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MorphoGlia, an interactive
method to identify and map
microglia morphologies,
demonstrates differences in
hippocampal subregions of an
Alzheimer’s disease mouse
model
Juan Pablo Maya-Arteaga†, Humberto Martínez-Orozco† and
Sofía Diaz-Cintra*

Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Santiago
de Querétaro, Mexico

Microglia are dynamic central nervous system cells crucial for maintaining

homeostasis and responding to neuroinflammation, as evidenced by their

varied morphologies. Existing morphology analysis often fails to detect subtle

variations within the full spectrum of microglial morphologies due to their

reliance on predefined categories. Here, we present MorphoGlia, an interactive,

user-friendly pipeline that objectively characterizes microglial morphologies.

MorphoGlia employs a machine learning ensemble to select relevant

morphological features of microglia cells, perform dimensionality reduction,

cluster these features, and subsequently map the clustered cells back onto the

tissue, providing a spatial context for the identified microglial morphologies. We

applied this pipeline to compare the responses between saline solution (SS) and

scopolamine (SCOP) groups in a SCOP-induced mouse model of Alzheimer’s

disease, with a specific focus on the hippocampal subregions CA1 and Hilus.

Next, we assessed microglial morphologies across four groups: SS-CA1, SCOP-

CA1, SS-Hilus, and SCOP-Hilus. The results demonstrated that MorphoGlia

effectively differentiated between SS and SCOP-treated groups, identifying

distinct clusters of microglial morphologies commonly associated with pro-

inflammatory states in the SCOP groups. Additionally, MorphoGlia enabled

spatial mapping of these clusters, identifying the most affected hippocampal

layers. This study highlights MorphoGlia’s capability to provide unbiased analysis

and clustering of microglial morphological states, making it a valuable tool

for exploring microglial heterogeneity and its implications for central nervous

system pathologies.
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1 Introduction

Since their discovery, microglia have intrigued researchers
due to their ability to respond to external stimuli by changing
morphology, migrating, and accumulating at lesion sites (Río-
Hortega, 1919; Sierra et al., 2016). This responsiveness to
different brain microenvironments demands a plastic behavior
to perform a range of homeostatic processes, reflected in their
varied morphologies (Sierra et al., 2014; Orihuela et al., 2016;
Sierra et al., 2019; Matejuk and Ransohoff, 2020; Augusto-Oliveira
et al., 2022; Lier et al., 2021; McNamara et al., 2023). Due to
this versatility, microglia play a crucial role in understanding
and addressing central nervous system disorders (Matejuk and
Ransohoff, 2020; Li and Barres, 2018; Serrano-Reyes et al.,
2022). Consequently, the quantitative assessment of microglial
morphology has become widespread in neuroscience, particularly
in evaluating neuroinflammatory states (De Biase and Bonci, 2019;
Stratoulias et al., 2019; Green et al., 2022).

Understanding microglial morphology is relevant for detecting
changes associated with their immediate response to local
environmental signals (Stratoulias et al., 2019; Colombo et al.,
2022; Reddaway et al., 2023). Researchers have developed tools
for quantifying distinct morphological features and applied
mathematical models to classify microglia (Stratoulias et al.,
2019; Colombo et al., 2022; Reddaway et al., 2023). However,
the diverse morphological states of these cells have resulted
in an excessive number of nomenclatures. Common terms
include “homeostatic” (resting, ramified), “reactive” (activated,
inflammatory), “amoeboid” (phagocytic), and “rod” (Walker
et al., 2013; Torres-Platas et al., 2014; Sierra et al., 2019; Felsky
et al., 2019; Jurga et al., 2020; Guo et al., 2022; Reddaway et al.,
2023). These classifications are limited, as they do not encompass
the broad range of morphologies and thus overlook diverse
functional aspects (Paolicelli et al., 2022). This inconsistency
underscores the need for a methodology that embraces
the continuous spectrum while categorizing morphological
states (Stratoulias et al., 2019; Healy et al., 2022; Paolicelli
et al., 2022; Vidal-Itriago et al., 2022; Reddaway et al., 2023;
Green and Rowe, 2024).

The best approach for characterizing microglial morphology
is still debated (Green et al., 2022; Reddaway et al., 2023; Green
and Rowe, 2024). Common methods for analyzing microglial
morphology include skeleton analysis, cell body area and perimeter,
fractal analysis, and Sholl analysis (Green et al., 2022). Manual
methods and neural networks have faced challenges due to the
requirement of a priori labeling by an expert, which can miss subtle
changes in the continuous spectrum of microglial morphologies.
Machine learning methods have often been limited to focusing on
just one characteristic of microglia, typically their branching. To
capture the full morphological variability, it is necessary to quantify
multiple microglial features (Colombo et al., 2022; Paolicelli et al.,
2022; Reddaway et al., 2023; Green and Rowe, 2024). Additionally,
there is controversy on whether to analyze entire images or focus
on single-cell analysis (Green et al., 2022). Full photomicrograph
analysis may introduce biases and reduce effect sizes, whereas
single-cell analysis, though more labor-intensive, often reveals
greater statistical differences but may provide a biased sample due
to selective cell inclusion (Green et al., 2022).

According to a consensus, while naming and categorizing are
useful, these constructs are artificial because biological phenomena
exist on a spectrum (Paolicelli et al., 2022). Considering this
and the complexity of microglial states, we have developed a
computational pipeline called MorphoGlia that addresses both
aspects. This pipeline captures the complexity of microglia by
displaying their spectrum of morphological states while enabling
their neutral categorization in an unbiased manner based on
reproducible morphology measurements.

