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More than 5% of the global population suffers from disabling hearing loss, primarily 
sensorineural hearing loss (SNHL). SNHL is often caused by factors such as vascular 
disorders, viral infections, ototoxic drugs, systemic inflammation, age-related 
labyrinthine membrane degeneration, and noise-induced hearing loss (NIHL). 
NIHL, in particular, leads to changes in blood-labyrinth-barrier (BLB) physiology, 
increased permeability, and various health issues, including cardiovascular 
disease, hypertension, diabetes, neurological disorders, and adverse reproductive 
outcomes. Recent advances in neuromodulation and vector-based approaches 
offer hope for overcoming biological barriers such as the BLB in the development 
of innovative treatments. Computational methods, including molecular docking, 
molecular dynamics simulations, QSAR/QSPR analysis with machine/deep learning 
algorithms, and network pharmacology, hold potential for identifying drug 
candidates and optimizing their interactions with BLB transporters, such as the 
glutamate transporter. This paper provides an overview of NIHL, focusing on its 
pathophysiology; its impact on membrane transporters, ion channels, and BLB 
structures; and associated symptoms, comorbidities, and emerging therapeutic 
approaches. Recent advancements in neuromodulation and vector-based strategies 
show great promise in overcoming biological barriers such as BLB, facilitating the 
development of innovative treatment options. The primary aim of this review is 
to examine NIHL in detail and explore its underlying mechanisms, physiological 
effects, and cutting-edge therapeutic strategies for its effective management 
and prevention.
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1 Introduction

1.1 Noise-induced hearing loss

NIHL is a very prominent type of SNHL that is particularly 
pronounced among adults. Two different conditions must 
be separated: acute acoustic trauma caused by, e.g., blast exposure and 
hearing loss as a consequence of chronic noise exposure.

In this review, we focus on NIHL resulting from ongoing noise 
trauma. It is the result of ongoing high levels of occupational, military, 
and recreational noise, which are the most common triggers (Wang 
et al., 2020; Zhou and Zhang, 2024).

Specifically, young people are at risk of developing NIHL because 
of the increasing use of headphones to enjoy music (Imam and 
Hannan, 2017; Jiao et al., 2022).

Individuals exposed to sound levels exceeding 85 dB for more 
than 5 h per week are at risk of experiencing permanent hearing 
damage over time. Notably, the relationship between occupational 
noise-induced hearing loss and the associated risk of various adverse 
health outcomes varies with frequency, among other factors (Imam 
and Hannan, 2017; Jiao et al., 2022).

Taken together, the World Health Organization reports that loud 
sound exposure potentially causes NIHL in more than 600 million 
people worldwide (Chadha et al., 2021; Alberti et al., 1979).

This paper provides an overview of NIHL, focusing on its 
pathophysiology; its impact on membrane transporters, ion channels, 
and BLB structures; and associated symptoms, comorbidities, and 
emerging therapeutic approaches. Recent advancements in 
neuromodulation and vector-based strategies show great promise in 
overcoming biological barriers such as BLB, facilitating the 
development of innovative treatment options. The primary aim of this 
review is to examine NIHL in detail and explore its underlying 
mechanisms, physiological effects, and cutting-edge therapeutic 
strategies for its effective management and prevention.

2 Auditory structures and functions 
impacted by noise

Sounds at or below 70 A-weighted decibels (dBA), even after long 
exposure, are unlikely to cause hearing loss. However, long or repeated 
exposure to sounds at or above 85 dBA can cause hearing loss. The 
louder the sound is, the shorter the amount of time it takes for NIHL 
to occur. Ongoing acoustic exposure to intense sound can induce a 
level of damage that is accompanied by a temporary threshold shift 
(TTS), acute changes in hearing sensitivity that recover over time, or 
impairments accompanied by a permanent threshold shift (PTS), a 
loss that does not recover to preexposure levels.

