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The wave nature of the action
potential

Vitaly L. Galinsky1* and Lawrence R. Frank1,2

1Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA,

United States, 2Center for Functional MRI, University of California at San Diego, La Jolla, CA,

United States

An alternative to the standard Hodgkin-Huxley model for the action potential in

axons is presented. It is based on our recently developed theory of electric field

wave propagation in anisotropic and inhomogeneous brain tissues, which has

been shown to explain a broad range of observed coherent synchronous brain

electrical processes. We demonstrate that this theory also explains the spiking

behavior of single neurons, thereby bridging the gap between the fundamental

element of brain electrical activity—the neuron—and large-scale coherent

synchronous electrical activity. We demonstrate that our recently developed

theory of electric field wave propagation in anisotropic and inhomogeneous

brain tissues, which has been shown to explain a broad range of observed

coherent synchronous brain electrical processes, also applies to the spiking

behavior of single neurons, thus bridging the gap between the fundamental

element of brain electrical activity (the neuron) and large-scale coherent

synchronous electrical activity. Our analysis indicates that a non-linear system

with several small parameters can mathematically describe the membrane

interface of the axonal cellular system. This enables the rigorous derivation of

an accurate yet simpler non-linear model through the formal small-parameter

expansion. The resulting action potential model exhibits a smooth, continuous

transition from the linear wave oscillatory regime to the non-linear spiking

regime, as well as a critical transition to a non-oscillatory regime. These

transitions occur with changes in the criticality parameter and include several

di�erent bifurcation types, representative of the various experimentally detected

neuron types. This new theory addresses the limitations of the Hodgkin-

Huxley model, including its inability to explain extracellular spiking, e�cient

brain synchronization, saltatory conduction alongmyelinated axons, and various

other observed coherent macroscopic brain electrical phenomena. We also

demonstrate that our approach recovers the standard cable axon theory, utilizing

the relatively simple assumptions of piece-wise homogeneity and isotropy.

However, the di�usion process described by the cable equation is not capable of

supporting action potential propagation across a wide range of experimentally

reported axon parameters.
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1 Introduction

The Hodgkin-Huxley model for axonal electrical signaling (Hodgkin and Huxley,

1952) is a cornerstone of modern neuroscience and serves as the basis for the development

of a wide range of complex models of brain electrical communication. This model, and

a host of variations (e.g., Fitzhugh, 1961; Nagumo et al., 1962; Morris and Lecar, 1981;

Izhikevich, 2003), (hereafter collectively referred to as “HH”) is based on the postulate that
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axons possess multiple voltage-gated channels that open and close

in synchrony thereby producing a coherent persistent electrical

wave or “spike” traveling along the axon. To parameterize

experimentally observed spikes in support of this view, HH

developed a model described by a reaction-diffusion process, where

the non-linear reactive part with multiple parameters (the so-

called “point neuron” HH model) describes the opening and

closing of voltage-gated channels and, hence, provides very flexible

interface for fitting locally measured currents to a wide variety of

experimental conditions. The propagation of these local voltage

spikes is then obtained by adding a linear diffusive term from

the so-called “cable equation” (Hodgkin et al., 1946). However,

despite the general utility, and universal acceptance of both parts,

either individually or in concert as the joint diffusive-reactive HH

model, several incontrovertible facts suggest an incompatibility of

the joint HH model with observed brain electrical activity, such

as its inability to account for extracellular spiking, efficient brain

synchronization, and saltatory conduction along myelinated axons,

to name just a few.

In retrospect, this should not be surprising, as neither reactive

(“point neuron”) nor diffusive (“cable equation”) parts of the HH

model were derived from first physical principles, but were ad hoc

constructions based on a very simple model motivated more by

its flexibility than its adherence to any first physical principles

of electrodynamics. After all, a general multiparametric reaction-

diffusion equation constructed with multiple time constants,

thresholds, and power laws can empirically fit a multitude of

physical systems, including the hypothesized neuron with multiple

voltage-gated channels, even if it is not the correct physical

model. That trouble was brewing should have been evident from

the fact that this asynchronous, seemingly incoherent spiking

activity at scales of a single neuron appeared inconsistent with

observed oscillatory and wave-like patterns that are coherent across

a wide range of spatial and temporal scales (Buzsaki, 2006).

Attempts to reconcile these seemingly incompatible views led to

the development of networks of incoherently spiking neurons

(Strassberg and DeFelice, 1993; Meunier and Segev, 2002; Yamazaki

et al., 2022). have However, because the original “point neuron”

HH model is too complicated to describe even relatively small

networks, these networks models were modified to be based on a

simplified but now ubiquitous model of a leaky integrate-and-fire

(LIF) neuron where a single threshold and time constant replaces

all the multiple gates, currents, channels, and thresholds (Fitzhugh,

1961; Nagumo et al., 1962; Morris and Lecar, 1981; Izhikevich,

2003; Gerstner et al., 2014; Kulkarni et al., 2020; Kim and Sejnowski,

2021). The unfortunate consequence is that, rather than reconciling

the two views, they now became incompatible, as LIF equations

do not have a mechanism for any type of non-linear resonance

to generate the sustained coherent traveling waves characteristic

of neuronal “spiking” (Galinsky and Frank, 2023b). Although it is

possible to obtain spatio-temporal patterns by heavily filtering the

spiking data (Davis et al., 2021), the emergence of such pattern can

be attributed to filtering rather than to any possible compatibility

between LIF and wave models.

The source of these difficulties can be traced back to the

lack of an accurate physical model of electric field dynamics

that includes wave propagation and interaction in the anisotropic

and inhomogeneous neural tissues. To address this deficiency,

we developed such a theory that predicted the existence of

previously undiscovered weakly evanescent transverse cortical

brain waves (WETCOWs) generated at surfaces (or interfaces)

in neural tissues as a direct consequence of their anisotropy

and inhomogeneity. This theory was shown to describe a wide

range of observed coherent macroscopic brain electrical activity,

including extracellular spiking, hypersynchronous spiking and

bursting, neuronal avalanches, and cortical wave loops (Galinsky

and Frank, 2020b,a, 2021a,b), where it was shown that the

networks of non-linear oscillators for those larger scale processes

with the same properties—as the axonal model presented in this

study—allowed for significantly more efficient synchronization

than point neurons, HH-based neurons, or Kuramoto model.

However, although the relationship to wave propagation in single

neurons was implicit in these studies (Galinsky and Frank, 2020b,a,

2021a,b), it was not demonstrated explicitly. We do so in this

current study by applying the WETCOW theory to an analytical

model of a single neuron with a lipid bilayer with an anisotropic

membrane conductivity. The consequence is the generation of

waves of multiple frequencies and wave numbers propagating in

the lipid bilayer axonal membrane that create coherent non-linear

wave states consistent with the spatial-temporal characteristics of

experimentally observed single neuron action potentials.

We emphasize that our theory is not to be interpreted as

suggesting that the well-established and experimentally observed

ion channel dynamics are irrelevant, but rather that they play

a secondary role and that the fundamental mechanism of action

potential generation can be attributed to the electrodynamic

properties of the membrane itself. Our wave mechanism requires

anisotropic current flow through themembrane. If such anisotropic

current behavior can be attributed to properties other than ion

channels, then our mechanism will still predict the existence of

spiking. However, the specific details will depend on the specific

details of the anisotropy. However, for this study, we have focused

on the anisotropy created by the ion channels, as their existence

and dynamics are well described, making them the easiest and the

most natural way to provide this type of anisotropy. Thus, we do

not claim that action potentials can emerge in membranes entirely

without ion channels, but rather that the role of the ion channels

may be more auxiliary than previously thought.

Of potential relevance to this view, the experimental results of

time recording of extracellular waveforms reported, for example,

by Gold et al. (2009) or more recently by Jung et al. (2023),

have identified non-negative extracellular waveforms, such as

positive and biphasic spikes, which may not directly correlate

with traditional membrane potential changes. Our mechanisms

can easily explain these waveforms without relying on the use

of kinetic properties or even the mere presence of ion channels.