MorphoGlia provides a user-friendly interface designed to
extract microglial morphological features and apply advanced
machine learning techniques to identify those most effective
in distinguishing between study groups. These selected features
are projected into a common space and clustered, enabling a
detailed examination of distinct group-specific patterns. From this
projection, each data point represents an individual microglial
morphology, which is then mapped and color-coded by its cluster
back onto the original tissue photomicrograph. This functionality
allows users to validate the morphological states identified by the
machine learning ensemble and analyze the spatial concentration
of different morphologies, aiding in the identification of the most
affected regions.

This comprehensive approach can be applied to studying
pathologies where microglia play a significant role. In Alzheimer’s
disease (AD), brain cells undergo morphological changes as the
pathology progresses, making the study of microglial morphology
crucial for understanding the neuroinflammatory processes
involved (Abdelghany et al., 2022). To this end, MorphoGlia was
tested to evaluate microglial morphology in the hippocampus of a
mouse model of Alzheimer’s-like disease induced by scopolamine
(SCOP). The administration of this muscarinic receptor antagonist
mimics both the behavioral (cognitive impairment) and molecular
(acetylcholine deficiency, neuroinflammation) features of AD
(Klinkenberg and Blokland, 2010; Karthivashan et al., 2018; Chen
and Yeong, 2020). Nonetheless, the microglial morphology in this
model has not been investigated. This study demonstrates that
MorphoGlia provides a user-friendly and unbiased method to
differentiate between various microglial morphology states.

2 Materials and methods

2.1 Experimental animals

All experimental procedures with animals were carried out in
accordance with National Institute of Health Guide for Care and
Use of Laboratory Animals and the project was approved by the
Bioethics Committee of the Instituto de Neurobiología (INB) of the
Universidad Nacional Autónoma de México (UNAM) (registration
number 117). Male C57BL/6 mice, aged 10–12 weeks and with an
initial body weight ranging from 20 to 30 g, were used for this study.
The animals were sourced from the vivarium facility of the Institute
of Neurobiology. They were housed in polycarbonate cages, with 2–
3 mice per cage, and provided with water and chow (Purina R© 5001)
ad libitum. The housing conditions were controlled, maintaining a
temperature of 21–25◦C, relative humidity of 45–65%, and a 12-h
inverted dark/light cycle.
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2.2 Pharmacological treatment

A solution of scopolamine hydrobromide trihydrate (SCOP,
Sigma-Aldrich, #S0929) was prepared in sterile 0.9% saline solution
(SS). The mice were divided into two groups: a control group
(n = 4), which received SS (vehicle), and an experimental
group (n = 4), which received 1.0 mg/kg SCOP. Both the SS
and SCOP solutions were administered daily via intraperitoneal
injection during the morning period (9:00–10:00 a.m.) for nineteen
consecutive days.

2.3 Tissue preparation

Mice were euthanized by intraperitoneal injection of sodium
pentobarbital (250 mg/kg). After anesthesia, the animals were
intracardially perfused with 4% p-formaldehyde (PFA) in 0.1 M
phosphate buffer saline pH 7.4 (PBS). Brains were collected, post-
fixed in PFA for 48 h at 4◦C, and cryoprotected in 35% sucrose
in PBS for 7 days at 4◦C. The brains were then bisected, and the
right hemisphere was used to obtain 40 µm sagittal sections in
a cryostat. Slices were stored in PBS with 0.1% sodium azide at
4◦C until analysis.

2.4 Enzymatic immunohistochemistry

Microglia were stained with antibodies against Iba-1 protein
and an antibody signal enhancer to address over-fixation and
non-specific binding (Rosas-Arellano et al., 2016). For analysis, 8–
10 slices from the dorsal hippocampus (lateral 0.48 – 1.90 mm)
were selected. Sections underwent antigen retrieval in citrate
buffer (pH 6.0) at 80◦C for 20 min, quenching in 3% H2O2 and
10% methanol in PBS for 30 min, and enhancement in 0.1%
Triton X-100, 0.5% Tween-20 in PBS with 50 mM glycine for
45 min. They were incubated overnight at 4◦C with anti-Iba-1
antibody (1:500, Abcam, #ab107159). The next day, sections were
washed, incubated with secondary biotinylated antibodies (1:500,
Vector Laboratories, #BA-9200) for 2 h, and processed with the
VECTASTAIN R© ABC-HRP Kit (Vector Laboratories, #PK-4000).
The signal was developed with a solution containing 0.0005 g/ml
diaminobenzidine, 0.03 g/ml nickel ammonium sulfate, 0.006 g/ml
dextrose, 0.0012 g/ml NH4Cl, and 0.0001 mg/ml glucose oxidase
until the color changed to purple. The reaction was then stopped
with water, and sections were stored in PBS at 4–8◦C for 24 h.
Finally, sections were mounted, air-dried, dehydrated, cleared
in xylene, and covered with Entellan R© before being sealed with
coverslips for image acquisition.

2.5 Image acquisition

Digital images of Iba-1 + cells in the CA1 and dentate
gyrus subregions of the hippocampus were captured using a
Nikon Eclipse Ci-Li light microscope equipped with a Nikon
Plan 40 × /0.65 air lens. Photomicrographs were taken from four
equidistant slices per brain (n = 4).

2.6 Image pre-processing

Digital images were pre-processed under blinded conditions in
Image J Fiji software based on a previous protocol (Young and
Morrison, 2018; Supplementary Figures 4A, B). Briefly, each image
was converted into an 8-bit image, and a lookup table of grays was
applied. After that, brightness and contrast were adjusted using
the Auto function, and an unsharp mask (Radius sigma = 3.0
pixels) and noise elimination (despeckle) were applied to the image.
The threshold function was used for segmentation, and each Iba-
1 + cell in the image was completely reconstructed manually using
drawing tools (Pencil tool, size = 2.0) to finally obtain binary
images. Afterward, binary images were noise-smoothed by applying
despeckle, close (option for binary), and remove outliers (default
options); cleaned by erasing all the background marks; and finally
saved in .tiff format for further processing.

