive 
adrenomyeloneuropathy (Palakuzhiyil et al., 2020). Indeed, there are 
case reports of monozygotic twins harboring the exact same mutation, 
both with elevated serum very long chain fatty acids (indicating a 

similar metabolic defect of peroxisomal lipid processing), where one 
boy is affected clinically and radiologically, while his twin brother is 
completely normal (Korenke et al., 1996). Such clinical discordance 
has also been reported for the adult adrenomyeloneuropathic variant 
(Sobue et al., 1994). Why there should be such striking differences in 
genetically identical individuals, in a disease caused by the same 
mutation, is unknown, but likely involves important epigenetic and 

FIGURE 2

Competing theories of MS pathogenesis. Conventional teaching holds that a peripheral T and B cell-dependent immune defect directed against the 
CNS white matter is primarily responsible (“outside-in model”). In our opinion, this model fails to adequately explain the progressive phase of MS. 
Instead, the “inside-out” model proposes that MS is a primary degeneration of the myelinating unit of unknown cause, with antigenic debris triggering 
an important but secondary autoimmune response in the immune-dysregulated host. Recent evidence suggests that B cells might lie at the interface 
of the two processes, on the one hand generating toxins that contribute to tissue cytodegeneration, and on the other, conspiring with other immune 
elements to drive autoimmune inflammation (modified from Stys et al., 2012).

FIGURE 3

Subtle axo-myelinic pathology in non-lesional MS white matter. (A) Segmental demyelination of internodes (arrowheads) and swelling/transection of 
axons (arrow) are characteristically seen at the periphery of MS plaques, but also in normal-appearing white matter (NAWM) well away from 
demyelinating inflammatory lesions. (B) NAWM also exhibits axo-myelinic injury, with some fibers showing expansion of myelin only (“blisters”), others 
swelling of both axon and overlying myelin (“blebs”). (C) Spectral micrographs of periventricular white matter show a gradient of myelin pathology 
extending from the ventricle (warmer colors indicate more abnormal but still-intact myelin). Higher power views show normal homogeneous myelin 
from control vs. highly heterogeneous myelin sheaths (arrows) in axons exhibiting swelling as in panels (A,B). Taken together these data indicate subtle 
but widespread pathology of axons and myelin in regions with little evidence of lymphocytic inflammation. Modified with permission from Trapp et al. 
(1998), Luchicchi et al. (2021), and Teo et al. (2021), respectively.
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environmental influences. Also of interest is the observation that 
mouse models of ALD do not develop cerebral inflammation, but 
most resemble the non-inflammatory myeloneuropathic phenotype 
(Pujol et al., 2002). An argument can therefore be made that the “real” 
ALD is actually the adrenomyeloneuropathic form, with the more 
aggressive cerebral ALD of young boys driven by a superimposed 
autoimmune inflammation that is secondary to the myelin lipid 
derangement. Indeed, it has been reasonably suggested that abnormal 
lipids, which are known to be antigenic (Kanter et al., 2006), might act 
as a trigger for an autoimmune response in the human ALD brain 
(Moser et al., 2007). Similar familial discordance in other inherited 
disorders further reinforces this notion. For instance, two siblings 
both harboring the same mitochondrial mutation causing Leber’s 
hereditary optic neuropathy had markedly different clinical courses: 
the brother exhibited typical progressive optic neuropathy whereas the 
sister suffered from a relapsing–remitting MS-like illness (Joshi and 
Kermode, 2019). One could argue that the higher predisposition to 
autoimmune disease in women (Cooper and Stroehla, 2003) prompted 
the sister to react to the subtle white matter damage induced by this 
mutation in an inflammatory MS-like manner, whereas the brother 
proceeded along a degenerative path in the absence of the autoimmune 
overlay. Thus, the ultimate clinical phenotype in a disease where both 
white matter cytodegeneration and adaptive autoimmune 
inflammation conspire in the pathogenesis is determined by the vigor 
of either or both processes, i.e., by a “convolution” of the two. We point 
out the potential parallels between ALD/AMN and inflammatory 
relapsing–remitting/primary progressive MS, also at times manifesting 
as highly aggressive tumefactive disease (Marburg variant). This 
notion sets the stage for our theoretical dissection of the complex 
pathogenesis of MS in the next section.

Is MS a primary cytodegeneration?

In the previous section, we  outlined the principle in animal 
models and humans, of how a primary biochemical disturbance of 

white matter can trigger a potentially important secondary 
autoimmune inflammatory response, and indeed, how these two 
phenomena almost universally co-exist. Whether such an “inside-out” 
mechanism applies to MS is currently unknown, but here we will 
discuss recent data that we believe lend increasing support to this 
notion. While there is now little doubt that a degenerative process 
operates not only in the later progressive phase of the disease, but also 
likely from the earliest stages of relapsing inflammatory presentations, 
what is fiercely debated is whether a primary autoimmune 
inflammation also drives the continuing CNS cytodegeneration and 
CNS atrophy (Sen et al., 2020; ‘t Hart et al., 2021; Giovannoni et al., 
2022). The limited efficacy of even potent immunosuppression in the 
later stages (Wolinsky et al., 2020) is likely due to a waning of the 
acute/adaptive auto-immune component, rather than restricted access 
of biologicals to the CNS (as an example of adequate access of 
biologicals to the brain, systemic administration of anti-amyloid 
antibodies in Alzheimer’s has now been shown to be  effective at 
reducing amyloid load (Jucker and Walker, 2023; Pang et al., 2024), 
and this in brains that arguably harbor less inflammation and have a 
tighter blood–brain barrier than in MS). Moreover, bypassing the 
blood–brain barrier altogether by direct intrathecal administration of 
the B cell-depleting agent rituximab was also ineffective in progressive 
MS (Komori et al., 2016; Bonnan et al., 2021) further arguing against 
inadequate CNS penetration and trapped inflammation as the primary 
driver of progression. However, one factor responsible for the limited 
effectiveness of B cell depletors in progressive MS may be resistance 
of leptomeningeal inflammation to even intrathecally administered 
agents for reasons that are not understood (Bhargava et al., 2019).