We acknowledge that the HH model is not designed to model

extracellular spiking, which probably means that the number

of parameters in the HH model is insufficient. However, our

demonstration that our more general model, which produces

extracellular spiking as shown in our previous studies, also presents

a simple view of the action potential, as presented in this study,

is a central conclusion of this study and supports the utility of

our model. It is possible to use more parameters, including all
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the voltages and cell geometries, to reconstruct the extracellular

signal. Of course, it is always possible to keep adding even more

parameters, for example, set positions and velocities of all free

(and not free) electrons, ions (free and bound), charged and polar

molecules, etc., across the whole brain volume and reconstruct the

electric fields they produce with the highest possible accuracy and

detail. However, this kind of simulation (and speculation) is outside

the objectives of this study. This study aims to demonstrate that

even without a more thorough simulation, the key basic properties

of the action potential can be described by basic physics using a

limited number of parameters.

Furthermore, having derived this directly from first principles

that incorporate tissue properties, we are able to directly predict

the well-known observation that signals propagate faster along

myelinated axons, a result not attainable with the diffusive part of

the HH model (cable equation). From a broader perspective, the

demonstration that these coherent persistent traveling non-linear

waves are a consequence solely of the electromagnetic properties

of the neuronal tissues suggests that it may be these waves that

modify states of multiple cross-membrane channels, causing them

to open and close, rather the other way around, which would be a

fundamental shift in the understanding of brain signaling.

We mention that although the traditional understanding of

neuronal signaling has been dominated by the diffusion-reaction

HH paradigm, there have been several attempts to address those

deficiencies by exploring alternative approaches that incorporate

the mechanical aspects of neuronal function, leading to the

development of soliton-based models. These models suggest that

action potentials are not purely electrical phenomena but also

involve mechanical changes in the cell membrane. The soliton

model, introduced by Heimburg and Jackson (2005), proposes

that action potentials propagate as solitons, or solitary waves.

This model suggests that the action potential is a sound pulse

traveling along the axon membrane, accompanied by local changes

in membrane density and thickness. Unlike the HH model, which

attributes refractory periods to the dynamics of voltage-gated ion

channels, the soliton theory proposes a mechanical basis for this

phenomenon.

Vargas et al. (2011) explored periodic solutions and refractory

periods in the soliton theory, providing insights into how

mechanical aspects might influence action potential timing and

frequency. Their study suggests that refractory periods emerge as

a consequence of conserving the overall length and mass of the

nerve, resulting in mechanical changes in membrane density and

thickness that require time to recover after the passage of an action

potential.

Appali et al. (2012) compared the HH model and the

soliton theory, highlighting the differences in their approaches

to explaining the propagation of action potentials. While the

HH model relies on the sequential opening of voltage-gated

ion channels, the soliton model proposes the propagation of

mechanical waves. This comparison underscores the potential

complementarity of these models in understanding the complex

nature of neuronal signaling.

Recent study by Zhou et al. (2021) has further expanded

our understanding of the electromechanical nature of neurons by

investigating the role of piezoelectric sensing in auditory neurons.

Their research suggests a connection between mechanical stimuli

and electrical responses, potentially bridging the gap between the

electrical and mechanical views of action potential propagation.

While the soliton model offers an intriguing perspective on

the mechanical aspects of action potential propagation, it faces

significant challenges in fully replacing the established HH model.

Our model is capable of overcoming these challenges by predicting

a mechanism by which low-amplitude waves can generate high-

amplitude coherent propagating waves by purely electrostatic

processes. In this regard, our model shows that the action potential

can be described as a phase transition front (and hence the change

of capacitance, which triggers ionic motion) moving along the lipid

bilayer. As neurons are electrically, mechanically, and thermally

coupled, our model provides a general formalism that may lead to

a more comprehensive understanding of neuronal signaling that

integrates both electrical and mechanical components, potentially

reconciling these seemingly disparate views of action potential

propagation. Due to this prediction for the action potential is based

on our general model that also predicts large-scale coherences

across brain regions, it bridges the gap between the local and global

dynamics of observed brain activity.

2 Theory

The approach is similar to that developed in our general

theory (Galinsky and Frank, 2020b,a, 2021a,c,b, 2023b,a,c) and

is presented in this study. We begin with the general form of

electromagnetic activity (Maxwell’s equations), from which we

derive the charge continuity equation in complex anisotropic and

inhomogeneous tissues. This equation is then solved within a

cylindrical geometry representation of an idealized neuron with

an inhomogeneous and anisotropic membrane of finite thickness,

surrounded on its inner and outer surfaces by homogeneous

isotropically conducting fluids. The key here is the inclusion

of a membrane conductivity tensor that provides a reasonable

approximation to the electrical properties of a lipid bilayer.We then

solve the simple linear problem, which demonstrates the existence

of surface waves even for this reduced solution. We then extend

this to the more realistic non-linear problem and demonstrate the

existence of surface waves whose spatiotemporal characteristics

match those of observed data of neuronal spiking, though now

derived from first principles and thus directly related to neuronal

geometry and microstructure.

2.1 The charge continuity equation

In the most general form, a description of electromagnetic

activity in an axon can be formulated through Maxwell equations

in a medium which is appropriate for both extracellular and

intracellular regions (Scott, 1975; Bédard et al., 2004):

∇ · D = ρ, ∇ ×H = J + ∂D

∂t
⇒ (1)

∂ρ

∂t
+ ∇ · J = 0.
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Using the electrostatic potential E = −∇φ, Ohm’s law J = σ ·E
(where σ ≡ {σij} is an anisotropic conductivity tensor), a linear

electrostatic property for brain tissue D = εE, assuming that the

scalar permittivity ε is a “good” function (i.e., it does not go to

zero or infinity everywhere) and making the change of variables

∂x → ε∂x′, the charge continuity equation for the spatial-temporal

evolution of the potential φ can be written in terms of a permittivity

scaled conductivity tensor 6 = {σij/ε} as

∂

∂t

(

∇2φ
)

= −∇ · 6 · ∇φ + F , (2)

where we have allowed for the influence of other sources by the

inclusion of a source (or forcing) termF , that may have both linear

and non-linear parts. This can be written in tensor notation as

∂t∂
2
i φ + ∂i

(

6ij∂jφ
)

= 0, (3)

where repeating indices denotes summation and the forcing term is

not included (see Appendix 1 for more details).

2.2 Axon model

Both Equations 2, 3 are appropriate for anisotropic and

inhomogeneous media in general geometry. However, for this

study, it is sufficient to consider an idealized model for an axon

represented by a cylindrical shell of diameter d created by a

membrane of thickness δ/2 (that for myelinated axons includes

the thickness of the myelin layers as well) that separates two

homogeneous isotropically conducting fluids inside and outside of

the shell with scaled conductivities6i = σi/εi and6e = σe/εe. The

conductivity within the thin membrane is highly anisotropic and

is specified in the tensor form of the non-symmetric conductivity

tensor 6
m, as given by Equation 11.

It should be noted that the assumption of homogeneous

isotropic conductivity as well as permittivity in the external and

internal fluids surrounding the cellular membranes is, of course,

a standard simplification used by all diffusion cable neuron

models coupled with reactive point HH sources. However, this

simplification does not preclude the existence of asymmetrical

and inhomogeneous distribution of charges in geometries like the

membrane/fluid interface used in ourmodel. As amatter of fact, the

equilibrium solution for the electrostatic potential used as a starting

point in our model necessarily requires the inhomogeneous ionic

distribution in the membrane vicinity.

Experimental measurements have shown that extracellular and

intracellular conductivities are similar to that of sea water (∼4

S/m), or more precisely in the range from 0.28 to 2.9 S/m for

extracellular σe and intracellular σi (Scott, 1975; Bédard et al.,

2004), and permittivities εe and εi are around 7× 10−10 F/m. Thus,

both 6i and 6e are very large, on the order of 1010 Hz.

The conductivity of the membrane is significantly smaller. The

values vary and can be assumed to be in the range from as low

as 10−13 S/m or as high as 10−5 S/m (Scott, 1975), with typical

values around 10−9 S/m (Bédard et al., 2004). With comparable

or slightly smaller values for the membrane dielectric permittivity

εm ∼ 10−11 F/m it gives for the membrane scaled conductivity

|6| range estimate from 10−2 to 102 Hz, hence the ratio of the

conductivities of the membrane and the extracellular/intracellular

media is as small as 10−8 to 10−12.

