
TYPE Original Research

PUBLISHED 17 October 2024

DOI 10.3389/fncel.2024.1474948

OPEN ACCESS

EDITED BY

Carmen Falcone,

International School for Advanced Studies

(SISSA), Italy

REVIEWED BY

Sonia Luz Albarracin,

Pontifical Javeriana University, Colombia

Alexander A. Mongin,

Albany Medical College, United States

Fabio Cavaliere,

Achucarro Basque Center for Neuroscience,

Spain

*CORRESPONDENCE

Kerstin Lenk

lenk.kerstin@gmail.com

RECEIVED 02 August 2024

ACCEPTED 23 September 2024

PUBLISHED 17 October 2024

CITATION

Freund A, Mayr A, Winkler P, Weber R,

Tervonen A, Refaeli R and Lenk K (2024)

Computational modeling of the relationship

between morphological heterogeneity and

functional responses in mouse hippocampal

astrocytes. Front. Cell. Neurosci. 18:1474948.

doi: 10.3389/fncel.2024.1474948

COPYRIGHT

© 2024 Freund, Mayr, Winkler, Weber,

Tervonen, Refaeli and Lenk. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Computational modeling of the
relationship between
morphological heterogeneity
and functional responses in
mouse hippocampal astrocytes

Anna Freund1, Alexander Mayr1, Peter Winkler1, Rene Weber1,

Aapo Tervonen2, Ron Refaeli3 and Kerstin Lenk1,4*

1Faculty of Computer Science and Biomedical Engineering, Institute of Neural Engineering, Graz

University of Technology, Graz, Austria, 2Biosciences Unit, Faculty of Medicine and Health Technology,

Tampere University, Tampere, Finland, 3Laboratory of Inbal Goshen, Hebrew University of Jerusalem,
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Recent studies indicate that astrocytes show heterogeneity in morphology and

physiological function. They integrate synaptic signals and release calcium in

reaction to active neurons. These calcium signals are not yet fully understood

as they are highly dependent on the cell’s morphology, which can vary

across and within brain regions. We found structural heterogeneity among

mouse hippocampal CA1 astrocytes based on geometric features, clustering

741 cells into six classes. Of those, we selected 84 cells and reconstructed

their morphology based on confocal microscope images and converted

them into multi-compartment models with a high detailedness. We applied

a computational biophysical model simulating the intracellular ion and IP3
signaling and di�usion in those 3D cell geometries. The cells were stimulated

with three di�erent glutamate stimuli. Calciummainly oscillated in the stimulated

and the neighboring compartment but not in the soma. Significant di�erences

were found in the peak width, mean prominence, and mean peak amplitude of

the calcium signal when comparing the signals in the stimulated and neighboring

compartments. Overall, this study highlights the influence of the complex

morphology of astrocytes on intracellular ionic signaling.

KEYWORDS

astrocyte,morphology, computational neuroscience, intracellular signaling, biophysical

modeling, calcium dynamics

1 Introduction

Over time, the conventional view that astrocytes primarily fulfill structural, metabolic,
and regulatory roles has been challenged. Recent research spanning the past three decades
has unveiled a more active role for astrocytes, indicating their involvement in modulating
synaptic transmission and brainmetabolism (Araque et al., 1999; Haydon and Carmignoto,
2006; Nedergaard and Verkhratsky, 2012). Each astrocyte consists of a soma with multiple
outgoing branches that further divide into smaller branchlets, ultimately leading to the
perisynaptic astrocyte processes (PAPs). Notably, the abundance and morphology of
astrocytes exhibit significant variability across species, brain regions, and cortical layers
(Zhou et al., 2019; Khakh and Deneen, 2019; Verkhratsky and Nedergaard, 2018; Holt,
2023; Baldwin et al., 2023). Comparative studies have revealed striking differences, such
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as human neocortical astrocytes being 2.6 times larger in diameter
and possessing up to 10 times more primary branches than
their rodent counterparts (Oberheim et al., 2009). Moreover,
investigations by Lanjakornsiripan et al. (2018) have delineated
distinct variations in cell orientation, territorial volume, and
arborization among different layers within the somatosensory
cortex of mice. Heterogeneity in astrocytes may also have an impact
on brain functions and diseases. Grolla et al. (2013) suggested
that calcium (Ca2+), an important cellular messenger, responses
to Amyloid-β differ in primary cultured mouse astrocytes of the
entorhinal cortex and the hippocampus. Exposure to Amyloid-
β increased expression of the metabotropic glutamate receptor
type 5 (mGluR5) and increased Ca2+ concentration in the
hippocampus but not the entorhinal cortex. It may be the
case that the lack of astrogliosis in the entorhinal cortex is a
contributing factor to the higher vulnerability of this region to
Alzheimer’s disease.