In the more common relapsing–remitting form of MS, if an 
ongoing acute/adaptive immune response were the primary driver of 
later progression, atrophy and disability, it would stand to reason that 
there should be a strong correlation between inflammatory relapses 
and disability throughout the disease course. The advent of potent 
anti-inflammatory agents with their strong effects on reducing 
annualized relapsed rates has advanced the concept of “progression 
independent of relapse activity” (PIRA) (Lublin et al., 2022). Indeed, 

TABLE 1 Examples of human diseases where a known abnormality (often genetic, but can be acquired) results in white matter pathology and secondary 
inflammation which can mimic MS.

Disease Defect Selected references

Pelizaeus–Merzbacher disease, spastic 

paraplegia type 2, other PLP mutations

Proteolipid protein 1 gene mutations Cloake et al. (2018); Gorman et al. (2007); Warshawsky et al. (2005); 

Qendro et al. (2017); Rubegni et al. (2017)

Harding’s syndrome Inherited mitochondrial disorder Bargiela and Chinnery (2019); Beckmann et al. (2021); Joshi and 

Kermode (2019); Kovacs et al. (2005); Palace (2009)

X-linked adrenoleukodystrophy ABCD1 gene mutations resulting in abnormalities 

of very long chain fatty acid metabolism

Di Filippo et al. (2011); Dooley and Wright (1985); Stockler et al. 

(1993)

Krabbe’s globoid cell leukodystrophy Galactocerebrosidase (GALC) gene mutations Tomás et al. (2015)

Hereditary diffuse leukoencephalopathy 

with spheroids

CSF1R gene mutations Sundal et al. (2015)

X-linked Charcot–Marie–Tooth disease Connexin-32 gap junction (GJB1) gene mutation Isoardo et al. (2005)

Progressive external ophthalmoplegia Inherited mitochondrial disorder Gaetani et al. (2016); Patel et al. (2019)

Gerstmann–Sträussler–Scheinker syndrome Prion protein (PRNP) gene mutation Karmon et al. (2011)

Vitamin B12 deficiency Low serum B12, cause unknown Reynolds et al. (1991); Reynolds (1992)

Miscellaneous Various Natowicz and Bejjani (1994); Romagnolo et al. (2014); Weisfeld-

Adams et al. (2015); Laurencin et al. (2016)
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recent large studies have now confirmed that a substantial portion 
(50% or more) of disability accrued even in relapsing MS occurs due 
to PIRA, i.e., not due to incomplete recovery from an inflammatory 
attack (Graf et al., 2021; Lublin et al., 2022; Portaccio et al., 2024). 
Remarkably PIRA-like disability accumulation was also observed in 
pediatric MS raising the possibility that an underlying degenerative 
process can start very early (De Stefano et al., 2010; Disanto et al., 
2016; Dahlke et al., 2021), and is consistent with the idea of a primary 
cytodegeneration as the initiator of the disease. Another group 
independently also concluded that disability progression and brain 
atrophy occur earlier than in the classical secondary progressive stage, 
with many relapsing patients exhibiting insidious progression without 
clinical or radiographic evidence of inflammatory disease activity, 
coining the term “silent progression” (Cree et  al., 2019). What 
underpins progression at the tissue, cellular and molecular levels is 
still unknown, but taken together, emerging data strongly point to an 
underlying chronic cytodegenerative process starting early and 
operating largely independently of overt inflammation.

One compelling histopathological correlate of disability 
progression is the “slowly-expanding lesion,” characterized by a 
presumably “inactive” gliotic demyelinated center surrounded by a 
rim of activated microglia and macrophages containing degenerated 
myelin, injured axons and often iron deposition (Dal-Bianco et al., 
2017; Lassmann, 2018; Jäckle et al., 2020; Pukoli and Vécsei, 2023). 
The latter is important as it allows the serial imaging of these lesions 
in vivo by MRI, revealing that many slowly expand over time 
(Dal-Bianco et al., 2017; Elliott et al., 2019; Zheng et al., 2020). These 
chronic active MS lesions may also harbor at their core (but not at 
their expanding edges) a perivascular cuff of CNS tissue-resident B 
and T cells (Machado-Santos et al., 2018; Fransen et al., 2020). Notably 
absent from areas of active demyelination are significant numbers of 
lymphocytes, and any lymphocytic infiltrates that were present were 
distant from regions of myelin and axonal injury (Machado-Santos 
et al., 2018). The robust presence of innate immune elements at the 
leading edges led some to conclude that in these chronic active MS 
lesions, there is a switch with the innate rather than the adaptive 
immune system taking over to propagate the pathology (Weiner, 
2008). This is possible, but given that innate inflammation in the form 
of microglial activation and macrophage infiltration is a universal 
response to most types of CNS injury (Rivest, 2009), we would argue 
that it remains equally plausible that in MS microglia/macrophages 
are instead reacting to some persistent underlying pathological 
process in an attempt to limit and repair the expanding white matter 
damage. Support for this notion comes from instructive pathological 
feature found at the other end of the temporal spectrum, the so-called 
“pre-active” lesion, consisting of small clusters of activated microglia 
seen throughout the MS NAWM, accompanied by axonal and 
oligodendroglial injury (van Noort et  al., 2011; Kuhlmann et  al., 
2017). In the very early stages, microglial nodules are seen without 
lymphocytic infiltration (Singh et  al., 2013) suggesting that these 
innate immune cells were reacting to a subtle early pathology that 
predated the arrival of T or B cells. It is important to note that 
microglial nodules are not unique to MS, and are also seen in brain 
trauma, stroke and even normal aging, where they are thought to play 
a reactive role to minor myelin injury (Kleinberger et  al., 2017; 
Lewcock et al., 2020). Together these observations are consistent with 
an important concept: microglia are the earliest responders to a 
primary multifocal myelin injury in the MS white matter, and 