2.7 MorphoGlia code, interface and
software

MorphoGlia has been developed with a focus on user-
friendliness and accessibility, making it an ideal tool for the
broader scientific community. The software is available in two main
modes: a software mode and an interface mode, both designed
to facilitate ease of use. The executable file was generated using
PyInstaller,1 while the interactive interface was built using the
Tkinter Python library.2 For advanced users, direct modification
of the source code is recommended to tailor the application
to the specific needs of individual experiments. This approach
allows for greater flexibility and customization, ensuring that
MorphoGlia can be adapted to a wide range of research scenarios.
All components of MorphoGlia, including the executable file,
interface mode, and code mode, are available for download
from the following GitHub repository: https://github.com/Maya-
Arteaga/MorphoGlia. Currently, the executable file is limited to use
on macOS with M1/M2 processors.

Please refer to the video tutorial attached in supplementary
information section for a practical demonstration of how to utilize
the MorphoGlia software (Supplementary Video 1).

2.8 Morphology analysis

Each cell was identified in the complete binary
photomicrographs, and classic morphometric features were
computed using Python, primarily with the OpenCV library.3 For
skeleton analysis, the total branch length (in pixels), number of
initial points (cell processes emerging from the soma), number of
junction points (branch subdivisions), and number of endpoints
(ends of branches) were measured. Cell body analysis included
calculating the area, perimeter, circularity (with 1 representing
a perfect circle), Feret diameter (maximum caliper diameter),

1 https://pyinstaller.org/en/stable/

2 https://docs.python.org/3/library/tkinter.html

3 https://pypi.org/project/opencv-python/
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compactness (how closely an object packs its area), aspect ratio
(width/height), orientation (angle in degrees), and eccentricity
(major axis/minor axis). The same metrics used in cell body
analysis were applied to the entire cell. Fractal analysis involved
determining convex hulls (the smallest convex set of pixels
enclosing a cell) and performing the same calculations as in cell
body analysis, as well as calculating the fractal dimension. Sholl
analysis consisted of identifying the number of Sholl circles (circles
with increasing radii created around the centroid of the cell soma),
counting crossing processes (intersections of cell processes with
Sholl circles), and measuring the maximum distance (distance
between the centroid and the four vertices of the image). These
metrics allow researchers to analyze the biologically relevant
characteristics of the cell. During morphometric data extraction,
a directory is created for each image containing the segmented
cells and corresponding analyses. This approach ensures rigorous
quality control.

2.9 Feature selection

Selecting the most appropriate features to characterize
microglia is challenging due to significant biological variability
depending on the region and pathology. A fixed set of features
that best differentiates morphological states cannot be universally
applied. To address this, a dynamic feature selection approach is
necessary to ensure relevance and mitigate noise. We employed
the Recursive Feature Elimination (RFE) algorithm, a specialized
technique for selecting crucial features by iteratively reducing
the feature set and removing the least important ones. RFE
uses a Random Forest engine as the underlying training model
to determine feature importance. The Random Forest algorithm
ensures robustness, avoids overfitting, and captures non-linear
relationships between features and the target variable. In this
study, the groups (SS-CA1, SCOP-CA1, SS-Hilus, and SCOP-
Hilus) were used as the target variable. The features analyzed were
those computed in the morphology analysis, totaling 32 variables.
The RFE algorithm selected the most significant half of these
features, enhancing the robustness of the model and enabling
feature selection suited to the specificities of each study group. This
approach was implemented using the scikit-learn package.4

2.10 Dimensionality reduction

Uniform Manifold Approximation and Projection (UMAP)
is a technique designed for non-linear and non-parametric
dimensionality reduction. This technique preserves both local and
global structures of the data. It assumes that the data is uniformly
distributed on a Riemannian manifold with a locally constant
Riemannian metric and local connectivity (Taylor et al., 2014;
Becht et al., 2018). Key UMAP parameters include the number
of nearest neighbors (n_neighbors) and the minimum distance
between points (min_dist). The n_neighbors parameter constructs
the high-dimensional neighborhood graph, with lower values

4 https://pypi.org/project/scikit-learn/

focusing on local structures and higher values capturing global
structures. Recommended values range from 5 to 50. The min_dist
parameter controls point clustering, with lower values resulting
in tighter clustering and higher values in more dispersed points.
The recommended min_dist value is 0.1. Additionally, the number
of components (n_components) determines the dimensionality
for data reduction. UMAP uses fuzzy set theory to represent
the probability distribution in both high-dimensional and low-
dimensional spaces, preserving complex data patterns through
non-linear embedding (Taylor et al., 2014; Becht et al., 2018).
This makes UMAP effective for capturing intricate relationships
in the data. This approach was implemented using the scikit-learn
package.5 For further details consult https://github.com/lmcinnes/
umap.

It is essential to adjust UMAP hyperparameters (n_neighbors
and min_dist) based on the data characteristics and experimental
goals. Various hyperparameters were tested, demonstrating robust
results (Supplementary Figure 1).