Various studies have been conducted to classify astrocytes.
Viana et al. (2023) statistically analyzed astrocytes from the
mouse hippocampus, a region critical for learning and memory,
and found structural heterogeneity in their morphology across
hippocampal domains. They identified three types of astrocytes in
the Cornu Ammonis area 1 (CA1) and two in the dentate gyrus.
Lanjakornsiripan et al. (2018) performed hierarchical clustering
on non-pial neocortical astrocytes based on morphological
features and found four distinct classes. Batiuk et al. (2020)
found five different astrocyte subtypes according to gene
expression in the mouse cortex and hippocampus. Karpf et al.
(2022) classified layer-specific astrocyte subtypes in the mouse
dentate gyrus based on density measured with GFAP and
SOX2 markers.

Astrocytes primarily communicate through Ca2+ transients,
which can evolve as global events spanning over the entire
astrocytic cell or localized responses within specific branches
(Di Castro et al., 2011; Srinivasan et al., 2015; Semyanov et al.,
2020). The mechanisms underlying intracellular Ca2+ dynamics
can be categorized into at least two distinct pathways. The
first pathway involves the binding of glutamate to metabotropic
glutamate receptors (mGluRs) on the astrocytic plasma membrane,
triggering the production of inositol 1,4,5-trisphosphate (IP3).
Elevated IP3 levels increase the probability of opening the
IP3 receptor (IP3R) channels at the endoplasmic reticulum
(ER) membrane, leading to an influx of Ca2+ from the
ER into the cytosol. This Ca2+ release can initiate a Ca2+-
induced Ca2+ release (CICR) mechanism, further amplifying
the cytosolic Ca2+ signal (Sharma and Vijayaraghavan, 2001).
The SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase)
pump transports Ca2+ back from the cytosol to the ER. The second
pathway involves the activation of glutamate transporters (EAAT1
and EAAT2 in the human brain and GLAST and GLT-1 as the
rodent analogs) (Murphy-Royal et al., 2017; Mahmoud et al., 2019).
The resulting changes in intracellular sodium (Na+) and potassium
(K+) levels influence the activity of the Na+-Ca2+ exchanger
(NCX) and the Na+-K+ ATPase (NKA). NCX can either export or
import Ca2+, depending on the Na+ gradient, while NKA regulates
the Na+ and K+ gradients across the plasma membrane (Kirischuk
et al., 1997; Verkhratsky and Nedergaard, 2018). These described

mechanisms highlight the complex interplay between glutamate
signaling, ion homeostasis, and Ca2+ dynamics in astrocytes,
underscoring their pivotal role in modulating neuronal activity and
synaptic transmission (Araque et al., 2014).

However, heterogeneity in morphology may imply
heterogeneity in function (Augusto-Oliveira et al.,
2020), such as varying Ca2+ dynamics (Oberheim et al.,
2012; Tsunematsu et al., 2021). In turn, Kruyer (2022)
claims that heterogeneous Ca2+ dynamics influence
morphological plasticity.

Computational models can aid in identifying the most relevant
experiments to characterize and predict the function of a biological
system (Lenk et al., 2024). Several papers include the morphology
of astrocytes in their computational studies at various spatial
scales. Verisokin et al. (2021) proposed an astrocyte network
model with realistic, data-driven 2D cell morphologies. The model
includes IP3-mediated Ca2+ signaling at the soma and branches
as well as intra- and intercellular diffusion of IP3 and Ca2+.
Although the model uses 2D cell templates, it can reproduce
characteristic patterns of Ca2+ signaling to represent a single-
plane imaging regime. Gordleeva et al. (2019) investigate with their
neuron-astrocyte network model how Ca2+ dynamics in astrocytes
can synchronize and coordinate neuronal network signaling. The
model contains a neuron-astrocyte network of 100 synaptically-
coupled neurons and two gap-junction-connected astrocytes. Each
astrocyte consists of 53 compartments that are unit-length cylinders
with a radius that reduces further away from the soma. The
Ca2+ signaling is composed by IP3-mediated Ca2+ signaling and
intracellular IP3 and Ca2+ diffusion. This model demonstrates that
astrocytes serve as spatial and temporal integrators, responding
to varying levels of neuronal activity with distinct Ca2+

dynamics that influence synaptic transmissions and facilitate
spatial synchronization.