importantly, this injury/response seems to precede lymphocytic 
infiltration, arguing against adaptive immune cells being the primary 
drivers of white matter injury.

If an underlying primary pathology is responsible, what type of 
early process could be operating in the area of myelin degeneration 
that does not exhibit signatures of an autoimmune lymphocytic-
driven mechanism, or any detectable infectious or other obvious 
etiology? A re-analysis of a longitudinal MRI dataset on several 
hundred MS patients (Elliott et al., 2021) confirmed and extended 
previous reports (Filippi et al., 1998; Pike et al., 2000; Fazekas et al., 
2002) indicating that areas of NAWM, where a typical MS lesion will 
form in the future, exhibited significant abnormalities on T2 and 
magnetization transfer up to 2 years prior. Such “precursory MS 
lesions” imply chronic focal pathology that develops well in advance 
of a full-blown inflammatory MS plaque. What was unexpected was 
the finding of “mirror” precursory lesions with similar abnormalities 
to the ipsilateral pre-lesion, but occurring instead in a spatially-
matched location in the contralateral hemisphere. In contrast to an 
earlier study that also found such matched contralateral lesions 
(Werring et al., 2000), this more recent report detected such mirror 
precursory lesions well before a T2 lesion formed in the index 
hemisphere, precluding the previous explanation of axonal transection 
and Wallerian degeneration as a possible contributor to the 
contralateral mirror abnormality. While the ipsilateral precursory 
lesion could be explained by an early focal invasion by immune cells 
that remain dormant for years, the contralateral mirror lesions are 
harder to ascribe to such a mechanism. What pathological process 
could be  responsible for a very slow, multifocal white matter 
degeneration that seems to track along connected pathways? The 
answer is not known at this time, but other classic neurodegenerations 
could offer a clue.

Could MS be a proteopathy?

Misfolded protein pathology has now been conclusively 
demonstrated in all major neurodegenerative diseases involving 
normally-expressed CNS proteins such as Aβ, α-synuclein, tau, 
TDP-43, huntingtin, and PrPc. Interestingly, under specific laboratory 
conditions—typically involving transgenic animals expressing the 
species-matched target protein—pathology characteristic of the 
originating disease can be  transmitted to recipient hosts or even 
cultured cells (Jucker and Walker, 2018; Scheckel and Aguzzi, 2018; 
Carlson and Prusiner, 2021). This has also occurred in humans, such 
as iatrogenic Creutzfeld-Jakob disease (Brown et al., 2012), variant 
CJD in the context of bovine spongiform encephalopathy (Diack et al., 
2014), Lewy body pathology spreading to transplanted fetal neurons 
(Li et al., 2008) and possibly even Alzheimer’s or cerebral amyloid 
pathology from injection with contaminated human growth hormone 
extracts (Purro et al., 2018; Banerjee et al., 2024) or neurosurgical 
procedures (Panteleienko et al., 2024), respectively. Such transmission, 
first elucidated for the prion protein in a classic series of experiments 
(Gajdusek et al., 1966; Gibbs et al., 1968; Telling et al., 1994), is now 
generally considered to be  based on a prion-like propagation of 
misfolded proteins from affected to naïve host, be it a cell, laboratory 
animal or human. Once “infected,” either by exogenously supplied 
transmissible seed (e.g., scrapie inoculation by oral or intraperitoneal 
administration; Prusiner et al., 1985; Aucouturier et al., 2001; Prinz 
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et al., 2003) or a stochastic conversion of an intrinsic CNS protein, 
protein misfolding pathology is thought to propagate via 
interconnected pathways (Jucker and Walker, 2018; Jaunmuktane and 
Brandner, 2020). In the case of animals inoculated peripherally with 
scrapie, the agent propagates along peripheral sensory and autonomic 
nerves in the peritoneum to enter the spinal cord and medulla, and 
then ascends to invade the brain (Kimberlin and Walker, 1982). 
Similar to scrapie, α-synuclein pathology spreads in the peripheral 
and enteric nervous systems, then to CNS, whereas Alzheimer’s tau 
pathology propagates within the CNS only, beginning in the brainstem 
then involving cortical areas in a characteristic pattern (Braak and Del 
Tredici, 2016; De La-Rocque et al., 2021).