2.11 Clustering

Following UMAP for dimensionality reduction, Hierarchical
Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) was used for clustering. This non-parametric method
constructs a cluster hierarchy based on the multivariate modes of
the underlying distribution by transforming the space according to
density, building the cluster hierarchy, and extracting the clusters.
HDBSCAN’s density-based approach makes minimal assumptions
about the clusters, identifying them as regions of high density
separated by low-density regions, thus eliminating the need to
specify the number of clusters beforehand. This method can
identify clusters of varying shapes and sizes and creates a hierarchy
based on different density levels. Key hyperparameters include the
minimum cluster size (min_cluster_size) and minimum cluster
samples (min_samples). The minimum cluster size determines the
smallest number of points in a cluster for it to be considered
valid; fewer points are treated as noise. Min_samples defines the
minimum number of neighboring points required for a point to be
considered a core point, which must include at least the specified
number of sample points (including itself) in its neighborhood.
HDBSCAN effectively handles data noise by excluding points that
do not fall within high-density regions, making it robust to noise
and outliers. This approach was implemented using the scikit-learn
package.6 For further details consult https://github.com/scikit-
learn-contrib/hdbscan.

2.12 Spatial analysis and visualization

Dimensionality reduction and clustering result in color-coded
data points, each representing a cell. These color-coded cells
are mapped back onto the tissue microphotograph to visualize
their spatial arrangement (Figures 5A, B and Supplementary

5 https://pypi.org/project/umap-learn/

6 https://pypi.org/project/hdbscan/
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Figures 4C, D). This approach serves two main purposes:
confirming similarities among cells within the same cluster and
providing insights into the spatial distribution of each clustered cell.
This visualization is particularly useful for spatial analyses, allowing
for the identification of the most affected zones and uncovering
previously unexplored patterns in disease physiopathology. In the
original images, color-coded microglia were assessed within the
CA1 hippocampal layers: stratum oriens (SO), stratum pyramidale
(SPyr), and stratum radiatum (SR). The number of each cluster-
type microglia was then estimated by manual cell counting in the
different zones of the CA1 subregions for both the SS and SCOP
groups. Additionally, we utilized the Allen Brain Explorer R© Beta
viewer7 to obtain spatial references of the CA1 region from frontal
and superior perspectives. This tool facilitated enhanced spatial
context, enabling precise localization of the slice with the greatest
lateral impact.

2.13 Statistical analysis

Statistical analysis was performed using R (v4.4.0). Correlation
plots and chi-square tests were generated using the corrplot and
gplots libraries, respectively, while heatmaps were created with
the ComplexHeatmap library. The chi-square test determined
significant associations between study groups (SS-CA1, SCOP-
CA1, SS-Hilus, SCOP-Hilus) and clusters from the UMAP-
HDBSCAN analysis (Clusters 0–4). Standardized residuals were
calculated to identify the nature of these associations, with
positive values indicating higher observed frequencies and
negative values indicating lower observed frequencies compared to
expected values. This test assesses the independence of categorical
variables, and standardized residuals highlight specific associations
contributing to the overall chi-square statistic, helping to link
morphological states (clusters) with study groups. Heatmaps were
used to visualize variable correlations with study groups or
clusters, facilitating rapid condition comparisons. Spatial analysis
and visualization data were analyzed using GraphPad Prism
8 (GraphPad Software, Inc.). The Mann–Whitney U test was
performed to evaluate differences in the number of cells and
relative frequency per cluster for each CA1 layer of each image,
with a p-value < 0.05 considered significant. The sample size was
calculated using the following parameters: P(X > Y): 0.8; Alpha
two-sided: 0.05; Power: 0.8.

3 Results

3.1 MorphoGlia is a user-friendly
interface that receives user inputs
according to specific research
requirement

In this study, we evaluated microglial morphology in the
hippocampus of C57BL/6 mice following chronic treatment with
1.0 mg/kg (i.p) SCOP (Figure 1A). To visualize microglia

7 https://connectivity.brain-map.org/3d-viewer?v=1

in the hippocampal subregions, we performed enzymatic
immunohistochemistry using specific antibodies against Iba-1
(Figure 1B). We captured four images of each subregion, CA1
and Hilus, for both the SS and SCOP groups, resulting in a total
of 64 images (SS-CA1 = 16; SCOP-CA1 = 16; SS-Hilus = 16;
SCOP-Hilus = 16). These photomicrographs were preprocessed to
obtain binarized images (Figure 1C).

Once the binary images are prepared, the MorphoGlia interface
(Figures 1D, E) or code mode can be used to execute our
proposed pipeline. This pipeline involves five steps (Figure 1D):
(1) morphology analysis, which extracts 32 microglial morphology
features; (2) feature selection, where the RFE algorithm selects
the 16 best features that distinguish the study groups; (3)
dimensionality reduction, which employs UMAP to project the
16 selected features into a two-dimensional space; (4) clustering,
which uses HDBSCAN, a non-supervised algorithm with noise
detection, providing a more objective clustering method; and
finally, (5) spatial visualization, where cells are color-coded
according to their cluster and mapped back onto the tissue
microphotograph to visualize their spatial arrangement, facilitating
the identification of the most affected zones.

3.2 MorphoGlia analyses multiple
morphometric features and identifies the
most significant features for
morphological differentiation

From the 64 images, a total of 1,221 cells were identified,
with an average of 19.09 cells per image (Supplementary
Table 1). MorphoGlia’s Morphology Analysis extracted 32 features
(Supplementary Table 2) from each cell based on five types
of analyses: (1) Skeleton analysis, (2) Soma analysis, (3) Cell
analysis, (4) Fractal (Convex Hull) analysis, and (5) Sholl analysis
(Figures 2A–E).

Once the features were obtained (Figure 2F, bottom left corner
correlation matrix), to address the significant heterogeneity in
microglia morphology depending on the region and pathology,
we used RFE with a Random Forest engine to select the most
significant variables that distinguished our study groups (SS-CA1,
SCOP-CA1, SS-Hilus, and SCOP-Hilus) as the target variable. This
step reduces noise and enhances the performance of dimensionality
reduction algorithms (Figure 2F, top right corner correlation
matrix).