The severity of NIHL is influenced by various environmental 
factors, including the characteristics of noise and the duration of 
exposure. The characteristics of noise, such as frequency, intensity, and 
temporal pattern, play crucial roles in the extent of auditory damage. 
Compared with continuous, steady-state noises such as those from 
industrial machinery, impulsive noises, such as explosions or gunfires, 
are known to cause more immediate and severe cochlear damage (Le 
Prell et al., 2007). Impulsive noise produces a rapid, high-intensity 
sound pressure level, leading to mechanical disruption of cochlear 
structures and immediate hearing threshold shifts (Kujawa and 

Liberman, 2009; Gratias et al., 2021). Moreover, the frequency of noise 
is a critical determinant of the location and severity of cochlear 
damage. High-frequency sounds (above 4 kHz) are particularly 
damaging to the basal turn of the cochlea, which is responsible for 
high-frequency sound processing (Nordmann et  al., 2000). This 
damage can lead to high-frequency hearing loss, which often precedes 
damage in lower frequency regions, thus affecting speech 
comprehension and communication abilities (Liberman et al., 2015). 
In addition to the noise characteristics, the duration of the exposure 
is relevant. Prolonged exposure to noise is directly correlated with the 
severity of NIHL. The relationship between exposure duration and 
hearing loss is cumulative; even moderate levels of noise can lead to 
significant auditory damage if exposure persists over time. The World 
Health Organization (WHO) identified 85 dB as the threshold above 
which prolonged exposure can lead to permanent hearing damage 
(Schubert et al., 2023).

The interplay between noise type and exposure duration further 
complicates the pathophysiology of NIHL. Continuous noise exposure 
at lower intensities may cause less immediate damage but can result 
in significant cumulative effects over time. Conversely, short-duration 
exposure to impulsive, high-intensity noise can lead to acute cochlear 
trauma including synaptopathy and immediate hearing loss (Seidman 
and Standring, 2010; Gratias et al., 2021).

Chronic noise exposure leads to both TTS and PTS. TTS, 
characterized by reversible hearing loss after noise exposure, may 
become PTS with continued exposure, resulting in irreversible 
damage to cochlear hair cells (Henderson et al., 2006). Kujawa and 
Liberman (2009) demonstrated that repeated episodes of TTS could 
cause progressive synaptic degeneration even if the threshold shifts 
initially recover, indicating that subclinical damage accumulates over 
time and contributes to long-term hearing loss. However, despite this 
previous assumption, recurrent episodes of TTS may not be related to 
PTS in the long term because the two conditions are characterized by 
different pathogenetic mechanisms.

2.1 Mechanisms of TTS

TTS is defined as at least 10 dB of threshold elevation at one or 
more frequencies between 2 and 4 kHz. This threshold shift may reach 
50 dB (Liberman, 2016). TTS lasts from minutes to days, depending 
on the pathophysiology of the damage. Low-level TTS is mediated by 
ion channels that are activated by extracellular ATP (Housley et al., 
2013). The relevant ATP receptor P2RX2 is a nonselective cation 
channel expressed in cochlear hair cells (HCs) and epithelial cells 
lining the scala media. Noise stimulates local ATP release in the 
cochlea, and ATP opens the channels, which then shunts the 
endocochlear current away from the HC transduction channel 
(Morton-Jones et al., 2015; Thorne et al., 2004). Higher levels of TTS 
(up to 50 dB) are due to additional mechanisms, such as uncoupling 
of the outer HC stereocilia from the tectorial membrane (Nordmann 
et al., 2000) and swelling of the afferent endings underneath the inner 
HCs, suggestive of excitotoxicity due to the release of excessive 
glutamate from overstimulated HCs (Puel et al., 1998). Other evidence 
suggests that damaging levels of noise lead to metabolic 
overstimulation and subsequent generation of free radical species 
(Henderson et al., 2006; Shi and Nuttall, 2003) like reactive oxygen 
species (ROS) and reactive nitrogen species (RNS).
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2.2 Mechanisms of PTS

When exposed to sufficiently loud and long-lasting noise, the 
ability of the cochlea to recover becomes overwhelmed, leading to 
irreversible hearing loss. This type of hearing loss is mainly linked to 
damage to and loss of cochlear HCs, but damage to neurons and other 
parts of the cochlea can also contribute to PTS (Kurabi et al., 2017). 
This damage can directly disrupt stereocilia (Slepecky, 1986), which 
diminishes or completely stops their function. In severe cases, damage 
can even affect the overall structure of the sensory part of the cochlea, 
disrupting HCs and their support cells. This type of damage can also 
create a connection between two fluid-filled areas in the cochlea, 
endolymph, and perilymph, allowing excessive levels of potassium to 
reach the basal poles of remaining intact HCs, leading to their death. 
However, damaging levels of noise begin well below the threshold of 
such frank mechanical damage. The majority of NIHL is caused by 
damage to HCs through biochemical processes that occur within the 
cells themselves via ROS production, as in the case of TTS.