If MS were also a degenerative proteopathy, such trans-callosal 
prion-like spread could readily explain the precursory mirror lesions 
described above. In addition to multifocal lesions in MS, in a recent 
study using fluorescence spectroscopy using the solvatochromic lipid 
probe Nile Red, we reported diffuse changes in myelin lipid polarity 
in otherwise normal-appearing MS white matter, which was 
particularly pronounced in the periventricular areas, again 
supporting the notion of a myelin toxin circulating in the CSF. This 
technique estimated that the dielectric constant of myelin is increased 
by ≈10% in MS brain, which would translate into a global 10% 
reduction of conduction velocity in white matter axons (Teo et al., 
2021). These observations emphasized how axons that have intact-
looking myelin sheaths could exhibit abnormal conduction properties 
owing to changes in myelin polarity. Such subtle but widespread 
alterations of conduction velocity, which would perturb network 
synchronization in the brain, could be the substrate of frequent and 
disabling non-focal MS symptoms such as fatigue, mood disorders 
and cognitive decline (Kalb et al., 2019; Manjaly et al., 2019; Benedict 
et  al., 2020; Capone et  al., 2020; McGinley et  al., 2021; Raimo 
et al., 2021).

We have preliminary evidence that transmission of pathology 
recapitulating abnormalities found in non-lesional MS NAWM occurs 
in humanized transgenic mice after intracerebral inoculation with MS 
brain homogenates (Tsutsui et al., 2019). The responsible agent is not 
known, but we have very recent evidence for presence of amyloid 
deposition and misfolded proteolipid protein in the brains of 
progressive MS patients supporting the proteopathic theory (Tsutsui 
et  al., 2024). Finally, it is interesting to speculate that early and 
extensive thalamic atrophy in MS (Amin and Ontaneda, 2020; 
Ontaneda et al., 2021) could be due to its rich connectivity, making it 
a prime target for prion-like agents converging from many brain 
regions. However, the overall patterns of MS pathology hint at 
additional routes of propagation discussed below.

If the notion of MS being a primary proteopathy is correct, this 
raises interesting and unexpected new therapeutic directions modeled 
on what is being developed for other neurodegenerative diseases such 
as Alzheimer’s. Recent (albeit modest) successes with amyloid-
clearing immunotherapies suggest that reducing the load of potentially 
pathogenic oligomers or higher-order aggregates may be beneficial, 
and at the same time provides proof-of-principle that these species are 
at least partially responsible for promoting the degenerative process 
(Jucker and Walker, 2023). While we are still a long way away from 
pinpointing an analogous pathogenic species in MS, once identified, 
a specific immunotherapy targeting the relevant misfolded proteins, 
rather than downstream immune effectors as is the current approach, 
could be more effective in the progressive stages of MS.

Speculation on the role of B cells

Unlike other neurodegenerative processes, in general, the 
distribution of MS pathology is more widespread, affecting all regions 
of the CNS. One consistent pattern of pathology has emerged: there 
is a strong association of demyelination with proximity to 
CSF-containing spaces, including the subpial cortex, CSF-filled 
perivascular Virchow-Robin spaces (part of the brain’s glymphatic 
system; Eide and Ringstad, 2024), peri-ventricular regions (lateral, 
third and fourth ventricles) and even the central canal of the spinal 
cord (Pardini et al., 2021). This “surface-in” pattern strongly suggests 
that a toxin circulates in the CSF of MS patients to induce myelin 
damage in the adjacent parenchyma. Neither the nature nor the 
source of this toxin are known, but could hold the key to the 
pathophysiology of this disease. One clue is the frequent spatial 
association between areas of myelin injury and B cell accumulation. 
A number of studies report frequent collections of B cells (diffuse 
distribution, more focal aggregates or even “follicle-like” structures) 
in up to 40% of MS patients at various stages of disease (Jain and 
Yong, 2021). This leptomeningeal B cell inflammation can be seen 
around the brain and spinal cord. What is notable is the very frequent 
spatial correlation with these B cell collections of myelin injury in the 
subpial cortex as well as spinal cord white matter, raising the 
possibility that these cells release a myelinotoxic substance (Magliozzi 
et al., 2007; Howell et al., 2011; Reali et al., 2020; Jain and Yong, 2021). 
This factor appears to be specific to MS because even more prominent 
meningeal inflammation in the context of bacterial meningitis for 
instance, does not induce such pathology (Junker et  al., 2020). 
Release of immune effectors and/or inflammatory polarization of 
microglia is a logical suspicion, but there may be a more intriguing 
mechanism at play as suggested by an interesting series of papers by 
Lisak et al. (2012, 2017). These investigators reported that circulating 
B cells from MS patients maintained in culture secrete a factor that is 
toxic to rodent and human neurons and oligodendrocytes. This factor 
is not complement, cytokine or immunoglobulin, and appears to 
be packaged into exosomes (Benjamins et al., 2019); currently its 
nature is unknown.