On the cellular level, a detailed multi-compartment astrocyte
model has been introduced as ASTRO by Savtchenko et al.
(2018). The astrocyte morphologies were reconstructed from
two-photon excitation and correlational 3D electron microscopy
images. The modeled dynamics included K+ fluxes, IP3 action
and Ca2+ diffusion and buffering. On the subcellular level, a
particle-based model of a PAP compartment was implemented
by Denizot et al. (2019). Using their model, the authors were
able to recreate stochastic Ca2+ signals and showed that their
occurrence is heavily dependent on the spatial positioning of
IP3R channels.

However, no computational study is currently used to
systematically investigate the relationship between astrocyte
morphology and function. Our research question, therefore, is
whether differences in the morphology influence ion dynamics
in astrocytes. To answer the question, we will use an extended
version of the Oschmann et al. (2017) model, including
morphology and diffusion. Overall, astrocyte heterogeneity in
both form and function has important implications for our
understanding of brain function and diseases. By elucidating
the specific roles of different astrocyte subtypes, we can gain
insights into the complex networks that underlie brain function
and identify potential targets for therapeutic intervention in
neurological disorders.
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2 Methods

2.1 Preprocessing of the astrocyte
reconstructions

The experimental data by Refaeli et al. (2021) was used to
reconstruct the astrocytemorphologies (example of a reconstructed
astrocyte in Figure 1A). As described in the paper, hippocampal
CA1 tissue of male mice was made transparent by CLARITY, and
astrocytes were labeled with GFAP::tdTomato and imaged with
a laser scanning confocal microscope. Images of cubes with a
size of 520 × 370 × 520 µm to 635 × 635 × 1, 500 µm were
used to reconstruct single astrocytic domains with the filament
tracer tool of the software IMARIS (Bitplane, UK) as described
in Refaeli et al. (2021). We used six data sets from six different
male mice for our analysis. The samples contained 1,765 astrocytes
in total. The smallest recorded diameter of the branches was
0.75 µm. All the work described in the following has been
done with Python and MATLAB (see Supplementary Section 1.1
for details).

Naturally, the sample cubes include cropped astrocytes at the
cube border region. We removed those cut cells with a threshold
region of 2µm from the cube boundaries. Every cell withmore than
20 branching points inside the region was rejected.

Then, 21 features, described in detail below and in
Supplementary Section 1.2, were calculated from the remaining
866 cells. The features can be divided into four types: (1)
being directly collected from the data, (2) from the minimum
volume encapsulating ellipsoid (MVEE) calculation, (3) from
the Sholl-like analysis, and (4) from the primary branches of
the cell.

First, the number of branching points (when a branch divides
into subbranches) and the number of terminal points of cell
branches were directly taken from the datasets as features. Also, the
cell radius was calculated using an iterative fitting algorithm based
on the terminal points of the branches and a percentile threshold
of 70%.

Second, for the calculation of the MVEE, the algorithm
by Bowman and Heath (2023) was used, and the following
eight features were derived: Volume of the ellipsoid that
approximates the actual volume the astrocyte covers. Roundness
and sphericity are measures for the cell morphology (Matías
and Vallespí, 2014). Aspect ratio is the ratio between the
largest and smallest ellipsoid axis comparable to the aspect
ratio described by Baldwin et al. (2023) but considers a third
dimension. The angles between the main axis are turned
into features, denoted as alpha, beta, and gamma. Lastly, the
feature called main axis is the length of the main axis of
the ellipsoid.

Third, in the Sholl-like analysis (Sholl, 1953), we segmented
the 3D cell area into shells with a distance of five µm between
each shell. Then, we calculated the number of branching points
as a function of the radial distance from the soma center. The
resulting curves are highly comparable to the original Sholl analysis
(Sholl, 1953; Baldwin et al., 2023). From the Sholl-like analysis,
we obtained the following four features (Baldwin et al., 2023):
the process maximum denotes the maximum number of branching
points in a shell; the critical value is the distance between the soma

and the shell with the process maximum; the primary branches

feature is the number of branches that start from the soma and,
therefore, have a depth of one in the IMARIS dataset; themaximum

radius is the maximum width of the shells to cover all terminal
points of a cell.