Due to this significant difference in scaled conductivities

between the membrane and the surrounding fluids, for the analysis

of electrodynamic processes near the membrane in the frequency

range characteristic of axonal signaling it can be reasonably

assumed that both extracellular and intracellular fluids act as very

good (even perfect) conductors that keep the potential drop across

the membrane at the resting potential value of −V0 (V0 ∼65 mV).

This allows using all variables normalized to the resting potential

and scaled conductivity tensor of the internal fluids. Specifically,

all the variables in Equations 2, 3 are normalized as r → r/d,

6ij → 6ij/6i, t → t6i, and φ → φ/V0. We will also introduce

normalized frequencies (ω → ω/6i) and radial (κ → κd) and

axial (k → kd) wave numbers that will be used later. For the

normalized membrane thickness (δ → δ/d), it will be assumed that

δ < 1. Often the difference between d and δ is significant so that

δ ≪ 1.

A simplified schematic picture of this anisotropic electric

field—electric current geometry is shown in Figure 1, although it is

shown not to scale as δ ≪ 1 and all the anisotropic currents should

be shown in the very thin boundary layer and not far outside of the

1 ≤ r ≤ 1 + δ ring. Nevertheless, the schematics can be useful to

emphasize the highly anisotropic structure of the voltage-current

relationship when the membrane interface is present.

2.3 Axon field equations

The solution to the charge continuity Equation 3 within this

anisotropic and inhomogeneous axon geometry is sufficient to

explain the generation of surface waves that propagate through

the extracellular-intracellular membrane interface. We emphasize

that this is a derivation from first physical principles, in contrast to

the standard model, which is constructed from multiple empirical

equations with multiple empirically fitted constants (Hodgkin

and Huxley, 1952). To simplify the math in a similar fashion as

our previously published study (Galinsky and Frank, 2020b) and

provide a more intuitively clear result, we will assume the axon to

be described by an axially symmetric cylindrical geometry (Scott,

1975), although, generally speaking, for δ ≪ 1 this is not necessary.

Defining

u ≡







1
r

∂
∂r r

∂
∂z






, 6 ≡

(

6rr 6rz

6zr 6zz

)

, v ≡







∂φ
∂r

∂φ
∂z






(4)

Equation 2 can be written for a single axon in cylindrical (r, z)

coordinate system as (see Appendix 2 for more details)

∂

∂t

(

ut · v
)

= −ut · 6 · v (5)

2.4 Di�usion limits of the cable theory

A standard accepted model for the propagation of the action

potential spike is the so-called cable theory, an approach developed
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FIGURE 1

Schematic picture of an axial (top) and a radial (bottom) sections of

the axon. A radial component of an electric field EE inside the axon

produces only a radial component of a current EJ with typical

isotropic conductivity. However, the presence of cross-membrane

channels results in the appearance of non-isotropic dependence of

current as a response to a supplied electric field, giving rise to axial

(top) and azimuthal (bottom) components of the current.

by Hodgkin et al. (1946) to model the passive conduction based

on theoretical study on submarine telegraph cables by William

Thompson (Lord Kelvin). This study was further developed and

extended to dendritic spines by Rall (1962, 2011) who popularized

this approach which has now become an established model in

description of neuronal communication (Segev and London, 2000;

Holmes, 2014; Pagkalos et al., 2023; Spruston et al., 2013) with a

host of variations, such as double cables Cohen et al. (2020); Lim

and Rasband (2020).

We point out that those variations, “double-cable” model in

particular, strictly speaking, do not follow “HH-based formalism”

in explaining the saltatory condition. Cohen et al. (2020) made an

admirable attempt to salvage the diffusive-reactive (cable/Hodkin-

Huxley) description using multiple interconnected RC circuits to

add and mix currents/voltage drops with various phase shifts, thus

effectively converting a purely diffusive cable model into a model

that permits oscillatory/wave regime by creating an RC oscillator.

Due to the ubiquity and universal acceptance of the linear

cable theory, we take a brief digression in this section to

demonstrate that it is derivable from our more general theory, as

described by Equation 5, through several simplifications. In doing

so, we reveal that the standard cable theory does not support

sustained propagation of the action potential in a wide range of

experimentally reported physiological parameters.

2.4.1 Derivation of the cable equation from
Equation 5

The importance of tissue anisotropy and inhomogeneity and a

complete non-linear analysis to the generation of persistent surface

waves is emphasized by the fact that the cable equation, which does

not produce such waves, can be recovered from our general model

(Equation 5) by ignoring important components that contribute to

these properties, namely, the non-diagonal and non-linear terms in

the conductivity tensors.

Ignoring all non-diagonal and non-linear terms in the

conductivity tensors and assuming that only 60
⊥ and 60

‖ terms are

non-zero, so that 6 in Equation 4,

6 ≡
(

60
⊥ 0

0 60
‖

)

, (6)

the equation for the electric field potential from Equation becomes

5,

∂

∂t

(

1

r

∂

∂r
r
∂φ

∂r
+ ∂2φ

∂z2

)

= −60
⊥
1

r

∂

∂r
r
∂φ

∂r
− 60

‖
∂2φ

∂z2
. (7)

As cable equation is not supposed to follow the exact radial

dependence of the φ, we can use Equation 7 and obtain its

approximate form in the limit of a very thin lipid bilayer, that is,

δ≪1 and assuming that the largest radial variations of the potential

φ are located around the membrane. This enables an approximate

solution where the time dependence of the field is wholly contained

in the axial dimension. At the same time, the radial component

is constructed to meet some minimal boundary conditions based

on simple geometric constraints. Therefore, we can search for the

approximate solution separable in the radial and axial dimensions

of the form φ = φ′
r(r)φa(z, t), where φ′

r(r) is equal to −1 for

0 ≤ r ≤ 1, transitions from -1 to 0 for 1 ≤ r ≤ 1 + δ, that is,

φ′
r(r) = −1+ln r/ ln (1+ δ), and equals 0 for r > 1+δ. Multiplying

Equation 7 by φ′
r(r)r and integrating it from 0 to infinity, we obtain

the cable equation in the usual form (Rall, 2011; Holmes, 2014) as

1

δ

∂φa

∂t
+ 60

⊥
δ

φa =
60

‖
2

∂2φa

∂z2
, (8)

where we used

∞
∫

0

1

r

∂

∂r
r
∂φ

∂r
φ′
r(r)rdr = −φa

1+δ
∫

1

∣

∣

∣

∣

∂φ′
r

∂r

∣

∣

∣

∣

2

rdr ≈ −φa

δ
, (9)

∞
∫

0

φφ′
r(r)rdr = φa

1+δ
∫

0

|φ′
r(r)|2rdr ≈

φa

2
. (10)
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and have ignored the second term under time derivative in

Equation 7 because it is negligible when the axial scales of variation

of the potential φa is larger than

√

δ/2. We thus recover the

cable Equation 8 from 7, where 60
⊥ corresponds to the normalized

membrane scaled conductivity and 60
‖ equals to the normalized

scaled conductivity of the axon internal fluid (i.e., 60
‖ ∼ 1 in

dimensionless units). The terms in Equation 7 from Equation 8

directly correspond to dissipative (no positive feedback) terms of

3⊥ (Equations 20–22) in the limit k2 ≪ κ2 ∼ 1/δ2.

2.4.2 Length and time scale of the cable equation
The cable equation describes that the height of the action

potential peak decays with time t as
√
t0/t, where the shortest

time t0 ∼ 1/60
‖ corresponds to the narrowest (

√

δ/2) and the

tallest (φa(t0, z0) = φm) shape of the action potential peak that

the cable equation is capable of describing (and when the cable

equation approximation is valid). The decay is actually even faster

as it includes an exponential term exp(−60
⊥t), but the approximate

time dependence will be valid when t < 1/60
⊥ and, as the ratio

of the cross-membrane to the intracellular conductivities is very

small (10−8 to 10−12) (Bédard et al., 2004), we can safely use

this approximation in all our estimates below. The dimensionless

diffusion coefficient is then equal to 60
‖δ/2, which allows us to find

the time dependence of the axial diffusion length (the half-width of

the pulse) as 1z ∼
√

t60
‖δ/2.

