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Alzheimer’s disease (AD) is the most prevalent type of dementia. Treatments for 
AD do not reverse the loss of brain function; rather, they decrease the rate of 
cognitive deterioration. Current treatments are ineffective in part because they 
do not address neurotrophic mechanisms, which are believed to be critical for 
functional recovery. Given that structural losses are assumed to be the root cause 
of cognitive impairment in AD, strengthening neurotrophic pathways may be a 
useful preventative therapeutic approach. Insulin-like growth factor-2 (IGF2), 
which is widely expressed in the central nervous system (CNS), has emerged as 
a crucial mechanism of synaptic plasticity and learning and memory, and many 
studies have indicated that this neurotrophic peptide is a viable candidate for 
treating and preventing AD-induced cognitive decline. An increase in IGF2 levels 
improves memory in healthy animals and alleviates several symptoms associated 
with neurodegenerative disorders. These effects are primarily caused by the IGF2 
receptor, which is widely expressed in neurons and controls protein trafficking, 
synthesis, and degradation. However, the use of IGF2 as a potential target for the 
development of novel pharmaceuticals to treat AD-induced memory impairment 
needs further investigation. We compiled recent studies on the role of IGF2 in 
AD-associated memory issues and summarized the current knowledge regarding 
IGF2 expression and function in the brain, specifically in AD-induced memory 
impairment.
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Introduction

The pleiotropic polypeptides insulin-like growth factors 1 and 2 (IGF1 and IGF2) are 
found in a wide range of tissues and organs, including the central nervous system (CNS) 
(Wang et  al., 2017). These factors are believed to mediate a wide range of physiological 
processes during development and adulthood and are structurally homologous with 
proinsulin. IGFs can function as both autocrine and paracrine factors within cells to control 
chemotaxis, differentiation, growth, and survival. The receptors for IGF1, IGF2, and insulin 
are membrane receptors that specifically mediate the biological actions of both IGFs (Dupont 
and LeRoith, 2001). The tyrosine kinase receptor family includes the IGF1 receptor, which 
shares a high degree of structural similarity with the insulin receptor. This receptor is normally 
found at the cell surface as a heterotetramer composed of two α (135 kDa) and two β (90 kDa) 
subunits linked by disulfide bonds. The receptor binds to IGF1 with greater affinity than to 
either IGF2 or insulin. The α-subunits have an extracellular ligand-binding site, and the 
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β-subunits contain an intracellular tyrosine autophosphorylation site 
and transmembrane and tyrosine kinase domains (Dupont and 
LeRoith, 2001). Tyrosine residues in the intracellular region of the β 
subunit undergo autophosphorylation when a ligand attaches to the 
extracellular α subunit, causing a conformational shift that initiates 
receptor tyrosine kinase activity (Adams et al., 2000). Effector and 
adaptor molecules dock, activating numerous intracellular signaling 
cascades that control growth, proliferation, survival, development, and 
metabolic responses. These cascades include the phosphoinositide 
3′-kinase (PI3K) and mitogen-activated protein (MAP) kinase 
pathways (Adams et al., 2000; Dupont and LeRoith, 2001). Unlike the 
insulin and IGF1 receptors, the IGF2 receptor lacks intrinsic tyrosine 
kinase activity and is physically different. This receptor does not bind 
insulin and has a greater affinity for IGF2 than for IGF1 (Figure 1) 

(Massagué and Czech, 1982). Although evidence that this receptor 
plays a role in transmembrane signal transduction in response to IGF2 
binding is increasing, its biological significance is still debated.

The expression of IGF2, a neurotrophic factor, is reduced in 
people with Alzheimer’s disease (AD) (Pascual-Lucas et al., 2014; 
Xia et al., 2019). IGF2 is a modulator of hippocampal cognition 
that has been found to be  dysregulated in numerous 
neurodegenerative illnesses, including AD, in recent years 
(Beletskiy et al., 2021; Pardo et al., 2019). Therefore, IGF2 might 
function as both a prophylactic therapy and traditional AD 
treatment (Fitzgerald et al., 2023). Here, we present increasing data 
suggesting that IGF2 may be  a promising target for the 
development of novel therapies for AD and related 
neurological disorders.