Fourth, another important morphological feature is the
characterization of the primary branches of a cell stemming
directly from the soma. We calculated the mean, maximum,
and standard deviation of the diameter of the primary branches

at the branching point. The primary angles are the average of
angles between the different primary branches. The mean, standard
deviation, and maximum of the branch length are calculated using
the branching points of each branch as start and endpoints.
The maximum and mean number of branching points from the

primary branches are calculated for each cell. The vector of 21
features is normalized using the MinMaxScaler function (from
Python’s scikit-learn).

2.2 Classification of the astrocyte
morphologies

All cells with at least 100 branching points were selected
for classification, reducing the dataset from 866 to 741.
Two approaches for outlier detection are applied: Extreme
Gradient Boosting (XGBoost) and anomaly detection with
an Auto-Encoder (AE). Only features directly derived from
the dataset without further calculation, i.e., branching
points, terminal endpoints, maximum and mean diameter,
were used.

XGBoost is an algorithm that combines the output of
different outlier detection methods (Zhao and Hryniewicki,
2019). The framework performs different outlier detection
methods, undergoes a selection step to choose the useful
ones, and finally stacks the labels together and trains the
classifier. We tried various available methods and selected
Isolation Forest, Local Outlier Factor, and Elliptic Envelope. The
implementation was done with functions provided by Python’s
scikit-learn bibliography.

The Auto-Encoder (AE) is a neural network with a bottleneck
that forces compressed information (Chen et al., 2018; Hinton
and Salakhutdinov, 2006) and is trained to reconstruct the input.
Due to the bottleneck, only the prominent features are learned,
and the network is expected to perform badly in reconstructing
outliers, data points that deviate greatly from the majority. After
the network finishes training, it is used to predict the training data
again, which means inputting it and expecting it as the output. Loss
was calculated to evaluate the performance of the network on each
data point. Data points with a high loss were labeled as anomalies.
The threshold of labeling a data point as an anomaly is set to the
mean plus the standard deviation of the total loss. Outliers detected
by both methods were removed, and 710 samples remained for
further classification.

Two mathematical methods were used to find the optimal
number of classes. The knee locator describes the maximum
curvature of the explained variance as a function of the number
of classes and is implemented in Python’s kneed module. The
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FIGURE 1

Compartmentalized astrocyte morphology model. The cell morphology, captured by a microscope image, is reconstructed by cylindrical

consecutive compartments and a sphere for the soma. We stimulate the outermost compartment of a primary branch with glutamate and investigate

the Ca2+ dynamics in one cell branch (primary branch with all subbranches) for all classes. (A) Example of a complete reconstructed astrocyte from

class #3 and (B) the selected primary branch with side branches. (C) Selected primary branch [same as in (B)] with an indication of the stimulated

compartment, connected compartment, and soma. The spatial scales in (A–C) is µm. (D) Glutamate stimulus with concentrations of 0.1, 1, and 6 µM

for 62.5 s each over a total simulation time of 500 s.

TABLE 1 Di�usion coe�cients for cytosol, endoplasmic reticulum (ER), and extracellular space (ECS) used in the multi-compartment model.

Parameter Value Unit Description of di�usion
coe�cient

References

DIP3 3e-10 m2

s
IP3 in the cytosol Kang and Othmer, 2009

DCa 3e-11 m2

s
Ca2+ in the cytosol Kang and Othmer, 2009

DNa 1.33e-9 m2

s
Na+ in the cytosol Qian and Sejnowski, 1989

DK 1.96e-9 m2

s
K+ in the cytosol Qian and Sejnowski, 1989

DCaER 3e-11 m2

s
Ca2+ in the ER Kang and Othmer, 2009

DCaES 1.3e-11 m2

s
Ca2+ in the ECS

DNaES 1.33e-9 m2

s
Na+ in the ECS Qian and Sejnowski, 1989

DKES 1.96e-9 m2

s
K+ in the ECS Qian and Sejnowski, 1989

dendrogram shows the Euclidian distance between joined clusters.
The obtained number of classes from those two mathematical
methods was used to classify with the following clustering
algorithms implemented in Python’s sklearn: k-means, Gaussian
Mixture, and Agglomerative Clustering. Their classification results
were compared with confusion matrices, showing how many

different data points were put in the same class by those methods.
We used three different methods to demonstrate the independence
from the classification method. For the simulations, we used the
class labels derived from k-means. K-means seemed to have the
best overlap with the other two methods and was used for labeling
the cells.
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FIGURE 2

Feature extraction to describe the astrocyte morphology for the classification. (A) Count histogram of six representative out of 21 features for all 866

cells. (B) Sholl-like analysis of all cells indicating the minimum, mean, and maximum of the number of branch points per shell.