Taken together, the above observations suggest that B cells 
might play a key upstream role in MS pathogenesis, and quite 
unexpectedly, could be  stimulated to upregulate machinery 
unrelated to their traditional immune functions (Lisak et al., 2012, 
2017). This is further supported by observations that the frequent 
oligoclonal immunoglobulins produced behind the blood brain 
barrier in MS may be non-specific, targeting general cellular debris 
(Brändle et al., 2016; Hohlfeld et al., 2016; Winger and Zamvil, 
2016). Indeed, atacicept, designed to suppress antibody production, 
was ineffective in a RRMS clinical trial (Kappos et  al., 2014). 
Intriguingly however, very recent data on anti-CD20 B cell 
depleting agents might be showing some efficacy in progressive 
MS, although the effect of peripheral B cell depletion on PIRA 
cannot be  interpreted as independent of its effect on silencing 
acute/adaptive inflammatory activity (Kappos et al., 2020). To what 
extent systemic infusion of anti-CD20 monoclonal antibodies may 
deplete B cells or CD20-expressing T cells (Sabatino et al., 2019; 
von Essen et  al., 2019; Ochs et  al., 2022) within the CNS 
parenchyma remains to be established. One could speculate that a 
key treatment strategy for progressive MS could involve targeting 
CNS-resident B cells, not aiming to suppress their traditional 
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immunological (mis)behavior, but instead to quell a yet-to-be-
discovered unconventional action, possibly related to secretion of 
an MS-specific myelin toxin into the CSF. It is for these reasons 
that we positioned B cells at the interface between the CNS and the 
periphery in Figure 2, as these cells, or more likely, specifically 
modified subpopulations thereof, could act as a key bridge between 
acute/adaptive auto-immune attacks and a progressive 
cytodegenerative process within the CNS.

If indeed, as emerging evidence is suggesting, modified B cells 
occupy a cardinal upstream position in the complex disease cascade, 
what might influence them to assume such pathological behavior? As 
with most biological systems, genetics and environment combine to 
produce a final phenotype, and MS is no exception. Concordance 
among monozygotic twins is ≈25% (in fact lower than in migraine, 
schizophrenia and even infectious diseases such as poliomyelitis and 
tuberculosis, see below; Ramagopalan et al., 2008), which also implies 
that identical twins are discordant for MS in 75% of cases. This means 
that genetics certainly plays a role in disease causation, but it is not 
sufficient, nor is it even the major influence. To date, large studies by 
the International Multiple Sclerosis Genetics Consortium have 
identified over 200 independent genome-wide variants associated 
with MS susceptibility, which mostly involve immune system 
pathways (International MSGC, 2019; Goris et al., 2022). Given that 
MS exhibits prominent autoimmune inflammation, this should come 
as no surprise. Of all the genetic variations identified to date, MS 
stands alone as a degenerative CNS disorder with no mutation that 
“causes” MS; this is in stark contrast to Alzheimer’s, Parkinson’s, ALS, 
tauopathies and prionopathies, all of which have well-defined 
mutations that cause familial forms of these diseases. We  would 
therefore argue that genetic associations have shed light on the 
susceptibility of developing MS, but have not illuminated the 
fundamental cause of the disease. As an example, APOE ε4 
homozygosity confers a > 90% lifetime risk of developing Alzheimer’s 
(Liu et al., 2013)—MS has no genetic variation with such a potent 
effect on disease risk—yet no one argues that APOE ε4 causes 
Alzheimer’s, only that it strongly modulates the complex processes 
leading to dementia. One could take this argument further and draw 
parallels with diseases unequivocally known to be  caused by an 
exogenous agent, such as tuberculosis. Host responses to exogenous 
pathogens are highly variable (other prominent examples include 
malaria, hepatitis C and indeed SARS-Cov-2 being the most poignant 
recent example). In the case of TB, there is a very strong genetic basis 
of susceptibility to this bacterium, with resistance developing among 
the indigenous north American population after European 
colonization, owing to the high initial mortality and therefore rapid 
selection against susceptibility genes (Abel et al., 2018). Interestingly, 
just like with MS, the concordance of TB is higher in monozygotic 
than in dizygotic twins (Kallman and Reisner, 1943). Could MS 
be “caused” by an exogenous agent, with the widely variable clinical 
phenotypes determined by host responses and susceptibility, in turn 
programmed by genetics and lifestyle factors? Adding to the 
complexity, an exogenous agent may be  causative (like the TB 
bacillus) or simply additive, exacerbating an inflammatory response 
to some other unrelated underlying insult (Ma et al., 2023). Finally, 
not all genetic roads lead to the immune system, and the heterogeneity 
of MS outcome also points toward intrinsic CNS molecular targets 
(International Multiple Sclerosis Genetics Consortium, 2021; 
Jokubaitis et al., 2023).

MS and the Epstein–Barr virus

A number of infectious agents (mainly viruses) have been 
proposed as etiological factors of MS. This notion was bolstered by 
epidemiological studies of MS “outbreaks,” with perhaps the best 
studied being the example of the Faroe Islands (Kurtzke and 
Hyllested, 1979, 1986). The local population of these isolated islands 
is of northern European ancestry and therefore expected to have a 
relatively high prevalence of MS if genetics played a dominant role. 
Yet there were no reported cases until the arrival of British troops 
during the second world war, shortly after which time an “epidemic” 
of MS broke out, leading the prominent epidemiologist John Kurtzke 
to conclude that MS might be  a transmissible infectious disease 
(Kurtzke, 1993). This controversial view was not universally accepted, 
and it is likely that the peculiar geographical and global circumstances 
of the day conspired to generate a unique population-level 
experiment. On the other hand, this does not mean that Kurtzke was 
wrong, only that such an experiment is impossible to replicate. As a 
result, the search for an infectious viral etiology continued over the 
years, but a firm causative association has been discounted for most, 
as no consistent presence of virus, DNA or transcripts has been 
established in the MS brain that is distinct enough from non-MS 
controls to provide evidence beyond reasonable doubt (for review see 
Gilden, 2005; Owens et al., 2011).