FIGURE 1

Structures of the insulin/insulin-like growth factor (IGF) system. Insulin, IGF1, and IGF2 and their relatively high-affinity receptors, insulin receptor, IGF1 
receptor, and IGF2 receptor, are shown. The relative affinity of each ligand for the receptors is represented by the arrow thickness. Insulin, IGF1, and 
IGF2 can cross-bind to their respective high-affinity receptors; however, due to its lower affinity, insulin does not seem to bind to the IGF2 receptor. 
Upon receptor binding, a structural change leads to activation of the intracellular tyrosine kinase domain and autophosphorylation. Two main signaling 
pathways are activated: the Akt/PKB and the Ras/MAPK pathways. Thus, IGF2 activates CREB and induces IGF2 transcription, increases synaptic density 
and spine maturation, activates the AKT-GSK3β signaling pathway, promotes neural precursor cell differentiation and proliferation, and induces IGF2 
production in the hippocampus to improve memory ability. p, phosphorylation; Shc, adaptor protein p66; Grb2, growth factor receptor-bound protein 
2; SOS, son of sevenless; CREB, cAMP-response element binding; GSK3β, glycogen synthase kinase-3β; TSC2, Tuberous sclerosis complex 2; BAD, 
Bcl-2-associated death; mTORC1, mammalian target of rapamycin complex 1.
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IGF2 and IGF2 receptor distribution in 
the brain

The IGF2 is produced predominantly by the choroid plexus, 
leptomeninges, and parenchymal vasculature in both the adult and 
fetal brain (Beletskiy et al., 2021; Sélénou et al., 2022). Stromal cells, 
in which allelic expression is inverted compared with that of peripheral 
tissues, also produce IGF2  in the brain. For example, most IGF2 
(>90%) originates from the maternal allele in numerous rat brain 
areas, including the hippocampus, anterior cingulate cortex, medial 
prefrontal cortex, and amygdala (Ye et al., 2015). However, it is still 
unclear how this particular regulator works and how it functions in 
humans. Furthermore, it is unclear how distinct brain allelic 
expression is controlled in various types of brain cells under normal 
circumstances, whether it varies with age, and whether it changes in 
response to activity-dependent processes such as learning.

Additionally, the distribution of the IGF2 receptor, which is cell 
type specific, in the brain is unknown. Genetic knockout (KO) of the 
IGF2 receptor results in death at birth, highlighting the critical 
function of this receptor in development (Lau et al., 1994); however, 
little is known about the functions of the IGF2 receptor in adult 
tissues. The IGF2 receptor is enriched in several brain regions, 
including the olfactory bulb, striatum, pallidum, hypothalamus, 
thalamus, hippocampus, midbrain, cortex, and cerebellum, as shown 
by RNA hybridization and immunohistochemistry (Wang et  al., 
2017). IGF2 receptor expression is quite low in astrocytes, microglia, 
and other brain cells but is much greater in neurons at the cellular level 
(Yu et  al., 2020). These findings suggest that IGF2  in the brain 
preferentially affects neuronal functions through this differential 
enrichment of the IGF2 receptor in neurons.

IGF2 and AD

Currently ranked as the sixth leading cause of death globally, AD 
is the primary cause of dementia worldwide. In the United States, an 
estimated 5 million people aged 65 years and older have AD, and over 
the next several decades, this figure is predicted to more than double 
(Prince et al., 2013). The burden of AD on impacted families and the 
healthcare system is increasing as average life expectancy increases. 
Unfortunately, few effective treatments are available, even as the 
severity of the disease increases. According to current studies, AD is 
mainly associated with the aggregation of amyloid-beta (Aβ) and 
hyperphosphorylated tau, synaptic loss and neuronal death (Scheltens 
et al., 2021).