The ratio of the differences of the action potential firing

threshold to the total peak above the resting potential in the “point

neuron” HH-model is equal to approximately 1φa/φm ∼ 0.15

(resting potential is –70 mV, threshold –55 mV, peak 30 mV).

Therefore, the maximum time until the diffusively spreading pulse

reaches the threshold is approximately ∼ t0φ
2
m/1φa

2 ≪ 1/60
⊥,

giving the maximum diffusion length 1z ∼
√

δ/2φm/1φa.

2.4.3 Myelinated axons
For a myelinated 20 µm diameter axon with the thickest

myelin layer (δ ∼ 0.4) this gives the maximum diffusion length

of approximately 60 µm, which is significantly shorter than the

internodal length of ∼ 2mm between the Nodes of Ranvier of

the typical 20 µm axon. Decreasing the myelin thickness will

further reduce the maximum propagation length. Naïve attempts

to adjust the threshold parameters of the “point neuron” HH-

model to accommodate a longer maximum diffusion length will

quickly reveal significant model inconsistencies. For example, using

the typical average ranges of internodal distances for different

axon diameters (350 µm for 12 µm axon diameter, 205 µm for

3.4 µm axon diameter (Waxman and Melker, 1971), to 139 µm

for 0.82 µm axon diameter (Arancibia-Cárcamo et al., 2017))

it can be easily seen that it will require to decrease the firing

threshold in 10–60 times (350 × 0.15/12/

√

δ/2 ∼ 10, 205 ×
0.15/3.4/

√

δ/2 ∼ 20, 139 × 0.15/0.82/

√

δ/2 ∼ 60), hence will

require exceedingly (and unrealistically) low-threshold voltages

in the range of -68.5 to -69.75 mV instead of -55 mV for the

resting potential of –70 mV. The conclusion is therefore that the

amount of diffusion provided by standard cable theory for action

potential spike generation by thresholded reactive “point neuron”

HHmechanism with experimentally confirmed parameter values is

generally incompatible with the process of saltatory conduction.

2.4.4 Unmyelinated axons
For unmyelinated axon the original “point neuron” HH model

assumes that there are 60 Na+ channels and 18 K+ channels

for every µm2 of membrane (Sengupta et al., 2013). A more

detailed analyses of variations of Na+ channels density show that

in unmyelinated hippocampal axons, the density increases tenfold

from the soma with 2.6 channels/µm2, through the proximal axon

(25 channels/µm2), to the distal axon (46.1 channels/µm2) (Hu

and Jonas, 2014; Freeman et al., 2016). Therefore, it can be safely

assumed that the average linear distance between ion channels

for an unmyelinated axon change from approximately 0.1 µm

to 0.7 µm (∼ 1/
√
2.6). For a 500 µm diameter giant squid

axon with 10 nm membrane, like the one used by Hodgkin and

Huxley in their seminal work, the maximum diffusion length is

approximately
√

10−2/2/500 × 500/0.15 ∼ 10.5µm, which is

significantly above the average linear inter-channel distance of

0.1 µm, thus gives enough flexibility to successfully do a mind

entertaining exercise of fitting diffusive and reactive processes

together. However, for thin unmyelinated pyramidal tract dendrites

with around 0.2 µm diameter and 5-nm membrane thickness (δ ∼
0.025), the maximum propagation distance is approximately 0.15

µm, that is, several times less than 5 Na+ channels/µm2 and 5 K+

channels/µm2 density of pyramidal neuron (Arhem et al., 2006)

would provide.

The conclusion is that the action potential propagation model

described by cable theory is incompatible with experimentally

measured physiological parameters of both myelinated and

unmyelinated axons. On the contrary, our linear wave model,

developed from first principles using measured physiological tissue

parameters, is capable of describing wave propagation across all

these parameter ranges, as will be demonstrated in the sections that

follow.

2.5 The conductivity tensor of the lipid
bilayer

As shown in our previous study (Galinsky and Frank,

2020b), the existence of electric field surface waves is predicated

on the inhomogeneity and anisotropy of the neural tissues.

Remarkably, though, this does not require an exceedingly accurate

characterization of tissue microstructure. Instead, local average

tissue parameterizations are sufficient to make accurate predictions

of complex regional and long-range non-linear wave propagation

properties. This is an important point, as a substantial body of

literature suggests the need for highly precise, complex tissue

models to accurately predict observed coherent macroscopic

electromagnetic brain activity. As demonstrated in our previous

publications Galinsky and Frank (2020b,a, 2021a,c,b, 2023b,a,c),

this is not the case.

The same holds true for the single axon case considered here,

where a reasonable model for the membrane conductivity tensor
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6
m can be constructed using a set of fairly general assumptions,

resulting in the generation of surface waves in the lipid membrane.

First, it is assumed that both the along-axon (i.e., axial z) and

across-axon (i.e., radial r) electric fields will generate currents

not only along the electric filed direction (i.e., along z and r,

respectively) but will also generate currents that are perpendicular

to the field (i.e., along r and z, respectively) due to anisotropy

and inhomogeneity of axonal geometry, as shown in Figure 1. That

is, for radial (along r) fields 6zr 6= 0 and for axial (along z)

fields 6rz 6= 0. Based only on these symmetry considerations, the

membrane conductivity tensor6
m is assumed to have the following

non-diagonal, non-symmetric form

6
m =

(

6rr(9) 6rz(9)

6zr(9) 6zz(9)

)

, (11)

where we indicate the fact that Ohm’s law inside the membrane

is non-linear by adding a dependence of the conductivity tensor

components on some functional form 9[φ] of scalar potential φ

(that may be either scalar 9 = φ, or vector 9 = −∇φ, or even

more complex). The currents generated parallel to the field are not

expected to be equal (i.e., 6rr 6= 6zz) nor would be equal the

currents generated perpendicular to the field (6rz 6= 6zr).

2.6 Solutions to the field equations

Due to the vast difference in scaled conductance between

the inside and outside the bilayer membrane, the assumption

of a perfectly conducting boundary condition on both sides of

the membrane bilayer is accurate, and explicit solutions for the

extracellular and intracellular spaces are not required. It is only

necessary to solve Equation 5 for inside the ring 1 ≤ r ≤ 1 + δ.

We will seek the solution in the form

φ(r, z, t) = φ0(r)+ φ′(r, z, t), (12)

φ0(r) = ln r

ln(1+ δ)
≈ 1

δ
ln r, (13)

where φ0(r) is a stationary, time independent (or equilibrium)

solution of the Equation 5 inside the ring 1 ≤ r ≤ 1 + δ, such

that φ0(r) ≤ 1 anywhere inside the ring whereas outside the ring

φ0(r) = 0 for r ≤ 1 and φ0(r) = 1 for r ≥ 1+ δ (see Appendix 3.1

for more details).

The solution to the field equations can be approached at two

levels of accuracy, a simplified but intuitive linear version, and

a more accurate but complex non-linear version, by formally

expanding the non-linear dependence of the conductivity tensor in

dimensionless form into a Taylor series as

6(9) = 6
0 + 6

′(9 − 90)+ . . . , (14)

6
0 ≡ 6(9)|9=90

and 6
′ ≡ ∂6(9)

∂9

∣

∣

∣

∣

9=90

(15)

where 90 should be taken as an average across the membrane

for any particular functional form of equilibrium potential

dependence, that is 90 = 9[φ0(r)]. Equation 14 has been

constructed with an adjustable normalization V to facilitate the

inclusion of external conditions such as those prevalent in a wide

range of experiments. For example, it can be set to the equilibrium

value of a voltage drop across the membrane for voltage-clamping

experiments.

Without a loss of generality we can assume that the zeroth

order terms are axisymmetric, with average dimensionless cross-

membrane conductivity 0 < 60
rr ≡ 60 ≪ 1, average conductivity

along the membrane (that possibly is significantly smaller) 60
zz =

ǫ60
rr (ǫ < 1), and zero off-diagonal terms 60

rz = 60
zr = 0, that is,

6
0 = 60

(

1 0

0 ǫ

)

. (16)

With this positive definite matrix form used for 6
0, the

only solution that can be obtained from Equation 5 corresponds

to the loss of electrostatic field energy in the membrane. To

compensate for this loss and maintain the potential difference

across the membrane at a fixed “resting potential” level, additional

mechanisms are required. In axons, this occurs through the

addition of energy via adenosine triphosphate (ATP) mediated

diffusion. For this study, we are not interested in the details of this

process, and we will assume that it provides the required amount of

energy to maintain a constant level of the cross-membrane voltage

drop. This means that our model incorporates both passive and

active membrane properties, but active properties are included

only implicitly. We consider that active transport is available and

conduct the necessary study to maintain the average potential drop

across the membrane at an appropriate level.