FIGURE 3

Two methods were used to determine the optimal number of classes to distinguish astrocyte morphologies: the knee locator and the Euclidean

distance between joined clusters. (A) Explained variance that is used to find the knee (maximum curvature) indicated by the red arrow. The knee

locator is based on k-means clustering, whereby for each number of classes, the score (explained variance) is calculated. (B) The dendrogram shows

how much the Euclidian distance (on the y-axis) increases by joining two classes. This is based on the hierarchical clustering. The red arrow indicates

a clear decline in the distance between classes 5 and 6.

2.3 Statistical analysis of the
morphological features

To investigate whether there are significant differences in the
individual features between classes, we applied the non-parametric

Kruskal-Wallis test for statistical differences in the medians
between classes (in Python’s sciPy package). For the post-hoc tests
to determine which classes differ, we used Dunn’s test from the
scikit-posthocs library, applying the Dunn—Šidák correction for
p-value adjustment.
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FIGURE 4

Three di�erent algorithms clustered the morphological features of mouse CA1 astrocytes into six classes. (A) Confusion matrices comparing the

labeled classes of the Gaussian Mixture model, k-means, and Agglomerative Clustering. There is a row x and a column y for each label. The number

in the matrix gives the number of labels identified as class x by algorithm A as class y by algorithm B, with x,y = 0, 1, 2, 3, 4, 5. (B) Labeled data points

by k-means as a t-SNE plot.

2.4 Cell selection for simulations

For the simulations of Ca2+ dynamics in astrocytes (see next
section), cell morphologies from each class and dataset were
selected. For the cell morphology, we created a compartmentalized
model made out of cylinders. Therefore, the x, y, and z coordinates
of two consecutive points in one branch of the IMARIS dataset
with their corresponding mean diameter were used to construct
a cylinder. A sphere with the same diameter as the branch
with the largest diameter was used to approximate the cell’s
soma. Due to the high computational cost, we selected not
the whole astrocyte but a primary branch with 15 and 25
compartments to make the simulation results comparable between
cells (Figures 1B, C). A primary branch is defined as consecutive
compartments starting from the soma. At branching points, the
primary branch continued along the branch with the largest

diameter. We included all subbranches of that chosen primary
branch (Figure 1C). The outermost compartment was stimulated
(see next section).

2.5 Simulations of the astrocytic calcium
dynamics

For simulating the intra- and extracellular ion and messenger
signals, we used the computational model introduced by
Oschmann et al. (2017), which includes two pathways for
intracellular Ca2+ signals in astrocytes: (1) the Ca2+ release from
the internal Ca2+ stores in the ER and (2) Ca2+ entering through
the plasma membrane. An extracellular glutamate stimulus
activates both pathways. The activity of these two pathways is
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FIGURE 5

Three examples of a whole astrocyte for each class.

highly dependent on the distance from the soma, as the surface-
to-volume ratio increases as the branches become thinner, which
occurs with higher distance. Thus, the volume ratio of internal

Ca2+ stores to the intracellular space decreases. Ca2+ buffering
is lumped together with the intracellular Ca2+ concentration
(Oschmann et al., 2017; De Pittà et al., 2009).
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TABLE 2 Occurrence of each data label (class number) in each data set.

Occurrence C10 H00 H01 H02 H04 C11 Sum

Class 0 60 4 11 8 38 40 161

Class 1 0 44 52 22 28 8 154

Class 2 35 11 15 7 23 21 112

Class 3 16 19 1 3 11 48 98

Class 4 0 37 27 7 16 3 90

Class 5 47 0 6 1 24 17 95

Outlier 5 11 8 2 3 2 31

Sum 163 126 120 50 143 139 741

We applied the following two modifications to the model.
Firstly, the current fluxes between cytosol and ER were removed,
and we only consider charge fluxes between intra- and extracellular
space when computing membrane voltage V over time (Farr and
David, 2011; Witthoft and Em Karniadakis, 2012):

dV

dt
= −

1

Cm
(INCX − 2IGluT + INKA + INaleak + IKleak

). (1)

The membrane capacitance is denoted as Cm and the currents
of the NCX, EAAT1/2, and NKA as INCX , IGluT , and INKA,
respectively. The leak currents of Na+ and K+ are defined as
INaleak IKleak

, respectively. Secondly, the valence of Ca2+, which is
two, was taken into account for calculating the intracellular Ca2+

concentration, [Ca2+]i (Luo and Rudy, 1994):

d[Ca2+]i
dt

=
1

2
·

A

F · Vol
INCX +

A

F · Vol

√

ratioER

×(IIP3R − ISerca + ICERleak). (2)

The area of the outer cell membrane is denoted by A, the
Faraday constant by F, the volume by Vol, and the area of the
internal Ca2+ store by A ·

√
ratioER. The currents of the IP3R,

SERCA pump and Ca2+ leak from the ER are defined as IIP3R, ISerca,
and ICERleak, respectively.