Numerous reports have connected AD with insufficient IGF2 
levels. Postmortem brain tissue examination revealed that AD patient 
samples had significantly lower levels of IGF2 mRNA (Steen et al., 
2005) and protein (Pascual-Lucas et al., 2014) in the hippocampus and 
hypothalamus than samples from patients without AD did. 
Subsequent analysis of frontal lobe samples revealed that the degree 
of reduction in IGF2 mRNA was positively associated with Braak 
staging, a method of assessing the histology of brain tissue, and it used 
for assessing the progression of neuropathology. The Braak 
neuropathological stages are now integrated into the AD 
neuropathological diagnostic criteria. This histopathological 
classification describes the hierarchical and cumulative Tau deposition 
in the brain into six stages, with the following topographic hallmarks: 

transentorhinal cortex (Braak I); entorhinal cortex and hippocampus 
CA1 sector (Braak II); hippocampus (extension of damage), amygdala, 
and adjacent neocortical areas (Braak III); associative neocortex 
(initial involvement; Braak IV); associative neocortex (extension of 
damage), notably in temporal, parietal, and occipital areas (Braak V); 
primary motor and sensory fields (Braak VI). These stages coincide 
well with clinical manifestations: stages I–II correspond to preclinical 
AD, III–IV to prodromal dementia, and V–VI to fully installed de 
mentia. IGF2 mRNA levels decreased to approximately 40% of those 
in control subjects at Braak stage 6, indicating dysregulation of IGF2 
signaling in dying neurons (Rivera et al., 2005). Interestingly, IGF2 
levels are increased in the cerebrospinal fluid (CSF) of AD patients, 
and this increase is correlated with the levels of the AD-associated CSF 
biomarkers phosphorylated tau and Aβ42 (Åberg et al., 2015; Heywood 
et al., 2015). IGF2 has been increasingly shown to be essential for 
hippocampal development and function. IGF2 may be  a viable 
treatment option in the future since it is neurotrophic, boosts 
cholinergic stimulation, fosters learning and memory (Figure 1), and 
guards against the buildup of Aβ and its subsequent toxicity.

Underlying mechanism by which IGF2 
improves AD-induced memory 
impairment

IGF2 alleviates cholinergic function 
impairment in AD

Cholinergics are known to influence hippocampal cognition, and 
one of the key pathological events in AD is a reduction in cholinergic 
neurotransmission (Schmeisser et  al., 2012). Extracellular 
acetylcholine levels in the hippocampus almost double during the 
performance of a spatial memory task; additionally, a greater increase 
in acetylcholine is correlated with better task performance (Ragozzino 
et al., 1996). The degeneration of cholinergic neurons in the basal 
forebrain and decreased abundance and activity of choline 
acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine 
in the presynaptic terminal, are the fundamental causes of reduced 
acetylcholine neurotransmission in AD patients. IGF2 has been 
shown to maintain cholinergic neurons and increase ChAT activity. 
These characteristics suggest that IGF2 might provide therapeutic 
benefits in the management and prevention of cholinergic dysfunction 
in AD patients.

For example, acetylcholine neurotransmission is dramatically 
increased by IGF2. IGF2 treatment caused acetylcholine release in the 
frontal cortex, striatum, and hippocampus in ex vivo rat brain slices 
(Kar et al., 1997). The vesicular acetylcholine transporter (vAchT) is 
colocalized in the hippocampus and basal forebrain, and the IGF2 
receptor promotes its release (Hawkes et al., 2006). Additionally, the 
intrinsic responsiveness of basal forebrain cholinergic neurons is 
modulated by IGF2 through an IGF2 receptor-dependent mechanism. 
However, how the electrophysiological characteristics of these neurons 
influence acetylcholine neurotransmission in the cerebral cortex or 
hippocampus is still unknown (Hawkes et al., 2006). To determine 
whether exogenous IGF2 can promote hippocampal acetylcholine 
release in vivo, additional research is needed.