Due to the different concentrations of the different ions in

extracellular and intracellular fluids (in particular, sodium and

potassium ions), it has been known for a long time that non-

linear membrane properties show a positive feedback effect for the

radial current-voltage relationship (Scott, 1975). In terms of the

non-linear passive response produced by the conductivity tensor,

it means that some of the 6
′ components are negative. At the same

time the structure of 6′ should guarantee that there is neither total

(volume integrated) additional electrostatic energy loss nor total

electrostatic energy generation produced due to this non-linear self

coupling, therefore both eigenvalues of 6
′ should be zeros (the

eigenvalues of the conductivity matrix are real, see Appendix 4 for

more details). As membrane conductivity is normalized by 6i, we

would require that |6{... }| ≤ 1, and will assume that both |60
{... }|

and |6′
{... }| are less than 1. This limits the structure of 6

′ to the

following form

6
′ = 6′

(

s⊥xy −s‖x2

s‖y2 −s⊥xy

)

, (17)

where 6′ = max
∣

∣

∣
6′

ij

∣

∣

∣
, max(x, y) = 1, min(x, y) ≥ 0, and both s⊥

and s‖ can either be –1 or 1. As we will see below, the choice of s‖
between –1 and 1 is not particularly important, as it simply selects

different directions of wave propagation. Still, the different choice

for a sign of s⊥ selects different scales where wave excitation and/or

damping occur, which has been experimentally noted as different

behaviors of spiking for Type I and Type II neurons.

Based on experimental results that we cited above (Scott, 1975;

Bédard et al., 2004), the normalized linear membrane conductivity
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is expected to be significantly less than 1 (|60
{... }| ∼ 10−8 −

10−12≪1). Therefore, the assumption for the first order normalized

membrane conductivity that |6′
{... }| < 1 does not require it to be

smaller than the linear normalized membrane conductivity, on the

contrary it may be expected that 1 > |6′
{... }| ≫ |60

{... }|.
The solution for the second term φ′(r, z, t) in Equation 12 can

be expanded using radial and axial eigenmodes of the linearized

system, with perfectly conducting boundary conditions at r = 1

and r = 1 + δ that require that Ez = 0 or φr(1) = φr(1 + δ) = 0.

Those functions are

φr(r) ∼ R0(κr + η), φw(z, t) ∼ e−i(ωkt+kz), (18)

where R0 denotes Bessel functions either of the first (J0) or the

second (Y0) kind, and κ and η can be determined from the

boundary conditions, R0(κ + η) = R0(κ(1 + δ) + η) = 0. Note

that the parameters κ in φr(r) plays a similar role as the axial wave

number k in φw(z, t) as larger values produce shorter wavelength

spatial oscillations, but in the radial direction (although we are not

interested in different radial modes and assume an existence of the

longest mode with κδ ∼ 1). The derivative of the radial eigenmode

can then be written as

dφr

dr
∼ −κR1(κr + η), (19)

where again R1 denotes Bessel functions either of the first (J1) or

the second (Y1) kind, and R1(κ + η) ≈ ±R1(κ(1 + δ) + η) (see

Appendix 3.2 for more details).

Proceeding in a spirit similar to our earlier analysis (Galinsky

and Frank, 2020b), we first solve the simpler linear wave analysis

problem by considering only the linear terms in Equation 14 which

are independent of z and t, then expand the scope of the analysis to

include the non-linear terms that depend on z and t.

2.7 Linear wave analysis and surface wave
generation

The linear in φ′(r, z, t) terms in Equation 5 that are independent

of z and t include from Equation 14 60
{... }, that are constant inside

the membrane layer, and 6′
{... }(9[φ0] − 90), that only depend on

radius r. Substituting the eigenmode solutions (Equation 18) into

Equation 5, multiplying by φr(r)r, and integrating the radial part

across the membrane bilayer, we obtain the complex dispersion

relation (see Appendix 5 for more details)

i�k ≡ γk + iωk = 3⊥ + i3‖k (20)

and the real 3⊥ and the imaginary i3‖k parts of the dispersion

correspond to the diagonal and the off diagonal conductivity tensor

components,

γk ≡ 3⊥ = (γd − γe) , (21)

γd = 60

̹2

(

κ2 + ǫk2
)

, (22)

γe = V̂6′ s⊥xy
̹2

(

κ2Cr
⊥ − k2Cz

⊥
)

C
(23)

≈ V̂6′ s⊥xy
2̹2

(

κ2 − k2
)

, (24)

3‖ = V̂6′ C‖
2C

s‖(x2 + y2)

̹2
≈ V̂6′ s‖(x

2 + y2)

2δ̹2
, (25)

where we introduced an adjustable normalizationV to facilitate the

inclusion of external conditions such as those prevalent in a wide

range of experiments, for example, it can be set to the equilibrium

value of a voltage drop across the membrane for voltage-clamping

experiments. In Equations 23, 25 V̂ ≡ V/V0 is the fractional

voltage (i.e., the fraction of the resting potential occupied by the

external voltage) and

̹2 ≡ κ2 + k2 (26)

The normalization parameters C⊥, C‖, and C are provided in

Appendix 5 in Equations 105–108 and also in Appendix 6. The

parameter ̹2 can be viewed as the length (squared) of a vector ̹ =
κ + k in an abstract vector space that controls the spatial scale of

oscillations in the radial and longitudinal (axial) coordinates of the

axon. The component 3⊥ describes the damping (γd) or excitation

(γe) of the waves while 3‖ is related to the wave oscillations ωk.

Equations 21, 23 can be approximated as

3⊥ ≈ 60
[(

κ̂2 + ǫk̂2
)

+ σ̂⊥
(

k̂2 − κ̂2
)]

(27)

3‖ ≈ 60 σ̂‖
δ̹2

, (28)

where κ̂ ≡ κ/̹ and k̂ ≡ k/̹ are the fractional wave numbers and

σ̂⊥ ≡ 1

2
V̂6̂ s⊥xy (29)

σ̂‖ ≡
1

2
V̂6̂ s‖(x2 + y2) (30)

where 6̂ ≡ 6′/60 is the fractional conductivity (i.e., the ratio of

the conductivity perturbation magnitude to the mean membrane

conductivity). The parameters σ̂⊥ and σ̂‖ are the weightings for

the (fractional) radial and longitudinal wave vector contributions to

the radial and parallel components, respectively, of the dispersion

relation. Each is scaled by both the fractional voltage and the

fractional conductivity. The radial and longitudinal are scaled,

respectively, by s⊥ = ±1 and s‖ = ±1 that have been introduced to

demonstrate the profoundly different wave characteristics possible

within the available parameter ranges defined in Equation 20.

2.7.1 The existence of waves
This solution to the simplified linear problem is sufficient to

demonstrate a key result: the existence of propagating surface waves

along the axon. To see this, note that for large k (k≫ κ) that ̹ ≈ k

so from Equation 28, 3‖ ∼ 1/k2 so that the oscillatory component
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of the dispersion relation (Equation 20) is approximately ωk =
3‖k ∼ 1/k and thus exhibits the same inverse proportionality of

frequency and wave number shown in our previous study Galinsky

and Frank (2020b,a) (using Cartesian geometry) to generate surface

(or interface) electric field waves. The relative magnitude of the

conductivity tensor components defined in Equation 14 are such

that 1 > |6′
{... }| ≫ |60

{... }| so that 6̂ ≫ 1 and thus the fractional

conductivities defined in Equations 29, 30 provide sufficiently large

parameter ranges within the membrane to support wave excitation.

2.7.2 Wave characteristics
The parameters s‖ = ±1 and s⊥ = ±1 were introduced

to delineate the profoundly different parameter regions of the

dispersion relation (Equation 20). This can now be shown directly

using Equations 28, 27.