The model by Oschmann et al. (2017) was designed as a single-
compartment model without diffusion along the branch. We used
the multi-compartment approach suggested by Gordleeva et al.
(2019). The connections between compartments can be set with
a connection matrix with values of either 0 for no connection or
1 for a set connection. The diffusion of the ions and IP3 between
compartments in the three areas ER, cytosol, and extracellular space
was integrated based on Kang and Othmer (2009) (see Table 1 for
the diffusion coefficients).

A neuronal glutamate stimulus with concentrations of 0.1, 1,
and 6 µM (as described in De Pittà et al., 2009 and Oschmann
et al., 2017) was applied to the tip of the selected primary branch
(Figures 1C, D). The stimulus was applied for 62.5 s, respectively,
and the total simulation time was 500 s. We used the same
rectangular stimulus described in De Pittà et al. (2009) to allow
comparability. We used an implicit Runge-Kutta method (Hairer
and Wanner, 1996) as a numerical integration method for the
non-linear differential equations with a time step dt = 1ms.

2.6 Ion dynamic analysis

To evaluate the physiological function, we extracted features
measuring the Ca2+ signal transmission from the stimulated
compartment to the connected compartment and to the soma,
respectively. We did this for each of the six classes and the three
stimulation intensities (0.1, 1, and 6 µM glutamate) separately.
Firstly, we calculated the changes in the peak width when the
Ca2+ signal diffused from the stimulated compartment to the
connected compartment using the findpeak function in MATLAB.
Also, the change of peak prominence, also obtained by the findpeak
function, was evaluated. Furthermore, we investigated the change
in mean peak amplitude between the three selected compartments.
Secondly, we calculated the differences between the maximum
signal amplitude between the three compartments. We applied
again the non-parametric Kruskal-Wallis with the Dunn-Šidák
correction to test for statistical differences.

Additionally, we analyzed the influence of the morphology
categorized into the six different classes using a three-way ANOVA
(analysis of variance) with the three factors – stimulus intensity,
class, and compartment. Therefore, we calculated the number
of peaks using the findpeak function with the constrain of a
minimum peak prominence of 30% of the maximum Ca2+

concentration in the respective compartment and a maximum peak
width of 15 s. For the simulated intracellular Na+ concentrations,
we calculated the maxima for each stimulus intensity, class,
and compartment. For the intracellular K+ concentrations, we
calculated the respective minima.

3 Results

3.1 Feature extraction and classification
reveals di�erences in CA1 astrocyte
morphology

We calculated 21 features to describe themorphology of the 866
cells. Their histograms are displayed in Supplementary Figure S2,
of which six are selected for (Figure 2A). Most cells have high
counts for small volume, number of terminal points, number of
branching points, and process maximum. Thus, we applied the
outlier detection (see Section 2.2) before the classification. Besides
that, most of the cells had a volume around 0.4 µm3, around
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FIGURE 6

The 21 features, except primary angles, display significant di�erences between the six classes. P-values smaller than 0.05 are indicated with a star.

3,400 terminal points, around 250 branching points, and a process

maximum around 80. The critical value had the highest count of
cells at 36 µm and the maximum radius at 64 µm. The Sholl-like

analysis provided a mean process maximum of 500, a mean number

of primary branches of 5 µm, a mean critical value of 30 µm, and a
meanmaximum radius of around 70 µm (Figure 2B).
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FIGURE 7

Intracellular Ca2+ behavior in the three selected compartments for each class (0–5), respectively. (A) Ca2+ concentrations over time for the di�erent

classes and compartments. For clear visibility of the Ca2+ signals, the y-axis may change for each condition. The stimulation periods have been

indicated above the signals in the stimulated compartment. (B) Comparing the extracted features—change in the mean peak width, change in the

peak prominence, and change in mean peak amplitude—from the Ca2+ dynamics for the six classes. All three features are based on a signal change

from the stimulated to the connected compartment.