Furthermore, IGF2 might be  able to treat cholinergic neuron 
degeneration, which is a part of the pathophysiology of AD. A week of 
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chronic intracerebroventricular (ICV) IGF2 infusion increased basal 
forebrain cholinergic neurons while increasing hippocampal ChAT 
expression in a transgenic APP/PS1 animal model of AD (Mellott 
et al., 2014). This increase was most likely caused by increased levels of 
bone morphogenic factor-9 (BMP9), a neurotrophic factor that, in the 
same transgenic AD mouse model, has previously been shown to be a 
positive regulator of the health of cholinergic neurons (Burke et al., 
2013). Therefore, IGF2 may both alleviate the cognitive symptoms 
associated with AD and partially restore the cholinergic signaling 
infrastructure that is frequently compromised in AD patients.

IGF2 ameliorates hippocampal neuron 
synaptic function in AD

IGF2 is a strong candidate for controlling synapse formation. 
Dendritic spines are the main subcellular sites of excitatory synapses 
and are crucial for the structure and operation of the brain circuitry 
(Harris and Stevens, 1989). Dendritic morphology and hippocampal 
function, particularly learning and memory, are closely linked. A 
reduction in spine density, together with changes in spine architecture 
and associated synaptic plasticity, is correlated with decreased 
hippocampus-dependent memory (Martel et al., 2016; Uchida et al., 
2014). According to recent research, IGF2 controls the maturation of 
spines and synaptic density in hippocampal neurons because of the 
placement of receptors in dendrites at synaptic locations. Thus, IGF2 
is a novel nuclear factor kappa-B (NF-κB) neuronal target gene that 
regulates spine density (Schmeisser et  al., 2012). In the mouse 
forebrain, conditional deletion of the NF-κB kinase subunit beta 
(IKK) NF-κB-activating enzyme was linked to decreased numbers of 
mature spines and postsynaptic proteins, which are critical for 
synaptic transmission. Furthermore, neurons lacking active IKK 
downregulated IGF2, and within a day, IGF2 treatment quickly 
increased spine formation and restored the decreased synaptic density 
in those neurons (Schmeisser et  al., 2012). This study provides 
evidence that IGF2 may be an NF-κB target that regulates neuronal 
spine density.

Long-term potentiation (LTP), the most effective model for 
examining learning and memory processes at the synaptic level, can 
affect synaptic dendritic excitability (Bliss and Collingridge, 1993). 
LTP, a type of plasticity that increases the synaptic efficacy required 
for memory and is particularly significant for memory storage, is a 
quick process that can last for hours (Shors and Matzel, 1997). Stable 
LTP expression has been documented in the presence of IGF2  in 
previous studies. The benefits of IGF2 therapy on hippocampal LTP 
are eliminated when an IGF2 receptor antibody is used to inhibit IGF2 
(Chen et al., 2011).

Phosphorylation of cAMP responsive element-binding protein 
(CREB), a signaling pathway that is critical for memory 
performance (Bourtchuladze et  al., 1994), is caused by LTP 
induction (Schulz et  al., 1999). Multiple kinases control the 
nuclear factor CREB, which is dormant until it is phosphorylated. 
CREB-dependent gene expression plays a crucial role in mediating 
synaptic plasticity and memory (Bartsch et  al., 1998). 
Phosphorylated CREB levels in the hippocampus increased 
significantly in response to IGF2 therapy. Hippocampal injection 
of antisense CREB inhibited training-dependent induction, 
interfered with memory consolidation, and decreased 

training-induced expression of IGF2 (Chen et al., 2011). These 
findings suggested that CREB regulates IGF2, a downstream target 
gene (Chen et al., 2011). Recent research has demonstrated that 
IGF2 receptor gene expression is negatively regulated by CREB 
(Chen et  al., 2015). However, future research should focus on 
understanding the relationship between CREB and IGF2 as well as 
the potential role that the activation of IGF2 as a downstream gene 
may have in mediating the effects of CREB on memory.