In the cochlea, noise exposure generates excessive ROS and RNS, 
leading to oxidative stress, lipid peroxidation, and DNA damage, 
which trigger apoptosis in hair cells and disrupt the BLB (Yamashita 
et al., 2005; Le Prell et al., 2007; Mao and Chen, 2021; Natarajan et al., 
2024). These molecules also induce inflammation, exacerbating 
cochlear damage (Mao and Chen, 2021; Natarajan et al., 2024). At a 
systemic level, ROS and RNS contribute to endothelial dysfunction, 
sympathetic nervous system activation, and renin–angiotensin–
aldosterone system (RAAS) activation, all of which increase vascular 
resistance and promote hypertension (Yamashita et al., 2005). The 
interaction between oxidative stress in the cochlea and systemic 
vascular dysfunction suggests a potential mechanistic link between 
NIHL and hypertension. This connection provides insights for 
therapeutic interventions aimed at targeting oxidative pathways 
(Yamashita et al., 2005; Le Prell et al., 2007).

2.3 TTS, PTS, and free radical impact

The cascade of events initiated by ROS induction entails lipid 
peroxidation within the cochlea, thereby giving rise to the generation 
of highly noxious metabolic byproducts. While the products of lipid 
peroxidation alone can induce apoptosis, lipid peroxidation 
byproducts possessing vasoactive properties, such as isoprostanes, 
may contribute to a diminished blood supply to the cochlea (Ohinata 
et al., 2000; Thorne et al., 1987; Seidman et al., 1999). Noise-induced 
ischemia and subsequent reperfusion might further potentiate the 
generation of ROS in a positive feedback loop (Kurabi et al., 2017). 
Furthermore, ROS-mediated mechanisms involve the induction of 
inflammatory responses, including the production of proinflammatory 
cytokines such as interleukin-6 (IL-6) and tumor necrosis factor α 
(TNFα), which themselves have the ability to damage the cochlear 
structure and function (Tan et al., 2016).

3 The role of the stria vascularis in 
NIHL

Recent investigations highlight the role of the stria vascularis 
(SV), located in the lateral wall of the cochlea, in the pathogenesis of 

NIHL (Yu et al., 2021). A previous study revealed that loud noise 
exposure could lead to a reduced vessel diameter but, concomitantly, 
an increase in vascular permeability in the SV (Quill et al., 2015) and 
increased macromolecular transport, which could decrease the 
endocochlear potential (EP) (Suzuki et  al., 2002). However, the 
underlying mechanism remains unclear and might be related to the 
formation of excess ROS, RNS, the release of proinflammatory 
cytokines, and ultimately excitotoxicity, as detailed above (com. 
1.1.1. – 1.1.3.).

The SV is derived from the spiral modiolar artery supplying the 
organ of Corti (OoC) and primary auditory neurons (Figure 1) and is 
mainly composed of marginal, intermediate, and basal cells and 
endothelial cells forming the so-called strial BLB (Figure 2).

Anatomically, the blood supply to the cochlea comes from the 
common cochlear artery, which divides into the spiral modiolar artery 
and the vestibulocochlear artery. The spiral modiolar artery supplies 
the apical turns of the cochlea, and the cochlear branch of the 
vestibulocochlear artery supplies the basal turns of the cochlea 
(Figure 1). The spiral modiolar artery supplies the OoC and primary 
auditory neurons of the modiolus and forms the capillaries of the 
spiral ligament and stria vascularis in the cochlear lateral wall. Strial 
capillaries are nonfenestrated with tight junctions between adjacent 
endothelial cells and a decreasing rate of entry into perilymph from 
blood by compounds of increasing molecular weight (Jahnke, 1980; 
Juhn et al., 1981), forming a barrier that separates intrastrial fluids 
from blood, the BLB. Historically, the concept of the strial BLB in the 
inner ear originated from the observed difference in the chemical 
composition of blood and inner ear fluids (Figure 2).