To define the number of classes for the classification, the knee
locator divided the dataset into six different classes (Figure 3A).
This was coherent with the dendrogram, which showed a clear
increase of the Euclidian distance between joined clusters when
going from 6 to 5 classes (Figure 3B). The high numbers on
the diagonals of the confusion matrices when comparing the
classification results by k-means, Gaussian Mixture model, and
Agglomerative Clustering indicated that the majority of the cells
were classified with the same label (Figure 4A). The labels derived
from k-means were used for the final classification. Figure 4B
displays the labeled data points by k-means plotted as t-distributed
Stochastic Neighbor Embedding (t-SNE). Figure 5 shows three
example cells from each of the six classes. We confirm that the
obtained classes do not cluster according to the initial datasets
(Table 2).

We tested all features for differences between classes using
the Kruskal-Wallis test with a p-value < 0.05 (Figure 6); the
exact p-values are stated in Supplementary Table S3. The violin
plots indicate that all features besides feature Primary Angles have
significant differences between most of the classes.

3.2 Calcium signal partially depends on
morphology

Figure 7A displays the intracellular Ca2+ concentration over
time for the six classes and the three different compartments. As

expected, we observed an increase of the Ca2+ concentration with
stimulus intensity and a decrease from the stimulated compartment
toward the some. Oscillations occurred mainly in the stimulated
and the connected compartment. As for most cells, there is no
proper oscillation visible in the soma, we compared the change in
peak width over groups only from the stimulated compartment to
the connected compartment (Figure 7B). A significant difference
was found between classes 0 and 2. The comparison of the change
in mean peak prominence from the stimulated compartment to the
connected compartment indicated significant results for classes 0
and 1 (Figure 7B). Significant differences between classes 0 and
1 were also detected for the change of the mean peak amplitude

from the stimulated compartment and the connected compartment
(Figure 7B). The three-way ANOVA with the three factors—
stimulus intensity, class, and compartment—revealed pairwise
differences between classes 0 and 1, 0 and 2, 0 and 4, 0 and 5, and
1 and 3 (p < 0.05) for the connected compartment and stimulus
intensity of 0.1 µM.

3.3 Potassium and sodium dynamics
showed no di�erences between classes

With increasing glutamate stimulus, the intracellular K+

concentration was reduced (Figure 8A). The lowest concentrations
were measured in the stimulated compartment. The Na+

concentration decreased in the soma with increasing stimulus,
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FIGURE 8

Intracellular K+ behavior in the three selected compartments for each class (0–5), respectively. (A) K+ concentrations over time for the di�erent

classes and compartments. For clear visibility of the K+ signals, the y-axis may change for each condition. The stimulation periods have been

indicated above the signals in the stimulated compartment. (B) Violin plots showing the minima of the K+ amplitudes at 6 µM stimulus for the

di�erent classes and the three compartments—stimulated compartment, connected compartment, and soma.

whereas it increased in the other two compartments (Figure 9A).
The Kruskal-Wallis test showed no significant differences between
the classes (Figures 8B, 9B).

4 Discussion

Our research explores the relationship between astrocyte
morphology and function, specifically focusing on how structural
differences influence ion dynamics. Astrocytes exhibit significant
morphological heterogeneity across species and brain regions
(Zhou et al., 2019; Baldwin et al., 2023; Torres-Ceja and Olsen,
2022).

GFAP is expressed in astrocytes, and antibodies against
GFAP are a standard marker for immunolabeling the astrocyte’s
intermediate filament. In Refaeli et al. (2021), all astrocytes were
tagged and marked using the GFAP promoter through viral
infection. Consequently, it is likely that these astrocytes were in a
certain state of activation due to both GFAP gene expression and
the viral injection into the brain. However, this cannot be proven,
as in the hippocampus (unlike the cortex), most astrocytes express
GFAP even without being activated (Chai et al., 2017).

Cells can be categorized based on molecular (Karpf et al., 2022)
and morphological characteristics (Lanjakornsiripan et al., 2018;
Viana et al., 2023). For example, Viana et al. (2023) found structural
heterogeneity in the hippocampus subregions CA1 and dentate
gyrus by testing for statistical differences in morphological features
like total process length, number of processes, Sholl analysis, and

last intersection radius. Most of the calculated geometrical features
that we used for the classification have been used in other studies
as well (Baldwin et al., 2023; Herde et al., 2020; Savtchenko et al.,
2018; Viana et al., 2023). Our classification revealed six classes

of astrocytes within the CA1 region. Determining the number of
classes is quite challenging since there is no ground truth. Thus,

to provide a solid ground, we trained three different clustering
algorithms, aiming to obtain similar classification results. K-means,

Gaussian mixture model, and Hierarchical clustering yielded an
overall coherent classification.