The Epstein–Barr virus is one notable exception (Ruprecht, 2020; 
Bar-Or et al., 2022; Aloisi et al., 2023). EBV infection is generally 
benign, causing a flu-like illness or mononucleosis usually in 
childhood or adolescence. Occasionally, it is associated with more 
serious illnesses such as lymphoma and nasopharyngeal carcinoma, 
owing to its oncogenic properties and strong tropism for B cells and 
epithelial cells, respectively (Sathiyamoorthy et al., 2016). The virus 
is ubiquitous, with 95% of the global population exposed to/infected 
by EBV (Kuri et  al., 2020). Interestingly however, studies have 
repeatedly shown (Bar-Or et al., 2020, 2022; Houen et al., 2020), 
including a recently published large comprehensive survey of US 
military personnel (Bjornevik et al., 2022), that EBV exposure greatly 
increases the risk of MS, to the point that it might be a sine qua non 
for later MS development. However, ascribing causation to this virus 
is complicated by the fact that 95% of all humans are seropositive, yet 
comparatively few develop MS. Therefore, it appears that EBV 
exposure is necessary but not sufficient. Whether EBV is the cause, 
or is instead the strongest risk factor, can be  debated, but the 
epidemiology convincingly points to this particular virus as playing 
a key upstream role in the complex pathophysiological cascade. To 
shed light on whether EBV infection might be a causative agent after 
invading the CNS following systemic infection, studies were done 
looking for evidence of virus in the MS brain. The results are often 
contradictory, with some investigators reporting abundant EBV 
infection (Serafini et al., 2007), others reporting presence of EBV in 
both MS and control brain (Tzartos et al., 2012; Moreno et al., 2018), 
while others still, reporting negative results (Willis et  al., 2009; 
Peferoen et al., 2010). Using PCR, a very recent study found that EBV 
is equally detectable in the CSF of MS patients and controls 
(Lehikoinen et al., 2024). These discrepancies may be partially due to 
technical factors, but so far, evidence for excess EBV in the MS brain 
is not convincing.

Much has been made of molecular mimicry—that is, the 
molecular similarity between a viral component for instance and an 
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endogenous CNS protein leading to mistargeted autoimmunity—in 
the pathogenesis of MS (Lang et al., 2002; Geginat et al., 2017; Lanz 
et al., 2022). While this concept is undoubtedly real, what influence 
it actually exerts on disease is unclear. As we pointed out above, to 
date no pathogenic antibodies, ones that primarily drive the disease 
process, have been convincingly detected in MS. We would like to 
propose instead that molecular mimicry may pose a different type of 
threat to the CNS: that of prion-like templating. Put another way, if 
the tertiary structures of two molecules (or supramolecular 
aggregates) resemble each other closely enough to fool an antibody 
into cross-reacting, then by the same token such a similarity could 
prompt an endogenous brain protein into being cross-seeded and 
templated by an exogenous prion-like element. Templating and 
conformational change is most efficient between like proteins of the 
same species, but such a protein and species barrier is certainly not 
absolute, and cross-seeding between different types of proteins is now 
well established (Chaudhuri et al., 2019; Ren et al., 2019; Daskalov 
et al., 2021; Ivanova et al., 2021). Can this concept be extended to 
proteins from different species? Prion protein conversion in variant 
CJD after ingestion of tainted beef is the most notable example 
(Baldwin and Correll, 2019). More interesting is the less dramatic but 
possibly more relevant finding of cross-seeding and induction of Aβ 
amyloids by herpes simplex viral glycoproteins, possibly resulting 
from an innate immune response against viral infection by Aβ’s 
broad-spectrum antimicrobial properties (Eimer et al., 2018; Itzhaki, 
2018; Itzhaki et al., 2020; Wainberg et al., 2021). Varicella-zoster virus 
(also a herpes virus) has also been shown to induce aggregation of Aβ 
(Bubak et al., 2020). Indeed, sequence analysis has shown that many 
viral (mainly glyco-) proteins are amyloidogenic, and may aggregate 
like Aβ (Tetz and Tetz, 2018), while facilitating intercellular spread of 
misfolded protein pathology (Liu et al., 2021). Perhaps it is not a 
coincidence that EBV, the main virus implicated in MS, is also a 
herpes virus, whose genes code for more than 12 distinct 
glycoproteins, five of which are essential for infecting B cells (Hutt-
Fletcher, 2015). Taken together, is it therefore possible that, like 
herpes simplex in AD, EBV stimulates production of an 
amyloidogenic glycoprotein that aggregates and in turn cross-seeds 
an endogenous brain protein, setting in motion a progressive MS 
proteopathy? Moreover, could certain strains of EBV induce a unique 
latency program in B cells (Kang and Kieff, 2015; Kempkes and 
Robertson, 2015) that is MS-specific, reprogramming these to 
chronically release toxic amyloidogenic material? Notably, brain-
resident astrocytes and microglia might also be susceptible to EBV 
infection, which would greatly broaden the potential source of 
deleterious viral products and downstream effects, including 
reactivation of retroviral elements such as HERV-W (Hassani et al., 
2018). The above notion could reconcile the paradox of EBV exposure 
being a strict requirement for subsequent development of MS, and on 
the other hand the recent failure of an EBV-specific T-cell therapy 
(Giovannoni et al., 2024): if early EBV infection triggers a molecular 
cascade driving MS pathogenesis that no longer requires replication 
of virus, anti-viral therapies begun once MS is clinically evident may 
be doomed to failure.