The significant functions of the SV are to (i) generate the 
endocochlear potential (EP), which is essential for audition, (ii) 
secrete endolymph, and (iii) maintain cochlear homeostasis by 
controlling ion homeostasis and substance exchange between the 
blood and the interstitial space in the cochlea at the level of the 
endothelial BLB (Figure 2).

FIGURE 1

Structure and blood supply of the cochlea. The spiral modiolar artery 
supplies the OoC of the modiolus and forms the capillaries of the 
spiral ligament and stria vascularis in the cochlear lateral wall. SMA, 
spiral modular artery; SL, spiral ligament; SV, stria vascularis; OoC, 
organ of Corti; ScV, scala vestibuli; SM, scala media; ST, scala 
tympani; RM, Reissner membrane; LA, labyrinthinth artery.
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3.1 The strial blood–labyrinth barrier 
provides a functional contribution to SNHL 
pathologies

The strial BLB is a highly specialized network of capillaries that 
tightly controls the permeability of the capillaries and controls 
macromolecular exchange between the blood and the interstitial 
space in the cochlea (Forster et al., 2022; Forster et al., 2005). The 
strial BLB thus maintains cochlear homeostasis and protects the 
cochlea from blood-borne potentially ototoxic endobiotics 
and xenobiotics.

The strial BLB is fundamentally similar to the blood–brain barrier 
(BBB), which separates brain interstitial fluid from blood (Figure 1). 
The BLB separates the inner ear fluid compartments (perilymph and 
endolymph) from capillaries of the vasculature and is composed of 
vascular endothelial cells coupled together by tight junctions. BLB is 
critical for maintaining ionic homeostasis in inner ear fluid and 
preventing the entry of deleterious substances into the inner ear. 
Recent studies have implicated the loss of integrity of the BLB in 
several inner ear pathologies, including acoustic trauma, infection, 
ototoxin-induced hearing loss, and age-related hearing loss 
(presbycusis).

In this context, loud sounds affect almost all cochlear cell types 
and induce inflammation and drug-induced cochleotoxicity (Li et al., 
2011; Vethanayagam et  al., 2016). Acoustic trauma (Suzuki et  al., 
2002) involves several external and intrinsic factors that can 
profoundly modulate the permeability of the BLB (Taylor et al., 2008), 
increasing its permeability and subsequent uptake of drugs indirectly 
by inducing inflammation and degeneration of sensory cells and 
auditory neurons (Figure 3).

Different disease states comorbid with NIHL can alter BLB 
physiology and increase its permeability through inflammation and 
oxidative stress: cochlear inflammation (Kastenbauer et  al., 2001; 
Hirose et al., 2014) caused by acoustic trauma, in turn, contributes to 
the degeneration of cochlear sensory cells.

4 Spectrum of NIHL-associated 
disorders

Repeated overexposure to noise at or above 85 dB can cause 
permanent hearing loss, tinnitus, and difficulty in understanding 
speech in noise. It is also associated with cardiovascular disease, 
depression, cognitive dysfunction, balance problems, and lower 
income (Themann and Masterson, 2019). Patients with untreated 
NIHL are susceptible to fatigue, difficulty communicating, social 
isolation, and stress as a result of their illness (Reiss and Price, 1996).

First, and very obviously, hearing impairment per se hinders 
effective communication, leading to misunderstanding and social 
withdrawal. This may lead to feelings of loneliness and depression. 
The frustration associated with impaired communication can 
exacerbate depressive symptoms. Studies have shown that 
untreated hearing loss increases the likelihood of depression, 
highlighting the importance of early intervention and rehabilitation 
of hearing loss (Mener et  al., 2013; Lawrence et  al., 2020). 
Additionally, noise affects cognition, as demonstrated by Thompson 
et al. (2022), who reported high-quality evidence for an association 
between environmental noise and cognitive impairment in middle-
to-older adults and moderate-quality evidence for an association 
between aircraft noise and reading and language in children. 

FIGURE 2

Cross section of one cochlear turn and rough structure of the stria vascularis, SV. Structural and functional damage to the SV mediated by noise 
trauma, specifically to the endothelial blood–labyrinth barrier (BLB), causes hearing loss, but the underlying mechanisms remain mostly unclear.
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Another aspect affecting mental health is that individuals with 
hearing loss often exert additional effort to comprehend speech, 
resulting in increased cognitive load and listening fatigue. This 
heightened mental exertion can lead to decreased concentration 
and overall exhaustion, affecting daily functioning and quality of 
life (Shukla et  al., 2020). The abovementioned communication 
challenges and mental load may lead to reduced productivity and 
employment opportunities. This economic impact is particularly 
pronounced in occupations requiring effective verbal interactions, 
where hearing impairment may limit career advancement and 
earning potential.