3.3 MorphoGlia detects morphology
clusters without prior categorization

Once the most significant features were obtained, to reduce
their dimensionality, we applied a non-linear dimensionality
reduction technique called UMAP (Figure 3A), which converted
the 16 features into two dimensions (n_components = 2).
Notably, despite varying hyperparameters, the data structure
was preserved (Supplementary Figure 1). The hyperparameters
that best preserved both global and local structures were
n_neighbors = 10 and min_dist = 0.1.
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FIGURE 1

Scopolamine protocol, image pre-processing and MorphoGlia interactive tool. (A) SCOP treatment protocol in mice and enzymatic
immunohistochemistry (image created in BioRender.com). (B) Representative image of the hippocampus after Iba-1 immunostaining. (C) Binary
image of Iba-1 + cells processed using Image J Fiji. (D) MorphoGlia allows users, to select analyses with a simple click. (E) MorphoGlia is designed to
be a user-friendly tool, enabling users to input parameters tailored to their specific experiments. SCOP, scopolamine.

Subsequently, to perform an unbiased classification, we
employed HDBSCAN clustering with parameters set to a minimum
cluster size of 20 and a minimum sample size of 10. This analysis
resulted in 5 distinct clusters (Figure 3B and Supplementary
Table 1) and identified three cells as not belonging to any
cluster (Supplementary Figure 2), leading to a total of 1,218
cells classified. To determine if our pipeline identified a pattern
of microglial morphology in the obtained clusters, we created
heatmaps contrasting the variables with the study groups and the
obtained clusters (Figure 3C). Additionally, we generated confusion
matrices targeting the study groups and the obtained clusters to
evaluate whether clustering improved the algorithm’s performance
by avoiding the mixing of morphological states within the study
groups (Supplementary Figure 3).

3.4 MorphoGlia effectively differentiates
between the study groups and identifies
morphologies strongly associated with
health and pathology

First, we evaluated the distribution of the study groups within
the manifold and obtained clusters, as well as the percentage of each
cluster in the study groups (Figures 4A–D). We then quantified
the total number of cells identified in each group (Figure 4E) and
calculated the mean number of cells per image: SS-CA1 had 283
total cells (mean: 17.68 cells per image), SCOP-CA1 had 312 total
cells (mean: 19.50 cells per image), SS-Hilus had 276 total cells
(mean: 17.25 cells per image), and SCOP-Hilus had 347 total cells
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FIGURE 2

Morphology analysis and feature selection via RFE. In the morphological analysis, 32 features are initially extracted through automated data
processing using (A) cell, (B) skeleton, (C) fractal (convex hull), (D) soma and (E) Sholl features. (F) In the feature selection process, RFE with a
random forest algorithm identified 16 key features as the most significant for distinguishing between the studied groups: SS-CA1, SCOP-CA1,
SS-Hilus, and SCOP-Hilus. The bottom left corner shows the correlation matrix of the 32 initially extracted features, while the top right corner
displays the correlation matrix of the 16 features selected by RFE. The size and color of the circles indicate the strength of the correlations, with blue
representing positive correlations and red representing negative correlations. C, cell; F, fractal (convex hull); RFE, recursive feature elimination;
SCOP, scopolamine; Sh, Sholl; Sk, skeleton; So, soma; SS, saline.

(mean: 21.68 cells per image) (Figure 3A, Supplementary Figure 5,
and Supplementary Table 1).

Given the observed variations in the number of cells
corresponding to each cell group among the study groups, we
investigated the relationship between the obtained clusters and
the study groups using a chi-square test. The test yielded a chi-
square statistic of 148.84, p < 2.2e−16, indicating a significant

relationship between the clusters and the study groups. To
determine which clusters were most associated with each study
group, we calculated standardized residuals. Clusters 0 and 1
exhibited significant negative associations with the SS groups
(marked in red), suggesting that these clusters are less prevalent
in the SS groups. In contrast, Clusters 3 and 4 were positively
associated with the SS groups (marked in blue), indicating a higher
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FIGURE 3

Uniform Manifold Approximation and Projection dimensionality reduction and HDBSCAN clustering. (A) UMAP dimensionality reduction in a
two-dimensional space using the 16 features selected by RFE. (B) HDBSCAN clustering identifies five distinct color-coded clusters. (C) Heatmaps
comparing the study groups and the resulting clusters using the 32 extracted features from the morphological analysis: (Left) the study groups
exhibit less variance in morphology features, indicating an overall similarity in the photomicrograph’s cell features, which masks the subtle details of
individual cells. (Right) The resulting clusters show increased variance in the morphology features, suggesting that clustering reveals hidden patterns,
effectively highlighting the importance of the clustering process. HDBSCAN, Hierarchical Density-Based Spatial Clustering of Applications with
Noise; UMAP, Uniform Manifold Approximation and Projection.

prevalence of these clusters in the SS groups. The SCOP groups
displayed the inverse pattern, with positive associations in Clusters
0 and 1 and negative associations in Clusters 3 and 4 (Figure 4F).

3.5 MorphoGlia allows users to delimit
the most affected CA1 hippocampal
distances and layers by pathology

To investigate the spatial distribution of cells based on
their cluster labels, we mapped the cells back onto the tissue
microphotograph to visualize their arrangement (Figures 5A, B).
To validate the strong associations of Cluster 0 (3.99 and 2.47)
and the moderate associations of Cluster 1 (1.39 and 1.24) with
the SCOP groups (Figure 4F), we examined their number and

relative frequencies within the CA1 region. Our analysis confirmed
a significant increase in both number and relative frequency of
Cluster 0 (p < 0.001) and Cluster 1 (p < 0.05) cells in the CA1
region of SCOP-treated mice (Figures 5C–E).