The above hypothetical scenario could explain many paradoxes, 
the most puzzling being that on the one hand, prior EBV infection is 
required for the development of MS, yet on the other, presence of virus 
in the brain (assayed by conventional methods probing for viral 
nucleic acids) is not convincingly detected (Lassmann et al., 2011). 

Based on the “protein-only” model of prion replication (Diaz-
Espinoza and Soto, 2010), no genetic material is required for 
propagation, and therefore would not be detectable. Adding to the 
complexity, if the viral glycoprotein cross-seeds an endogenous brain 
protein, years later even the viral protein need not be present, as the 
run-away proteopathy would now involve only endogenous brain 
protein (s). We conjecture that once established, such a proteopathy 
would no longer respond to B cell depletors (assuming these cells were 
the original source of the amyloidogenic seeds) after the cross-seeding 
event has taken hold. Such a model would also explain the late 
progressive phase of MS, that resembles traditional neurodegenerative 
diseases in many ways, and that is largely resistant to anti-
inflammatory therapies. Moreover, such endogenous brain proteins, 
cross-seeded to induce aggregation into toxic oligomers, could 
become the pernicious species responsible for growth of slowly 
expanding lesions in progressive MS, or form tiny islands of deposited 
seed to which microglia react to form nodules in pre-lesions. 
Intriguingly, such prion-like toxic aggregates could represent the 
suspected demyelinating toxin circulating in the CSF described above. 
If true, such a scenario would pose a formidable challenge to the 
research community, because distinguishing a physiological form of 
an otherwise normal endogenous brain protein from a pathologically 
misfolded/aggregated conformer is not trivial. Such challenges have 
been worked on by investigators from the Alzheimer’s, Parkinson’s and 
prionopathy fields for decades, and we suggest that emerging methods 
for interrogating protein misfolding could be  very applicable to 
research into the foundations of MS as well. Finally, EBV might 
occupy a unique and very strategic position in the MS 
pathophysiological cascade owing to its effects on the immune system, 
with this virus also implicated in other autoimmune diseases such as 
rheumatoid arthritis and systemic lupus (James and Robertson, 2012; 
Balandraud and Roudier, 2018). Therefore, if the above speculations 
on this virus’ ability to promote a proteopathy are correct, together 
with its immunomodulatory properties, EBV could deliver a one-two 
punch and lie at the root of both the cytodegenerative and dysimmune 
arms characteristic of MS.

Future directions

Unraveling the mechanisms of disease pathogenesis in 
traditional neurodegenerations has been very difficult. However 
much has been learned along the way, and these insights can inspire 
future research directions in the field of MS. Specific concepts that 
we believe may be particularly noteworthy include: (1) Misfolding 
of innate CNS proteins, which then leads to their aggregation into 
potentially toxic oligomers or amyloids, leading to a toxic gain-of-
function via numerous mechanisms including membrane disruption 
(Kandel et al., 2017; Ito et al., 2023) (this may be particularly relevant 
for the destabilization of myelin), synaptic dysfunction (Tu et al., 
2014) (this includes impairment of signaling at the axo-myelinic 
synapse, crucial for survival of the myelinated axon; Micu et al., 
2016, 2018), oxidative stress (Cheignon et al., 2018), mitochondrial 
impairment (de la Cueva et al., 2022) (well documented in the MS 
brain; Mahad et  al., 2008), excitotoxic mechanisms (Armada-
Moreira et  al., 2020), and the intimate relationship between 
misfolded protein aggregates and innate inflammation that can 
further exacerbate tissue injury (Joshi et al., 2014; Kwon and Koh, 
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2020). (2) One consequence of #1 is a potential alteration of normal 
protein–protein interactions, which are key to normal cellular 
physiology. Detailed study of the cellular interactome in MS can 
shed light on disease mechanisms and point to new therapeutic 
directions. Protein–protein interactions are potentially druggable, 
with a number of modulators already in clinical trials, mainly in the 
field of oncology (Lu et al., 2020). (3) A key property of pathological 
protein aggregates is their ability to spread in a prion-like manner. 
Modeling experiments on work done with scrapie, Alzheimer’s, 
Parkinson’s disease and others, exploring the propensity of 
transmitting pathology from human material to cells and animals 
engineered to be susceptible to such spread, would provide strong 
evidence for the proteopathic theory of MS. We have preliminary 
observations in support (Tsutsui et  al., 2019), and this could 
be  expanded with a more detailed dissection of the precise 
transmissible species, target elements (for instance, is the myelinating 
unit most vulnerable?), and mechanisms of transmission and spread. 
(4) Finally, exploring mechanisms even more upstream, by asking 
what triggered the initial protein misfolding process, could get at the 
core of MS pathogenesis. The proposition that herpes simplex virus 
may be a proximal event in Alzheimer’s pathogenesis (Itzhaki, 2021), 
juxtaposed against the overwhelming evidence supporting the role 
of EBV in MS, inspires another compelling research direction. With 
a better molecular understanding of such specific mechanisms, 
adjunctive therapies can be developed for a combination treatment 
strategy, as is the standard approach for many other diseases.