First, consider the parallel component s‖. Note that the phase
velocity of the waves is defined as ωk/k = 3‖, and thus it is

determined by Equation 28. Changing the sign of s‖ changes the

sign of σ‖ in Equation 30 and thus changes the sign of the phase

velocity (Equation 28). That is, it changes the direction of the wave

propagation.

Now consider the perpendicular component s⊥. Its influence
on the solution provides an important new understanding of the

role of the Nodes of Ranvier. Changing the sign of s⊥ changes the

sign of the wave excitation rate γe (Equation 23), resulting in two

distinct wave excitation patterns. If s⊥ is positive, γe > 0 when

k < κ , that is, waves with longer wavelength will be excited, which

corresponds to Type I myelinated axons, where longer wavelengths

are preset by the internodal distances between the Nodes of Ranvier

and the maximum wavelength will be determined by the strongest

excitation at the internodal length. For s⊥ = −1 the wave excitation

rate γe will be positive for k > κ and will be increasing with the

increase of the wave number k, hence shorter scale waves (often at

the subthreshold level) and higher frequencies will be seen, that is,

more representative of unmyelinated Type II (and possibly some

unmyelinated Type I as well) behavior.

2.8 Wave speeds and myelination

The dispersion relation enables the calculation of the wave

phase velocity, which is the rate at which a wave of a single

frequency propagates through the medium. The dimensional wave

phase speed V for the component along the axon from Equation 20

is

V ≡ ωk

k
6id = 3‖6id (31)

where the factor 6id appeared as the parameters have been

converted to dimensional form. The simple estimates of wave

phase velocity, particularly the dependence of the velocity on axon

diameter d, exhibit consistent behavior across both myelinated and

unmyelinated conditions.

2.8.1 Myelinated axons
For myelinated axons, the ratio of the axon diameter to the total

(axon and myelin) diameter is relatively constant (around 0.6–0.8)

(Gillespie and Stein, 1983; Arancibia-Cárcamo et al., 2017) so that

in our dimensionless units δm ∼ 0.2 − 0.4. This determines the

radial oscillation spatial wave number κm ∼ π/δm ∼ 5 − 15.

As myelination reduces the cross-membrane conductivity (60
rr),

it effectively decreases the wave damping γd for all scales smaller

than the inter-node distance. Therefore, we may assume that the

inter-node distance between the Nodes of Ranvier Lm determines

the wavelength of the propagating modes. The inter-node distance

between Nodes of Ranvier Lm can be as high as 1.5 mm, but

typically ranges from 350 µm for 12 µm axon diameter, to 205 µm

for 3.4 µm axon diameter (Waxman and Melker, 1971), to 139 µm

for 0.82µm axon diameter (Arancibia-Cárcamo et al., 2017) so that

parallel spatial wave number km ∼ 2π/Lm ∼ 0.005 − 0.05 and

κ ≫ km so that ̹ ≈ κ . Hence, for myelinated axons the wave phase

speed is directly proportional to axonal diameter (assuming that

6′
‖ = (x2 + y2)V̂6′/2 ∼ 0.05, that is, less than a maximum value

of 1 due to multiple layers of myelin, d is in the units of µm, and

a conversion factor from µm to m is included into the numerical

constant)

V = 3‖6id ∼ 5× 103
6′

‖
δmκ2

m

d ∼ (5− 10)d (32)

in units of m/s, giving values of 100–200 m/s for 20 µm diameter

axons which is consistent with published values (Siegel and Sapru,

2005).

These results also explain some recently detected anomalous

phenomena of nerve conduction, such as the observation that

in myelinated nerves, the conduction velocity increases with

stretch, which contradicts existing theories (see, e.g., Schmidt

and Knösche, 2019) since the diameter decreases upon stretching

(Sharmin et al., 2023). However, this agrees well with our

results as stretching increases the intra-nodal distance, hence

increases both the wavelength and the wave phase velocity

(Equation 28).

2.8.2 Unmyelinated axons
For unmyelinated axons the membrane diameter is constant

δu ∼ 10 nm = 10−2µm and the wavelength Lu of the propagating

modes is going to be significantly smaller (depending on the

small-scale membrane geometry), but it is reasonable to assume

Lu ∼ d/10. That gives for the dimensionless wavenumber ku ∼
2πd/Lu ∼ 20π ∼ 102, and κu is again determined by the same

relation κu ∼ π/δu, where δu now is not fixed, δu = δu/d. Then

the expression to the wave speed as a function of d (assuming

maximum value for 6′
‖ ∼ 1, and both d and δu in the units

of µm)

V = 3‖6id ∼ 5× 103
6′

‖
δuk2u

d2

1+ d2π2/(δ2uk
2
u)
, (33)

giving roughly a range 0.5—5 m/s for axon diameters, ranging

0.1—10 µm. Thus, the wave speeds of myelinated axons are

predicted to be around two orders of magnitude larger than

those of unmyelinated axons. The importance of this analysis lies
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not only in the consistency of these predictions with measured

values, but also in the fact that they were derived from first

principles and are therefore based on rather simple (at least

to first order) measurable axon characteristics. This offers the

potential for a better understanding of brain communication

deficits associated with ubiquitous demyelinating diseases such as

multiple sclerosis.

2.9 Non-linear wave analysis

The linear wave analysis above is sufficient to demonstrate

the existence of sustained propagating waves along the axons.

However, as demonstrated in our previous study (Galinsky and

Frank, 2020b,a), a full non-linear analysis is necessary to accurately

describe the details of the spatiotemporal characteristics of the

propagating waves.

Proceeding as in Galinsky and Frank (2020b,a), the solution

φw(z, t) is expanded using a Fourier integral

φw(z, t) =
∞
∫

−∞
ak(t)e

i(kz+ωkt)dk+ c.c., (34)

assuming that

∣

∣

∣

∣

1

ak(t)

dak(t)

dt

∣

∣

∣

∣

< ωk. (35)

and where c.c. refers to the complex conjugate. This results in a

set of coupled equations for time-dependent complex amplitudes

ak(t) ≡ a(k, t)

dak

dt
= (γe − γd)ak +Nk, (36)

that have the same general form as Equation 14 in Galinsky and

Frank (2020b), where

N (φ) = D⊥φ2
w + D

dφ2
w

dz
+ D‖

d2φ2
w

dz2
, (37)

Nk =
1

2π

∞
∫

−∞
N (φ)e−i(kz+ωkt)dz, (38)

where the normalization coefficients D⊥, D‖, and D are given

in Appendix 7 (see Equation 117). The detailed evaluation of

non-linear input from multiple wave modes, assuming a general

quadratic form of non-linearity, was shown in detail for both non-

resonant and resonant terms in (Galinsky and Frank, 2020b,a).

It was shown there for the first time that it is the inverse

proportionality between frequencies and wave modes that allows

calculation of the non-linear input in a relatively simple analytical

form, resulting in a simple non-linear equation for wave amplitude

ak(t). Following (Galinsky and Frank, 2021c, 2023a,c) this equation

can be written in the general form

dak

dt
= γkak + β ′

kaka
∗
k + βka

2
k − αkak(aka

∗
k)

1/2, (39)

FIGURE 2

An example of a numerical solution of Equation 39 showing

non-linear evolution of ak(t) as a function of t (top) and an expanded

view of a single spike (bottom) using β ′
k
= exp(iπ/4),

βk = 2exp(−iπ/4), αk = 3, and γk = 1.996+ i. The solution shows

behavior in close agreement with typical axonal spiking but is

derived directly from first principles of electrodynamics and wave

propagation without any reference to the standard ad hoc

reaction-di�usion approach of HH.

where complex γk includes γe − γd as a real part and ωk as an

imaginary part, and the parameters α, β , and β ′ can be evaluated

following (Galinsky and Frank, 2020b,a) using coefficients provided

in Equations 36, 37.

This solution to the non-linear problem can be directly

applied to the case of the single axon, using experimentally

measured physiological parameters, thus providing a more precise

characterization of the propagating action potential. An example

of a numerical solution of Equation 39 for the non-resonant
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condition using β ′
k

= exp(iπ/4), βk = 2 exp(−iπ/4),

αk = 3, and γk = 1.996 + i is shown in Figure 2. The

solution shows behavior in close agreement with a typical axonal

action potential.