IGF2 improves hippocampal neurogenesis 
in AD

As AD progresses, a notable indicator of neurotrophic loss is a 
decrease in hippocampal neurogenesis (Moreno-Jiménez et al., 2019). 
Age-related decreases in hippocampal neurogenesis occur in 
neurologically healthy individuals but are more pronounced in AD 
patients (Boldrini et al., 2018). Studies in rodents have suggested that 
hippocampal neurogenesis plays a role in numerous brain functions, 
including memory consolidation and neuroprotection, that are 
compromised in AD (Lafenêtre et al., 2010; Shors et al., 2002).

The use of adult patients who are undergoing brain irradiation to 
treat intracranial malignancies is crucial, although the complete 
relevance of adult human hippocampal neurogenesis is unknown. 
Neural stem cell precursors, which give rise to new neurons, are some 
of the non-cancerous cells that die as a result of this therapy. With 
symptoms ranging from mild to severe, approximately half of the 
patients who underwent this operation fulfilled the clinical criterion 
for radiation-induced cognitive decline (RICD) (Cramer et al., 2019). 
These findings adequately show that the loss of adult hippocampal 
neurogenesis is not sufficient to cause substantial cognitive 
impairment, although all radiation-induced cognitive decline (RICD) 
studies have the caveat that cognitive decline may be caused by cancer 
progression rather than radiation treatment. The example of these 
RICD patients may suggest that other disease processes (such as 
synaptic degeneration) have a greater influence on AD-associated 
cognitive decline than diminishing neurogenesis does (Duque et al., 
2022; Nano and Bhaduri, 2022).

IGF2 maintains the number of neural stem cell precursors in the 
neurogenic zones of the hippocampus (Ziegler et al., 2014; Ziegler 
et al., 2012). Although IGF2 in the CSF may have an impact since 
these neurogenic zones are close to the lateral ventricles, these neural 
progenitors release IGF2 in an autocrine/paracrine manner (Ziegler 
et al., 2019). In a mouse model of AD, 7 days of chronic IGF2 infusion 
increased the expression of markers of hippocampal neurogenesis, 
confirming that IGF2 in the CSF can promote neural progenitors in 
the neurogenic zones of the hippocampus (Mellott et  al., 2014). 
IGF2 in the CSF stimulates the growth of cortical neuron progenitors 
in the ventricular lining through a mechanism dependent on the IGF1 
receptor (Lehtinen et al., 2011). An examination of the gene expression 
in hippocampal neural stem cells revealed that enhanced neurogenesis 
was linked to IGF2 overexpression (Bracko et al., 2012). In the same 
study, the proliferative action of IGF2 was reduced by an IGF1 
receptor antagonist, whereas short interfering RNA (siRNA)-mediated 
suppression of IGF2 in the hippocampus slowed the proliferation of 
neural stem cell progenitors.

It may not be the best course of action for preserving cognitive 
capacity to choose a potential preventative treatment on the basis of 
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increased neurogenesis because the role of adult hippocampal 
neurogenesis in human cognition is uncertain (Babcock et al., 2021). 
It is reasonable to assume that a reduction in hippocampal 
neurogenesis eliminates a source of new neurons, which in turn causes 
hippocampal atrophy. Increasing neurogenesis early in AD 
pathogenesis may assist in offsetting less severe structural losses, even 
if the extent of AD neurodegeneration suggests that lost neurons 
cannot be repopulated by neurogenesis.

IGF2 decreases Aβ accumulation in AD

One pathogenic feature of AD is the accumulation of Aβ in the 
parenchyma, which leads to the development of amyloid plaques and 
high levels of soluble Aβ. There is evidence to support the idea that 
IGF2 may guard against neurotoxicity caused by Aβ. Endogenous 
IGF2 secretion was found to mediate neuroprotection against 
increased Aβ secretion in AD mice through an IGF1 receptor-
dependent mechanism (Stein and Johnson, 2002).