Conclusion

Multiple sclerosis is a complex disorder that has puzzled the 
medical and scientific communities for almost two centuries. In the 
last decade, significant new data have accumulated lending support 
for an underlying, early cytodegenerative process of unknown 
nature that exhibits remarkable similarities to other 
neurodegenerative disorders. What has been abundantly clear is 
that inflammation is a key component of MS, also contributing to 
CNS atrophy and disability, particularly in the early relapsing 
phase. What has become equally clear however, is that autoimmune 
inflammation is only one part of the equation, with an underlying 
cytodegeneration beginning early and continuing relentlessly 
throughout the course of the disease. This adds to the difficulty in 
reconciling MS under a single pathophysiological umbrella, but also 
has implications for therapeutic design: this cytodegenerative 
component is not expected to respond to current anti-inflammatory 
disease-modifying drugs targeting acute/adaptive peripheral 
autoimmunity. We argue that viewing MS through the lens of an 
early onset, slowly progressive cytodegeneration of white and gray 
matter elements, convolved with a variable overlay of adaptive 
autoimmunity, could readily explain the entire disease spectrum, 
and aligns well with emerging new evidence. The question of what 
might be the proximal trigger is as difficult to uncover as it has been 
for other neurodegenerative diseases, but a viral etiology, in 
particular EBV, deserves further scrutiny. Expanding our view 
beyond the traditional autoimmune etiology is important if we are 
to gain a deeper understanding of the fundamental mechanisms of 
this disease. Whether the theory of an underlying proteopathy is 

correct or not, we would argue that evidence accumulated over the 
last decade makes this hypothesis a plausible consideration. 
Importantly, the MS research community could glean valuable 
concepts and borrow helpful techniques from the neurodegeneration 
field. New insights gained from such novel approaches could in 
turn herald an entirely new direction for development of next-
generation adjunctive therapies, particularly for the intrinsically 
progressive nature present throughout all phases and clinical 
forms of MS.
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Glossary

Adrenoleukodystrophy/adrenomyeloneuropathy (ALD/AMN) - An 
X-linked disorder caused by a mutation of the ABCD1 gene coding for 
a peroxisomal fatty acid transporter. The same gene defect can cause a 
severe and rapidly fatal childhood leukodystrophy or a more indolent 
adult-onset myelopathy and neuropathy.

Amyotrophic lateral sclerosis (ALS) - A progressive fatal 
neurodegenerative disorder of unknown cause affecting upper and 
lower motor neurons in the brain and spinal cord.

Cuprizone autoimmune encephalitis (CAE) - A variation of EAE 
where subdemyelinating doses of cuprizone are administered to mice 
(without exogenous myelin antigens), followed by an immune 
stimulation. CAE provides proof-of-principle that an endogenous 
disruption of myelin can trigger MS-like brain lesions in an immune-
predisposed host.

Clinically isolated syndrome (CIS) - A first attack of neurological 
disability with accompanying white matter lesion(s) on imaging, that 
may or may not develop into MS characterized by recurrent lesions 
distributed in space and time.

Creutzfeld-Jakob disease (CJD) - A rare and invariably fatal 
neurodegenerative disease caused by a misfolding of the cellular prion 
protein into a propagatable and transmissible species. Variant CJD is 
acquired by ingestion of meat from cattle afflicted by bovine 
spongiform encephalopathy, with the BSE prion crossing the species 
barrier and misfolding native human brain PrPc.

Cerebrospinal fluid (CSF) - Cerebrospinal fluid that bathes the brain 
and spinal cord, and is thought to contain circulating factor(s) that 
contribute to MS pathophysiology.

Epstein–Barr virus (EBV) - One of several herpes viruses afflicting 
humans that is globally ubiquitous, and is considered necessary but 
not sufficient to trigger MS.

Experimental autoimmune encephalomyelitis (EAE) - The most 
popular rodent model of MS employing exogenously-administered 

myelin antigens together with immune stimulation that replicates some 
aspects of autoimmune inflammation found in the human disease.

Normal-appearing white matter (NAWM) - Normal-appearing 
white matter in the MS brain appears intact by traditional 
histological and radiological readouts, but is known to harbor 
subtle but significant widespread abnormalities of myelin and 
axons. A similar subtle gray matter pathology has also been 
described in the MS brain.

Progression independent of relapse activity (PIRA) - Progression 
independent of relapse activity indicating accumulation of irreversible 
clinical disability and CNS demyelination in the absence of overt 
inflammatory relapses.

Primary progressive MS (PPMS) - Primary progressive MS 
characterized by monotonic progression of clinical disability and brain 
atrophy without inflammatory relapses.

Cellular prion protein (PrPc) - The normally folded physiological 
form in contrast to disease-associated conformers such as the 
scrapie isoform.

Relapse-associated worsening (RAW) - Clinical progression in MS 
patients attributable to recurrent inflammatory attacks targeting 
various regions of the CNS, and inducing bystander damage to axons, 
myelin and glia.

Radiologically isolated syndrome (RIS) - Incidental appearance 
on MRI scans that resemble typical MS lesions in a patient with no 
history of matching neurological disability. Likely equivalent to CIS 
but affecting a non-eloquent area of the CNS.

Relapsing–remitting MS (RRMS) - The commonest form at onset 
characterized by recurrent bouts of inflammatory demyelination at 
any level of the CNS, including brain, spinal cord and/or 
optic nerves.

Secondary progressive MS (SPMS) - A later phase of RRMS patients 
who often transition to a progressive course when recurrent 
inflammatory attacks subside due to immune senescence.
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