Following this confirmation, we analyzed the cell count
distribution of these clusters across different lateral coordinates
(from 0.48 to 1.90 mm in 240 µm intervals) to identify specific
locations with elevated cluster concentrations (Figures 5G–J). This
analysis revealed a marked increase in Cluster 0 cells in the 0.48–
0.96 mm interval (Figures 5G, H) and an increase in Cluster 1 cells
in the 1.20–1.44 mm interval (Figures 5I, J) in the dorsal CA1 of
SCOP treated mice compared with SS group.

Finally, to determine whether these clusters were
predominantly located within specific layers of the CA1 region
of the hippocampus, we further divided the CA1 subregion
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FIGURE 4

Study group distributions across clusters, cell count and standardized residuals. Scatter plots of panel (A) SS-CA1, (B) SCOP-CA1, (C) SS-Hilus, and
(D) SCOP-Hilus groups across the manifold and obtained clusters. The color bar indicates the cluster percentages of cells in each cluster for the
study groups. (E) Cluster cell count shows the absolute number of cells in each cluster for the study groups. Notice that the SCOP groups have a
higher cell count compared to the SS groups. (F) Standardized Residuals of the clusters in the study groups present the standardized residuals for
each cluster within the study groups. Clusters 0 and 1 exhibit significant negative associations with the SS groups (red), while Clusters 3 and 4 are
positively associated with the SS groups (blue). Notably, the SCOP groups display the opposite association pattern. SCOP, scopolamine; SS, saline.

into its anatomical layers: SO, SPyr and SR (Figures 5A, B). We
then quantified the number and relative frequencies of these
clusters within each layer as observed in the microphotographs
(Figures 5K–P). This analysis showed that Cluster 0 was
significantly more prevalent in SO (p < 0.001), SPyr (p < 0.05), and
SR (p < 0.001) of SCOP mice compared with SS group (Figures 5K,
M). Conversely, number of Cluster 1 cells was significantly higher
only in SR (p = 0.040), with no significant differences observed
in SO (p = 0.265) or SPyr (p = 0.811) between the SCOP and
SS groups (Figure 5L). However, no significant differences were
found among groups for the relative frequencies of Cluster 1
cells of any hippocampal sublayers (Figure 5N). Therefore, the

distribution analysis across different lateral coordinates for this
data (Figures 5O, P) revealed that the specific locations of SR and
SO with higher number of Cluster 0 cells are consistent with those
found in the dorsal CA1 for SCOP animals.

4 Discussion

In this study, we demonstrated the application of MorphoGlia
for identifying microglial morphology clusters. MorphoGlia
effectively captures the full range of microglial morphologies
(Figure 6), highlighting a continuous transition across various
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morphological states, while also facilitating clustering and
delineating the most affected regions (Figures 3–6). This approach
not only aligns with current research trends by embracing the
concept of a morphological continuum and detecting subtle
variations, but it also identifies clusters of morphological states that
correspond to traditional classifications described in the literature.

The morphological state commonly referred to as “amoeboid”
is typically found in neuroinflammatory microenvironments
(Parakalan et al., 2012; Reddaway et al., 2023; Jurga et al., 2020;
Masuda et al., 2020; Leyh et al., 2021). This state is morphologically
characterized by retracted processes and a more circular shape,
facilitating migration to the injury site (Parakalan et al., 2012;
Reddaway et al., 2023; Savage et al., 2019; Jurga et al., 2020;
Masuda et al., 2020; Leyh et al., 2021; Green and Rowe, 2024). This
description corresponds to Cluster 0, which stands out for having
greater circularity and cell solidity compared to other clusters
(Figure 3C, heatmap). On the other hand, the morphological
state known as “reactive” is associated with neuronal damage,
inflammatory cytokine production, phagocytosis, and migration
to injury sites (Tynan et al., 2010; Ziebell et al., 2015; Reddaway
et al., 2023; Savage et al., 2019; Leyh et al., 2021). This state
is morphologically characterized by having fewer and thinner
branches (Tynan et al., 2010; Ziebell et al., 2015; Savage et al., 2019;
Leyh et al., 2021; Colombo et al., 2022). This description aligns with
Cluster 1 (Figures 3B, C, 6). These two morphological clusters are
more associated with the SCOP groups than with the SS groups
(Figure 4F), which is consistent with their described functionalities.

Other commonly recognized morphological states are
“homeostatic” and “hyper-ramified.” Healthy brain microglia
are in a “homeostatic” state and search for signs of infection or
distress (Glenn et al., 1992; Reddaway et al., 2023; Leyh et al., 2021).
Homeostatic microglia are morphologically characterized by
elongated and branched processes (Glenn et al., 1992; Felsky et al.,
2019; Leyh et al., 2021; Green and Rowe, 2024). This description
corresponds to Clusters 3 and 4 (Figures 3B, C, 6), which are more
strongly associated with the SS groups than with the SCOP groups
(Figure 4F). Furthermore, the termed “hyper-ramified” appears
upon detection of a noxious stimulus, serving as a transitional state
between the homeostatic and reactive states (Glenn et al., 1992;
Reddaway et al., 2023; Leyh et al., 2021). However, it has also been
described in response to non-pathological stimuli (Torres-Platas
et al., 2014). This state is morphologically characterized by having
more complex processes than the homeostatic state (Glenn et al.,
1992; Leyh et al., 2021; Colombo et al., 2022). This description
might correspond to Cluster 4 (Figure 3C, heatmap); however, it is
more associated with the SS groups.