The inner ear houses both the auditory and vestibular systems; 
thus, damage from excessive noise exposure can affect balance. 
Research has revealed a correlation between NIHL and vestibular 
dysfunction, which manifests as vertigo, postural instability, and 
motion intolerance (Natarajan et al., 2024).

Damage to the SV in NIHL has been recognized to be at the root 
of many common disorders and syndromic diseases accompanied by 
NIHL, many of which are cerebro- and cardiovascular diseases. The 
accumulation of noise-induced damage to the inner ear is a key 
trigger of age-related hearing loss and cognitive decline (Förster et al., 
2019; Förster et al., 2022; Nagai et al., 2021; Shityakov et al., 2021a; 
Förster et al., 2020; Nagai et al., 2021), tinnitus and even diminished 
learning and cognitive abilities in children and adolescents 
(Manukyan, 2022) (Figure  4). Chronic, subjective tinnitus, an 
auditory phantom sensation in the absence of physical stimuli, can 
be  triggered by a variety of factors that may act synergistically 
(Knipper et al., 2020).

The major cause of cochlear damage resulting in deafferentiation 
is environmental noise overexposure (Chen et al., 2021; Hickman 
et al., 2021).

Notably, in addition to noise-induced tinnitus (Hayes et al., 2023; 
Johns et al., 2023), approximately 64% of patients with NIHL exhibit 
comorbidities, and the most common condition is hypertension.

5 Noise above the permissive 
threshold may beget autonomic 
changes and hypertension

There was a greater incidence of hypertension among patients 
with sudden sensorineural hearing loss (SSNHL) than among 54,946 
matched controls (Saba et al., 2023). Sustained noise exposure may 
result in health effects related to stress after acute noise exposure (Liu 
et al., 2022) (Figure 5). Specifically, there appears to be an increased 
risk of hypertension associated with noise-induced high-frequency 
hearing loss, and the risk varies by age and work experience (Liu et al., 
2022): the presence of elevated noise exposure was associated with an 
increased risk of hypertension in a meta-analysis of 32 studies 
involving 264,678 participants. A significant dose–response 
relationship between noise exposure and hypertension was found (Fu 
et al., 2017).

Several epidemiological studies have revealed strong associations 
between occupational noise exposure, noise-induced hearing loss and 
hypertension (Zhang et al., 2022). The HYENA Study (Hypertension 
and Exposure to Noise Near Airports) investigated the impact of 
aircraft noise on the blood pressure of residents living near six major 
airports. The results revealed that an increase in nocturnal aircraft 
noise of 10 dB increased the risk of hypertension by 14% (Jarup et al., 
2008). One European long-term study observed over 41,000 
individuals in five countries over a period of up to nine years. The 
results indicated that both air pollution and road traffic noise were 
significantly associated with the development of hypertension. The 
risk existed even at levels below the current EU limits. Chang and 
colleagues examined the impact of occupational noise exposure, 
including blood pressure, on vascular health over a 24 h period. The 
results indicated that workers exposed to high levels of noise presented 
altered vascular properties, such as increased blood pressure, 
suggesting a link between noise exposure, hearing loss, and 
hypertension (Chang et al., 2007). The same team investigated the 

FIGURE 3

SNHL—functional contribution of the blood-labyrinth-barrier. Pathogens leading to SNHL include vascular disorders, viral infections, noise trauma, 
ototoxic drug exposure, and age-related degeneration of the labyrinthine membrane.
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FIGURE 4

Auditory and nonauditory effects of noise overexposure. Noise occurs in everyday life and can lead to both auditory and nonauditory adverse health 
effects, including hearing loss, tinnitus, neuropsychiatric effects, and cognitive impairment, and can be secondary to triggered circuit conditions, such 
as cardiovascular and neurodegenerative disease and hypertension.