In animal models of AD, IGF2 injection has been demonstrated 
to decrease amyloid pathology; however, the routes of 
administration used in these models are not appropriate for human 
use. Seven days of continuous IGF2 treatment decreased the 
number of amyloid plaques in the hippocampus of APP/PS1 mice 
(Mellott et al., 2014). Although soluble Aβ levels in the prefrontal 
and parietotemporal cortices of AD animals were decreased by 
adeno-associated virus (AAV)-mediated overexpression of IGF2 in 
the hippocampus, the hippocampus itself did not exhibit a 
significant decrease in plaque density (Pascual-Lucas et al., 2014). 
Only one intrahippocampal microinjection of IGF2 was needed to 
reduce the amount of soluble Aβ and the density of hippocampal 
plaques after 1 week (Xia et al., 2019). IGF2 has been demonstrated 
to decrease non-amyloid extracellular protein clumps in a mouse 
model of Huntington’s disease, which is consistent with its role in 
Aβ clearance (García-Huerta et al., 2020).

After treatment with media obtained from cultured neurons 
derived from AD animals, hippocampal neurons derived from wild-
type mice in an in vitro model exhibited lower IGF2 expression, likely 
because of the elevated levels of Aβ in the medium (Pascual-Lucas 
et al., 2014). In the same study, Aβ was nearly entirely removed from 
the cell culture medium through viral vector-mediated overexpression 
of IGF2 in hippocampal neurons generated from AD mice through an 
IGF2 receptor-dependent mechanism. AD may include a vicious cycle 
of increasing pathogenic alterations and neurotrophic decline, as 
suggested by the observation that IGF2 attenuates Aβ-induced damage 
and that Aβ decreases IGF2 expression (Standridge, 2006).

One possible way that IGF2 can slow the progression of early AD is 
by attenuating dysregulated amyloid pathology. In fact, prophylactic 
treatment may not be effective unless it interferes with amyloid pathology 
in the presymptomatic stage. Aducanumab effectively reduced amyloid 
plaques but had no effect on cognitive outcomes in patients who already 
exhibited cognitive impairment (Howard and Liu, 2020). Studies have 
shown that intrahippocampal infusion of an antibody-like antagonist to 
oligomeric Aβ improved cognitive performance in rats fed a high-fat, 
high-sugar diet, supporting the theory that targeting Aβ at an earlier 
stage of disease might be more effective (Osborne et al., 2016). Notably, 
the above diet results in increased hippocampal Aβ and cognitive 
impairment (Osborne et al., 2016).

Despite these results, IGF2 is found in a subset of neuritic 
plaques containing Aβ in both AD brains and mutant APP 
transgenic mice (Amritraj et  al., 2009; Kar et  al., 2006), thus 
suggesting a potential role for the receptor in Aβ metabolism. In 
contrast to the receptor, the levels of IGF2 mRNA/peptide are 
reduced in AD brains (Pascual-Lucas et al., 2014; Rivera et al., 2005) 
and APP transgenic mice (Pascual-Lucas et al., 2014). Additionally, 
in experiments with two different lines of mutant APP transgenic 
mice, it has been demonstrated that enhancing the levels of IGF2 in 
the brain can ameliorate Aβ-containing neuritic plaques, synaptic 
deficits, and cognitive impairments (Mellott et al., 2014). Since IGF2 
is capable of enhancing working memory through the IGF2 receptor 
(Chen et al., 2011), it is highly probable that the receptor plays a role 
in regulating both cognitive functions and Aβ metabolism related to 
AD pathology. Alternatively, considering the evidence that IGF2/
M6P receptors are engaged in the intracellular trafficking of 
lysosomal enzymes like cathepsins B and D, which are known to 
regulate Aβ metabolism (El-Shewy and Luttrell, 2009; Haque et al., 
2008; Nixon and Cataldo, 2006), it is likely that receptor 
overexpression can affect the amyloidogenic processing of APP by 
modifying the levels and/or redistribution of the enzymes, as is the 
case with cation-dependent M6P receptor overexpression (Mathews 
et al., 2002).