The morphological state often referred to as “rod” is usually
juxtaposed with neuronal elements to facilitate their repair or
breakdown (Glenn et al., 1992; Taylor et al., 2014; Reddaway
et al., 2023; Holloway et al., 2019). However, their role in disease
is not well characterized (Parakalan et al., 2012). This state is
morphologically characterized by being bipolar with a thin and
elongated soma (Taylor et al., 2014; Reddaway et al., 2023; Holloway
et al., 2019; Savage et al., 2019; Giordano et al., 2021; Green and
Rowe, 2024). This morphological state seems to be present but
not clearly defined in a specific cluster. It is shared by Clusters
2 and 3, depending on the level of branching. Since the analyzed
morphological features do not account for process polarization but

rather for branching level, then detecting these patterns is necessary
to visualize these cells as a single cluster.

Grosso modo, the SCOP groups have a higher number of cells
than the SS groups, which is already an indicator of a possible
inflammatory process (Figure 4B; Tynan et al., 2010; De Biase and
Bonci, 2019). More specifically, when segregating the cells into
clusters, this hypothesis is reinforced by the increased number of
cells in Clusters 0, 1, and 2, which resemble the "amoeboid" and
"reactive" morphologies. Meanwhile, the SS groups predominantly
appear in Clusters 4 and 5, which resemble the "homeostatic"
morphology. Nevertheless, this research should be accompanied by
omics studies to confirm these inferences.

Interestingly, despite the parallels between the two SCOP
groups and the two SS groups, MorphoGlia reveals differences
in both subregions concerning the strength of association with
their clusters. For instance, in the SS groups, the Hilus microglia
exhibited less morphological complexity and were more evenly
distributed across the clusters, mirroring the SS-CA1 cluster
association but with lower strength (Figure 4F). Similarly, the
SCOP-Hilus group mirrored the SCOP-CA1 group but also showed
a weaker association. This regional heterogeneity has been widely
documented at both the genetic level (Ayata et al., 2018; Gosselin
et al., 2014; Gosselin et al., 2017; Stratoulias et al., 2019; Tan et al.,
2020) and the morphological level (Tynan et al., 2010; Colombo
et al., 2022).

The MorphoGlia tool is user-friendly but still requires
a certain level of computational expertise to accurately set
optimal hyperparameters and interpret results. Additionally, code
modifications may be necessary to customize and enhance the
generated plots. While MorphoGlia effectively captures a wide
range of microglial morphologies, the current pipeline relies
on enzymatic immunohistochemistry, which requires manual
preprocessing. To mitigate biases related to manual reconstruction
during this process, implementing blinded conditions for sample
identification is crucial. Additionally, establishing clearly defined
criteria for image acquisition using the bright field microscope,
along with thorough image preprocessing and final quality
control, is essential not only for using MorphoGlia but for
any morphological assessment. This method offers excellent
visualization of microglial arborization but also necessitates
manually connecting certain branches for optimal segmentation—
a task that could potentially be automated in the future using
neural networks.

One challenge in this analysis is the reliance on 2D images,
which may hide some microglial processes. To address this
limitation, immunofluorescence and confocal microscopy could be
employed to streamline preprocessing and enhance automation.
However, while these techniques could improve the clarity and
automation of image processing, they might also increase image
acquisition time and potentially reduce the visibility of microglial
branches. Another issue arises from the use of 40x magnification in
photomicrographs, which complicates the preservation of precise
anatomical relationships. As a result, a manual cell count was
conducted to assess the number and relative frequency of cells
within specific clusters across different layers and lateral distances.
In the future, using tiled images—offering greater structural context
for image registration—could facilitate the automation of this step.

Building on this, spatial analysis of the CA1 region indicates
that Cluster 0 cells are predominantly distributed within the
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FIGURE 5

MorphoGlia spatial visualization and distance and spatial analysis. (A,B) Representative 40× photomicrographs of the hippocampal CA1 subregion
and its sublayers of saline (A) and scopolamine (B) groups, showing immunostained Iba-1 positive cells mapped by MorphoGlia. (C,E) violin plots of
microglia cluster cell count: violin plots displaying the microglia cell count for panel (C) Cluster 0 and (E) Cluster 1 within the CA1 region of both the
saline (SS) and scopolamine (SCOP) groups. (D,F) Violin plots of microglia cluster relative frequency: violin plots displaying the microglia relative
frequencies for panel (D) Cluster 0 and (F) Cluster 1 within the CA1 region of both the SS and SCOP groups. (G,J) The Allen Brain Explorer R© Beta 3D
viewer was utilized to accurately localize lateral distances within the CA1 region for Cluster 0 cells of the SS group (G, frontal view in the left;
superior view in the right) and SCOP group (H, frontal view in the left; superior view in the right), as well as for Cluster 1 cells of the SS group (I,
frontal view in the left; superior view in the right) and SCOP group (J, frontal view in the left; superior view in the right). Heatmap upper image are
presented for each group and indicate mean cell count of panels (G,H) Cluster 0 and (I,J) Cluster 1 cells at varying lateral distances (0.48–1.90 mm,
in 240 µm intervals) along the CA1 region of the dorsal hippocampus. (K,L) The violin plots indicate the cell count of panel (O) Cluster 0 and
(P) Cluster 1 microglia per image in the Stratum radiatum (SR), Stratum oriens (SO), and Stratum pyramidale (SPyr) sublayers of the dorsal
hippocampus. (M,N) The violin plots indicate the relative frequency of panel (O) Cluster 0 and (P) Cluster 1 microglia per image in the stratum SR, SO
and SPyr sublayers of the dorsal hippocampus. (O,P) The heatmaps depict the mean cell count of panel (O) Cluster 0 and (P) Cluster 1 microglia in
the CA1 sublayers of the dorsal hippocampus (lateral distance 0.48–1.90 mm, 240 µm intervals). The Mann–Whitney U test was performed to
evaluate differences in the number of cells per cluster. Significant differences are indicated by asterisks (*p < 0.05, ***p < 0.001).
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SO and SR layers. Specific lateral locations and layers identified
through MorphoGlia’s data highlight that Cluster 0 cells are
abundant in the CA1 of the dorsal hippocampus, but particularly
concentrated between 0.48 and 0.96 mm, while Cluster 1 cells show
higher concentrations between 1.20 and 1.44 mm. Additionally, a
significant abundance of Cluster 0 cells was observed in the 0.48 –
0.96 mm interval across all three sublayers of the hippocampal
CA1. Moving forward, the objective is to automate this analysis
and extend it to 3D imaging, enabling the creation of three-
dimensional maps. Furthermore, integrating multiple elements
within the same image will allow for more sophisticated spatial
analyses between different components, such as examining the
proximity of microglial clusters to neurons, blood vessels, amyloid-
β plaques, and other structures. Additionally, comparing various
AD models (e.g., scopolamine-induced, 3xTg-AD, and 5xFAD) by
integrating their morphologies into a common data space would
yield valuable insights into their distribution within the manifold
and reveal shared and distinct morphological characteristics.