FIGURE 5

Stress response elicited by elevated noise. Pathways of elevated noise action lead to hypertension through mental stress, autonomic nervous system 
changes in sympathetic imbalance, anxiety, and neurohormonal mechanisms. The elevated risk factor is noise exposure because of a primary 
rudimentary stress reaction, which is mediated either by activation of the sympathetic nervous system or the hypothalamic–pituitary–adrenal (HPA) 
axis, resulting in fight/flight response, anxiety, and hypertension.
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associations between high-frequency hearing loss, which is indicative 
of chronic noise exposure, and hypertension among male workers. 
The findings suggested a significant correlation between occupational 
noise exposure leading to hearing loss and elevated blood pressure 
levels (Chang et al., 2007).

Although causation cannot be inferred from such studies, they 
provide substantial evidence that environmental noise should 
be avoided if possible. Current evidence suggests that exposure to 
noise levels above 85 dB leads to autonomic changes and alterations 
in blood pressure (Wojciechowska et al., 2022; Thiesse et al., 2020; 
Gangwar et  al., 2023). In addition to autonomic changes, 
environmental noise above 85 dB induced endothelial dysfunction, as 
did increases in plasma noradrenaline and angiotensin II levels in 
mice (Munzel et  al., 2017). Furthermore, environmental noise 
exposure leads to increases in stress hormone levels, thereby triggering 
inflammatory and oxidative stress pathways and inducing endothelial 
dysfunction, all of which could lead to hypertension (Munzel et al., 
2018). Future studies should explore whether targeting these pathways 
prevents the development of hypertension in those exposed to 
occupational and/or environmental noise.

6 Novel therapies to treat NIHL

It has been consistently demonstrated that noise, be  it 
environmental, leisure-derived, or occupational, above the permissible 
limit of 85 dB leads to autonomic changes and alterations in blood 
pressure (Wojciechowska et al., 2022; Thiesse et al., 2020; Gangwar 
et al., 2023). These data were corroborated by animal data showing 
that environmental noise above 85 dB in a mouse model induced 
endothelial dysfunction, as well as increases in plasma noradrenaline 
and angiotensin II levels (Munzel et al., 2017). In the following section, 
we provide incentives for the future clinical translation of NIHL for 
prevention and therapy.

6.1 Computer-assisted drug design and 
new modeling paradigms for NIHL

Computational modeling and simulation of drug permeation 
through biological barriers is a promising approach for developing 
novel drug therapies for pathological processes such as NIHL. By 
providing insights into drug behavior, barrier characteristics, and 
physiological conditions, in silico modeling can aid in the design of 
more effective and targeted drug delivery strategies across the BLB.

Recent advancements in computational modeling and simulation 
techniques have enabled researchers to better understand the 
underlying mechanisms of drug transport and identify potential 
therapeutic targets and drug transporters at barrier interfaces, such as 
BBB-ChT (blood–brain barrier choline transporter) and P-gp 
(P-glycoprotein) (Shityakov and Forster, 2013; Shityakov and Forster, 
2014a,b). However, most simulation models have been developed for 
the BBB, which separates the brain and blood compartments.

On the other hand, the complex nature of the auditory system 
and the BLB has posed significant challenges for traditional drug 
discovery methods, as there are limited experimental data 
available to develop novel approaches such as structure–activity–
property relationship (QSAR and QSPR) models. The BLB is a 

specialized structure that separates the inner ear from the systemic 
circulation and is composed of tightly packed endothelial cells that 
restrict the diffusion of molecules and ions across the barrier. This 
presents a significant challenge for drug delivery through the 
blood into the perilymph of the inner ear, where traditional 
systemic drug administration is ineffective (Le and Blakley, 2017). 
Owing to this, permeation partitioning coefficients, such as the 
logBB (blood–brain partitioning coefficient) and logPS 
(permeability–surface area product), are still needed for the BLB 
(logBL–blood–labyrinth partitioning coefficient) to develop 
accurate regression models already implemented for the BBB 
(Shityakov and Forster, 2013; Shityakov et  al., 2013; Shityakov 
et al., 2021b; Shityakov et al., 2016). To address these limitations, 
a publicly accessible experimental logBL database is needed to 
provide the quantitative data required for developing accurate BLB 
permeability prediction models. In the future, such datasets may 
become available through dedicated biomedical consortia or 
specialized ADME/Tox platforms that prioritize inner ear–
focused research.