We emphasize that this result was derived from first principles

based on the electrical properties of the axon without the

need for an artificial reaction-diffusion model with multiple

adjustable parameters (thresholds, time constants, etc.). In

particular, Equation 39 reveals that the inverse proportionality

of frequency and wave number in the brain wave dispersion

relation admits a closed analytical form of a wave non-linear

equation whose solution is a persistent traveling axonal non-

linear wave (i.e., the action potential spike) resulting from the

collective non-resonant interactions of multiple low amplitude

wave modes.

We note here that, although we have assumed an idealized,

perfectly cylindrical model for clarity, the same formalism

can be extended to more complex geometries. However, it

should also be recognized that the propagating non-linear

electrodynamic waves have the capability of deforming the

geometry of the charged membrane, which is consistent

with theoretical as discussed in the study by El Hady and

Machta (2015) and observational as discussed in the study by

Ling et al. (2018) evidence of mechanistic waves (APPulse;

Johnson and Winlow, 2018b,a) that accompany the action

potential propagation.

2.10 Critical behavior of waves

2.10.1 Critical points
Wehave previously demonstrated in previous studies (Galinsky

and Frank, 2021c, 2023a,c) that Equation 39 can be rewritten in

terms of a pair of coupled equations for the amplitude and phase

as

dA

dt
= γA+ A2

[

Ra cos (φ − 8)− α
]

, (40)

dφ

dt
= ω + ARφ cosφ, (41)

where we omitted the subscript k from all variables and assumed

a(t) = A(t)eiφ(t). The parameters Ra, Rφ , and 8 can be expressed

through β , and β ′ as shown in the previous studies (Galinsky and

Frank, 2021c, 2023a,c).

An equilibrium (i.e., dA/dt = dφ/dt = 0) solution of

Equations 37, 39 can be found from

−γ

ω
Rφ cosφ + Ra cos (φ − 8)− α = 0, (42)

with equilibrium values φe ≡ const and Ae = −ω/Rφ cosφe =
−γ /(Ra cos (φe − 8) − α) ≡ const. This shows that for α >

Ra| sin8| there exist critical valuesAc, φc, andµc (µ = γ /ω) where

the equilibrium solution vanishes, such that

µc =
Ra cos (φc − 8)− α

Rφ cosφc
(43)

= 1

Rφ

[

Ra cos8 ±
√

α2 − (Ra sin8)2
]

(44)

φc = arctan

[

Ra sin8

Ra cos8 − µcRφ

]

(45)

= arctan

[

Ra sin8

±
√

α2 − (Ra sin8)2

]

, (46)

Ac = − ω

Rφ cosφc
= − γ

µcRφ cosφc
. (47)

These solutions provide the basis for an analysis of the critical

regimes via a bifurcation analysis.

2.10.2 Bifurcation analysis
The standard approach to analyzing the behavior of critical

systems is to linearize the system equations around the critical

point, then determine the stability of the system via the eigenvalues

of the Jacobian (e.g., Strogatz, 2000). The linearized system of

Equations 37, 39 at the critical point (Ac,φc) results in

dA

dt
=
(

γ + 2Ac

[

Ra cos (φc − 8)− α
])

A (48)

− A2
cRa sin (φc − 8)φ, (49)

dφ

dt
= Rφ cos (φc)A− AcRφ sin (φc)φ. (50)

For different parameter ranges, the system (see Equations 44,

45) [and hence the original system (Equations 37, 39 or 36)]

shows different behavior corresponding to different bifurcation

types, including both the saddle node on an invariant circle

(SNIC) bifurcation (representative for Type I axon spiking) and

Hopfbifurcation (that is claimed to be responsible for Type II axon

spiking) (Prescott, 2014). For example, taking a limiting case of

Ra ∼ α with 8 = 0 (or 8 = π) and φc = π , the eigenvalues

of the Jacobian matrix become

λ1 = 0, λ2 = γ − 2ω
α ± Ra

Rφ

, (51)

thus the system undergoes the SNIC bifurcation (λ1 = 0 and

λ2 < 0 for for µ < 2µc).

For an alternative limiting case of Ra ≪ α with 8 = −π/2 and

φc ≈ π , the eigenvalues of the Jacobian matrix become

λ1,2 = q±
√

q2 − ω2Ra/Rφ (52)

q = γ

2
− ω

α

Rφ

(53)

and in this case for q = 0 (or µ = 2µc), the eigenvalues λ1,2

are pure imaginary, crossing the imaginary axis with a change

of parameter µ (either ω or γ ), which is an example of a Hopf

bifurcation. Thus, the wave model of action potential shows

that the non-linear axon wave includes multiple critical regimes

and produces different spiking behavior consistent with different

experimentally detected types.
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It should be noted that the non-linear system (Equations 37,

39) is not a simple harmonic oscillator system. For a harmonic

oscillator the amplitude A is constant (does not change at all) and

the phase φ is changing rapidly with a constant rate ω. The non-

linear system (Equations 37, 39) in the subcritical regime, that is,

whenµ < µc, shows the oscillations where the rate of phase change

is not constant anymore and the amplitude A is changing as well,

reaching the maximum Amax = γ /(α − Ra) and the minimum

Amin = γ /(α + Ra) for dA/dt = 0 when φ = 8 and φ = 8 + π

respectively.

2.10.3 Spike rate analysis
As discussed in the studies by Galinsky and Frank (2021c,

2023a,c), we can estimate the effective period of spiking Ts (or its

inverse—either the firing rate 1/Ts or the effective firing frequency

2π/Ts) from Equation 39 by substituting A with either Amin (for

positive spikes, |φc − 8| > π/2) or Amax (for negative spikes,

|φc − 8| < π/2) as for the most of the time (except for the short

spike duration time), the amplitude A will be close to one of those

values, hence

Ts =
2π
∫

0

dφ

ω + γRφ

α±Ra
cosφ

= 1

ω

2π
∫

0

dφ

1+ µ
µc

ν cosφ
(54)

= 2π

ω
√

1− ν2µ2/µ2
c

, (55)

where

ν = Ra cos (φc − 8)− α

(α ± Ra) cosφc
, (56)

and the effective firing frequency ωs

ωs =
2π

Ts
= ω

√

1− ν2µ2/µ2
c . (57)

As in the case discussed above where 8 = 0 (or 8 = π) and

φc = π (also addressed in the studies by Galinsky and Frank,

2021c, 2023a,c) results in ν = 1, hence gives ωs = 0 when µ

reaches the critical value µc, that is it allows spiking with arbitrary

low frequencies—the typical behavior of Type I neurons (Prescott,

2014). In the alternative case of 8 = −π/2 and φc = π , ν =
α/(α + Ra) < 1, hence at the critical point the spiking frequency

ωs cannot be less than the minimum value of ω
√
1− ν2 > 0—the

behavior attributed to Type II neurons (Prescott, 2014).

2.10.4 Influence of the applied potential
Our construction of the conductivity tensor defined in

Equation 14 included an adjustable normalizationV that represents

the equilibrium voltage drop across the membrane as the vast

majority of experiments investigating neuronal spiking involve

some form of manipulation of V , such as “voltage clamping.” From

the dispersion relation expressions (Equations 19–22, 26) it follows

that

µ = γe − γd

ω
= µ0 +

γd

ω0

(

1− V0

V

)

, (58)

where µ0 and ω0 are the critical parameters and the linear wave

frequency evaluated at V = V0. Therefore, in the subcritical

(µ < µc) regime increasing the voltage difference V across

the membrane, or hyperpolarizing the membrane, increases the

criticality parameter µ, hence decreases the firing frequency ωs,

stopping the oscillatory (spiking) behavior completely when the

critical point µc is reached. In the super-critical (µ > µc) case,

that is, when the neuron is not firing, decreasing the voltage

difference V (depolarizing the membrane as it is done in voltage

clamping experiments) decreases the criticality parameter µ and

makes neuron fire either at non-zero frequency (similar to Type II

neuron) or at arbitrary low frequency (similar to Type I neuron).