The cylindrical compartments, reconstructed from the
microscope images, allow the use of their surface and volume

data for the differential equations of our model. So far, only

the ASTRO model by Savtchenko et al. (2018) comes with such
a high detailedness of the 3D geometry as we have it in our
computational model.

Fine astrocytic processes are responsible for the majority of
astrocytic Ca2+ signals (Bindocci et al., 2017). Morphological

variations may have functional implications (Molotkov et al.,
2013; Grolla et al., 2013). Astrocytic Ca2+ signaling, a primary

mode of communication, involves complex mechanisms, including
glutamate-triggered intracellular Ca2+ (Semyanov et al., 2020).
While computational models have been developed to study

astrocyte function at various scales (Lenk et al., 2024; Manninen
et al., 2018), a systematic investigation of the relationship

between morphology and ion dynamics is lacking. We created
a computational model, based on the work of Oschmann et al.
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FIGURE 9

Intracellular Na+ behavior in the three selected compartments for each class (0–5), respectively. (A) Na+ concentrations over time for the di�erent

classes and compartments. For clear visibility of the Na+ signals, the y-axis may change for each condition. The stimulation periods have been

indicated above the signals in the stimulated compartment. (B) Violin plots showing the minima of the Na+ amplitudes at 6 µM stimulus for the

di�erent classes and the three compartments—stimulated compartment, connected compartment, and soma.

(2017) and Gordleeva et al. (2019), including 3D morphology
and intra- and extracellular diffusion. Our multi-compartment
model is derived from confocal microscope images of the CA1
region (Refaeli et al., 2021). This model enables analyzing
mechanisms of Ca2+ release from the internal Ca2+ stores in
the ER and Ca2+ entering through the plasma membrane, both
depending directly or indirectly on extracellular glutamate released
by neurons.

The simulated Ca2+ dynamics (Figure 7) vary across the three
conditions: the class based on morphological features, stimulus
intensity, and compartment type. While stimulated and connected
compartments indicate similar signals, the respective signals in
the soma do not display clear oscillations for most cells. The
glutamate stimulus of 1 and 6 µM leads to oscillatory behavior
as also demonstrated by De Pittà et al. (2009), while the 0.1 µM

glutamate stimulus only induces in some classes a few Ca2+ peaks.
Astrocytes in class 5 exhibit, for example, a smaller volume and
fractal dimension, resulting in a lack of Ca2+ peaks with a low
glutamate stimulus. However, astrocytes in class 1 with a high
roundness value, high process maximum, and a high mean number
of branches can exhibit a small number of Ca2+ peaks with a low
glutamate stimulus.

Zur Nieden and Deitmer (2006) studied Ca2+ dynamics in
hippocampal rat astrocytes and obtained similar results with a 10
µM glutamate stimulus as we did when stimulating our model
with 6 µM glutamate. They report that the stimulus only elicited
oscillations in 63% of the astrocytes, which might be an indication

of heterogeneity. Similar to our simulations, Nett et al. (2002)
measured the Ca2+ oscillations and their diffusion across four
primary processes of a mouse hippocampal astrocyte.

The results for Na+ are comparable with Rose and Karus
(2013). The authors obtained comparable Na+ concentrations of
around 13 and 18 mM when stimulating with 1 and 10 µM

glutamate, respectively. We observed no significant differences in
K+ and Na+ ion dynamics between the six classes, unlike with
Ca2+. This may result from the fact that the Ca2+ dynamics
in the model are partly dependent on the intracellular stores in
the ER and the IP3R channels, whose role in the dynamics is
highly dependent on the local branch morphology. K+ and Na+

dynamics, on the other hand, only depend on the current through
the plasma membrane. As for the diffusion, it is modeled similarly
between the ion species and, therefore, does not lead to differences
between their dynamics.

Using the cell information such as position and shape can
be used in the future to reconstruct and simulate a whole cube
with connected astrocytes (Refaeli et al., 2021; Ma et al., 2016).
As a starting point, the work by Verisokin et al. (2021) could
be used in which the authors constructed a 2D spatial astrocyte
network to model Ca2+ signals in a multicellular construction.
Furthermore, studying the influence of ion dynamics on the
astrocyte morphology (Denizot et al., 2019), which we did not
consider here, is an interesting aspect for future work. Overall,
astrocytes are glial cells that play an important role in brain activity.
Combining imaging and computational modeling techniques can
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help obtain more information on astrocyte morphological and
functional complexity.
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