Another challenge is calculating the sample size required for
effectively conducting spatial analysis, as clusters are identified
using the density-based unsupervised algorithm HDBSCAN.
A larger sample size would facilitate a more detailed analysis, and
it is advisable for those interested in using MorphoGlia to consider
this factor. Furthermore, once this tool is validated, the next step
would involve automating the cellular counting process currently
conducted manually. This approach would necessitate a regional
template for the parcelation of brain regions. To achieve this, free
access tools like Allen Brain Atlas could be utilized for automated
spatial analyses.

Unlike neural networks that classify microglial morphology
based on predefined labels, the MorphoGlia pipeline appears to
display the full spectrum of microglial morphologies, avoiding the
problem of a priori labeling, which can be difficult and subjective,
even for experts. Instead, the approach used in MorphoGlia has
the advantage of detecting subtle changes in the dataset. However,
with large datasets, processing all cells would be computationally
expensive. An interesting approach would be to use this pipeline
to identify characteristic clusters in the study groups and then
use these clusters to train neural networks. These neural networks
could then identify the same clusters in new images. In this way, the
use of neural networks a posteriori would help classify large datasets
without requiring human training, as the images and unbiased
classifications would already be available from MorphoGlia.

Finally, microglial morphology is not synonymous with
microglial function; however, distinguishing these morphological
states helps make inferences about their functionality (Paolicelli
et al., 2022). Using our designed pipeline, MorphoGlia, we were
able to create an unbiased classification that exhibited the spectrum
of microglial morphological states and was biologically consistent
with previously described literature. This approach allows for the
identification of clusters within a spectrum, without the need
for pre-assigned labels, which should later be evaluated using
omics techniques. In this experiment, we found morphological
states more associated with SCOP groups, consistent with
reported findings, and states more associated with SS groups,
also biologically consistent with literature reports. Furthermore,
we were able to pinpoint the most affected spatial localization,
identifying the SR as the layer with the highest cell count of

FIGURE 6

From data points to microglial morphologies: visualizing cluster
variability. This figure demonstrates the application of the
umap.plot.interactive() function to trace individual microglial cells to
their respective data points within the UMAP space. Despite the
effective clustering of morphological states by HDBSCAN, there is
variability within the clusters. This variability arises from the 16
selected features, which have been reduced to two dimensions
through UMAP, capturing a broad spectrum of microglial
morphologies. Notably, MorphoGlia displays these morphologies
along a curved continuum, illustrating a gradual transition across
diverse microglial states. This visualization underscores the
complexity of microglial morphology and the utility of advanced
clustering techniques in identifying subtle differences within
grouped data.

pathology-associated clusters (Figure 5). In AD, this synapse-
rich layer of the CA1 displays alterations in number of synapses
and distribution of dendritic spines (Montero-Crespo et al.,
2021), but also loss of integrity and atrophy that correlates with
cognitive decline (Kerchner et al., 2012; Su et al., 2018). However,
histological and omics approaches should be combined to gain
a more comprehensive and accurate understanding of microglial
status. Studies with spatial resolution could be particularly useful
in confirming the inferences obtained through morphological
classifications and spatial mappings, such as those offered by
MorphoGlia.

Overall, this study demonstrates that MorphoGlia facilitates
computational analysis for the scientific community while
successfully capturing the continuous spectrum of microglial
morphological states. It provides an unbiased classification
that aligns with traditional descriptions in the literature,
identifying clusters corresponding to well-known categories
without predefined categorization. Moreover, MorphoGlia
revealed for the first time morphological changes characterizing
microglial morphologies within a SCOP-induced mouse model of
AD. This differentiation highlights the tool’s capability to detect
subtle morphological changes and distinguish between healthy
and pathological conditions, as well as between subregions of the
hippocampus. Additionally, the study identified the SR as the
hippocampal layer that was most affected by SCOP treatment,
with significant changes in microglial morphology correlating with
cognitive decline in AD models.

MorphoGlia is designed to be an interactive and easy-to-
use tool that utilizes Python, an open source programming
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language, therefore making it easily accessible to all users. Users are
encouraged to directly modify the code to enhance and customize
their research results.

In summary, MorphoGlia provides a comprehensive and
nuanced understanding of microglial morphology, making it a
valuable tool for studying microglial morphologies and gaining
insights into tissue condition. These findings underscore the
importance of combining morphological analysis with other
techniques, such as omics studies, to obtain a more complete
picture of microglial function and pathology.
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