Furthermore, lysosomal enzyme leakage into the cytoplasm 
frequently results in cell death (Boya and Kroemer, 2008; 
Johansson et al., 2010). Additionally, the degradation of neurons 
in AD brains has been linked to chronic lysosomal activity. Given 
that IGF2 plays multiple roles, it is probable that unchanged 
receptor levels are the result of either fast turnover of the receptor 
or a compromise of its other roles at the expense of lysosomal 
enzyme delivery. As an alternative, other sorting receptors, such 
as the cation-dependent M6P receptor or sortilin A receptor, may 
be able to transport a portion of lysosomal enzymes. The cation-
dependent IGF2 receptor, the levels of which are increased in 
susceptible neurons of the AD brain, has been shown to reroute 
certain lysosomal hydrolases to early endosomes and increase Aβ 
peptide secretion in cultured fibroblasts (Cataldo et  al., 1997; 
Mathews et  al., 2002). Therefore, more research is needed to 
determine the proportional importance of the IGF2 receptor in 
controlling lysosomal enzyme trafficking in AD pathogenesis 
(Table 1).

Potential use of IGF2 in human treatments

IGF2 is essential for both fetal development and mammalian 
growth; it encourages cellular growth and survival and is a key 
regulator of bone formation. To create therapeutic treatments that 
target IGF activity in disease, a thorough understanding of how 
IGF2 binds with its receptors and induces downstream signaling 
activation is important. Currently, most methods aim to suppress 
IGF action by obstructing the binding of IGF1 receptor antibodies, 
which impedes ligand binding and promotes receptor 
internalization (Livingstone, 2013). For example, IGF2 inhibitors 
have been shown to reduce the growth of IGF2-dependent cancers. 
However, increases in IGF2 signaling can cause resistance to 
treatment (Belfiore et  al., 2009; Gualberto and Pollak, 2009), 
emphasizing the need for IGF2 inhibitors that operate through 
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both IGF1 receptors. These investigations will provide more 
insight into the specific mechanism by which IGF2 binds to the 
IGF1 receptor with high affinity and causes its activation. These 
studies will also offer recommendations for the development of 
inhibitors or allosteric regulators that could be  used to treat 
diseases regulated by IGF2.

Conclusion

IGF2 is necessary for the establishment of memory in rodents, 
and IGF2 treatment enhances memory. Neurodegenerative 
illnesses in humans are accompanied by changes in the levels of 
brain or circulating IGF2, indicating the critical role of IGF2 in 
maintaining CNS health and effective brain functions. Numerous 
symptoms in animal models of neurodevelopmental and 
neurodegenerative illnesses are improved by IGF2 treatment. The 
IGF2 receptor is highly abundant in neurons and is involved in 
lysosomal targeting, protein synthesis, and endosomal trafficking. 
However, little is known about the roles that IGF2 and its receptor 
play in the brains of different species. Subsequent research 
endeavors should clarify the distribution of the expression and 
modes of action of these proteins in neuropsychiatric disease-
affected and healthy brains.

Prior research has focused mostly on IGF1 and insulin. Given 
the strong expression of IGF2  in the brain, further research is 
needed to better understand its role (Russo et  al., 2005). The 
theory that IGF2 functions in the brain in the same way that it 
does in the periphery is not well supported by current data. 
Crucially, actions mediated by the neuronal IGF2 receptor differ 
from those regulated by its counterparts in peripheral and glial 
tissues (Zhao et al., 1999). In summary, this literature analysis 
offers evidence of the advantageous impact that IGF2 may have if 
it is injected directly into the brain to produce pro-cognitive 
effects. Future research should explore the possibility of long-term 
IGF2 therapy as a prophylactic measure for AD.
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