A special case of a neuron firing a single spike at the critical

point may also appear if an update of the cross-membrane voltage

proceeds too slowly and the system is able to relax back and stay

at or above the critical point. Still, the periodic firing will emerge

with increasing firing frequency ωs when depolarization continues

moving µ further in the subcritical range.

2.10.5 Implications for neural networks
As shown in Galinsky and Frank (2021a,b, 2023b), the network

formed from such non-linear oscillators exhibits synchronization

properties that neither linear oscillators nor diffusive-reactive HH

neurons can produce. Therefore, the current view that a single

neuron can be approximated by the reactive “point neuron” HH

system, which communicates through cable-like diffusive signal

propagation with other neurons in networks of interconnected

neurons, may not be entirely appropriate for understanding the

dynamics of brain communication. A more appropriate view may

be to consider that the critical synchronized state is formed both

at a single neuron level and in their interconnected networks by

multiple waves that are constantly generated at axonal membranes,

interact and propagate along those membrane interfaces, making

the networks they form to be more appropriately analogous to webs

of highly tensioned strings rather than networks of leaky pipes with

slow diffusive flow of some substance inside those pipes.

In this “string theory” view of neural networks, the specific

details of the complex biochemical processes that mediate

membrane voltages are not seen as the actual mechanism behind

axonal spiking nor the subsequent signal propagation in single

neurons and networks of neurons. Instead, the details about

opening and closing of voltage-gated channels, about different

number of Na+, K+, Cl−, Ca2+, etc., channels, about differences in
kinetics of those carrier channels, about operation of ATPmediated

carrier pumps, etc., all serve to “tune” the membranal strings by

keeping the individual membranes, and hence, the network as a

whole, at or close to the critical level.

3 Conclusion

Highly non-linear systems in nature present a significant

problem in data analysis and interpretation because they can

produce a wide variety of seemingly disparate and unrelated

coherent phenomena. This is particularly true in critical systems,

where small parameter variations produce drastically different

system configurations. Without a physical model for such systems,
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one is left with a confusing conglomeration of experimentally

observed and often seemingly contradictory effects without

a guiding principle for understanding the underlying system

dynamics. Additionally, without a guiding theoretical framework,

data analysis strategies usually rely on essentially ad hoc fitting

methods. The more complex the system, the more parameters

are required. Such strategies make it possible to fit the data, but

deriving a link to the actual system dynamics in the absence of a

theoretical framework is problematic.

The human brain is a spectacular example of such a non-linear

critical system. However, the lack of a physical theory of brain

activity has led research down that familiar pathway. So, while

the pioneering study of Hodgkin and Huxley (1952) provided a

new unifying framework for fitting the action potential, it must

be recognized for what it is: an ad hoc multiparameteric fitting

method without a physical model. It is not surprising, then, that

it has some glaring weaknesses, as noted above, not least of which

is the difficulty in relating the neuronal action potential to large-

scale brain network communication. Nevertheless, it has remained

the standard model for the action potential. It forms the basis

for subsequent methods that rely on the empirical fitting of a

single measured axonal signal waveform to a set of ad hoc multi-

parametric differential equations with multiple fitting parameters

as is typically employed by a multitude of single-neuron spiking

models (Fitzhugh, 1961; Nagumo et al., 1962; Morris and Lecar,

1981; Izhikevich, 2003; Gerstner et al., 2014; Kulkarni et al., 2020;

Kim and Sejnowski, 2021).

Our intention in writing this article was not to develop

an alternative model that allows for simply fitting a signal to

any biological/neuronal experiment—there is little doubt that a

model with a couple of dozen adjustable parameters is well-suited

for this purpose. Indeed, this is what the standard HH model

provides. Instead, the focus of our study directed at showing that

a straightforward application of fundamental physical principles

can be used to demonstrate that membrane non-linearity is not

restricted to radial effects only, but also produces axial terms that

are ignored by HH consideration, thus allowing us to obtain the

same action potential with properties that naturally follow from a

wave model that does not require a multitude of parameters. A key

finding of the study is that this relatively simple wave description

follows directly from our more general theory, as developed in our

previous publications.

Our recent development of a general physical model

(WETCOW) for brain activity derived from the first principles

of electrodynamics Galinsky and Frank (2020b,a, 2021a,b) was

motivated by the desire to address this problem by constructing

a single unifying framework for understanding brain activity at

all scales, from neuron to network. Subsequent studies focused

on the large-scale effects such as network synchronization,

learning, and neuronal avalanches Galinsky and Frank (2023b,a,c).

While this model was developed with all neural tissues in

mind, and is therefore implicitly applicable to single neurons,

we never explicitly addressed this problem, which involved

applying the general theory to the specific tissue model of

a single neuron. The objective of this study was to address

this problem and thereby explicitly demonstrate that our

general theory is applicable at the range of scales relevant to

brain activity.

In doing so, we have demonstrated that this theory of the

neuron action potential is the same that has already demonstrated

the ability to explain multiple observed macroscopic brain

electric activity, such as extracellular spiking, efficient brain

synchronization, neuronal avalanches, and memory and learning

mechanisms (Galinsky and Frank, 2020b,a, 2021a, 2023b,a,c) that

are not explained by the standard HH model. We have thus

demonstrated a theory that bridges the gap between the most

elemental brain electrical unit—the neuron—and the large-scale,

collective, synchronous behavior of the brain.

The construction of a physical theory from the first principles

of electrodynamics begged the question of the relationship to

existing electrodynamic models. The most obvious candidate is the

ubiquitous “cable theory,” which has a long history in attempts

to describe neuronal signals. However, as we demonstrated in

Section 2.4, it is derivable from our more general theory, but

only by imposing conditions that limit its applicability to real

neurons. The cable equations were subsequently shown to be

inadequate to characterize the action potential under a wide range

of realistic conditions.

Recognition that the HH model has never been capable of

solving the problem of characterizing the action potential in

myelinated axons led us to consider that problemwithin our theory.

We found that the solution was straightforward because our theory

explicitly incorporates both geometrical and physiological tissue

parameters. This resulted in predictions for wave speeds consistent

with measured values in both myelinated and unmyelinated axons.

It is worth noting that these results have practical significance

because they provide a direct method for relating neuronal activity

to disease states characterized by demyelination, such as Multiple

Sclerosis (Coutinho Costa et al., 2023), and myelin pathogenesis,

including Alzheimer’s Disease (Cai and Xiao, 2016; Maitre et al.,

2023).

Our wave model does not specify the direction of wave

travel, suggesting possible reflection at axonal ends. Biological

networks, however, exhibit preferred signal directions. The amount

of reflection at the axonal ends depends on the exact geometry and

boundary conditions in the axial coordinate. We did not address

the question of reflection in the study, as it falls beyond the main

focus of the study. Nevertheless, the typical geometry of axon shows

decrease of the diameter from proximal to distal areas that would

result in decrease of speed and increase of linear wave amplitude for

proximal to distal propagation, and increase of speed and reduction

of linear wave amplitude for opposite direction of propagation,

meaning that even without choosing specific initial and boundary

conditions the reflection of wave will not be favored.

The ability of our general WETCOW theory to describe both

spatially extended (including network-level) effects as well as

neuron-scale effects led to the demonstration of some remarkable

similarities between the two scales of brain phenomena. In Section

2.10 we demonstrated that the critical behavior previously shown

to be evident in collective synchronous spiking and neuronal

avalanches (Galinsky and Frank, 2021c, 2023a,c), was similarly

manifest in the neuronal signal where now it corresponds to the

characteristics of Type I and Type II neurons. The modeling

of synaptic interactions within this framework would be done

conceptually similar to network models presented in our previous

works (Galinsky and Frank, 2021a,b, 2023b).
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One obvious question these results raise is the logic of

the current view of neuronal signaling being created by the

HH mechanism of ion exchange, particularly in light of the

demonstrated inadequacy of the diffusion picture. The traveling

coherent non-linear waves predicted by our theory, based solely

on the bioelectric properties of the tissues, will cause a time-

dependent voltage drop across the neuronalmembrane, influencing

transmembrane permeability and thereby allowing the opening and

closing of multiple voltage-gated channels in synchrony. In this

view, the problematic question of how ion channels mysteriously

synchronize to produce an action potential does not arise.
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