SNHL is a broad term used to describe various disorders that 
affect the functioning of the cochlea, the part of the inner ear that is 
dedicated to hearing. These disorders can result from genetic 
mutations, environmental factors, or age-related degeneration. Some 
of the most common types of peripheral auditory pathology include 
NIHL, ARHL, and ototoxicity. Indeed, many drugs that could 
theoretically cross the BLB have ototoxic side effects, which can 
exacerbate hearing loss rather than treat it. Various drugs often trigger 
oxidative stress, disrupt ion homeostasis, or induce direct cytotoxicity 
in cochlear hair cells, ultimately leading to irreversible hearing 
impairment (Lin et al., 2021).

Therefore, drug-induced ototoxicity can be evaluated via machine 
learning (ML) and deep learning (DL) models, similar to the 
consensus model, which is based on individual ML/DL, with total 
accuracies of 0.95 and 0.90, respectively (Huang et al., 2021).

An example of possible computational modeling is the oxidative 
stress at the BLB as a main factor of NIHL and ARHL, which is 
mediated via the Keap1-NRF2 pathway (Li et al., 2021; Oishi et al., 
2020). In the context of this pathway, protein–protein molecular 
docking and molecular dynamics simulations can be  used to 
understand the intermolecular affinity and conformational changes 
that occur in proteins. Keap1 is a substrate adaptor protein that binds 
to NRF2 and targets it for degradation. However, when a cell is 
exposed to oxidative stress, NRF2 is released from Keap1 and 
translocates to the nucleus, where it activates genes that protect against 
oxidative stress followed by hearing loss (Henderson et al., 2006).

The delivery of the gene encoding vesicular glutamate transporter 
3 (VGLUT3) via AAV1 has been demonstrated to restore hearing 
function in mice lacking this protein (Akil et al., 2012). VGLUT3 is 
expressed in cochlear inner hair cells and holds promise as a potential 
vehicle for drug delivery across the BLB (Zhang et al., 2020).

For example, a drug could be  designed to bind to VGLUT3, 
allowing it to be transported into the cochlea, where it could exert its 
therapeutic effects. By using VGLUT3 as a targeted delivery 
mechanism, drugs can be  targeted to the inner ear, minimizing 
systemic exposure and reducing potential side effects. This approach 
could be useful for treating conditions such as NIHL, where direct 
delivery to the cochlea is challenging because of the restrictive nature 
of the BLB.
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Hypothetically, the incorporation of glutamic acid as a moiety 
into the active pharmaceutical ingredient (API) could yield a 
prodrug form that enhances its permeation across the BLB via the 
glutamate–aspartate transporter. This transporter, which is highly 
expressed in the cochlea and plays a critical role in maintaining 
glutamate concentrations in the perilymph at nontoxic levels during 
acoustic overstimulation, could also facilitate drug permeation 
across the BLB. Importantly, the prodrug, which is initially 
pharmacologically inactive, undergoes metabolic conversion at the 
site of action, releasing the active drug. This targeted approach could 
not only improve the therapeutic efficacy of drugs intended for 
inner ear conditions but also minimize potential systemic side 
effects by limiting the exposure of nontarget tissues to the 
active drug.

As a result, computational methods such as molecular 
docking, molecular dynamics simulations, QSAR/QSPR analysis, 
transporter-enhanced BLB permeability prediction, high-
throughput screening, and network pharmacology are essential 
but still need to be  developed to provide novel therapies for 
SNHL. These cutting-edge methods can help identify potential 
drug candidates, predict their activity, optimize their properties, 
and analyze complex interactions between drugs, target molecules, 
and biological pathways.

6.2 Vagus nerve stimulation

The hypothesis that NIHL may lead to dampening of the vagus 
nerve implies that stimulation of the nerve may have a positive effect 
on NIHL. Therefore, an emerging therapeutic option could be to use 
vagus nerve stimulation (VNS) to treat NIHL. VNS is increasingly 
being used to treat conditions such as epilepsy, depression, and 
chronic inflammation, as well as an aid to rehabilitation and as a 
technique for cognitive improvement (Stefan et al., 2012; Ventureyra, 
2000). Nonetheless, VNS requires implantation of a device via an 
invasive technique, which may not be acceptable for many patients 
(Zafeiropoulos et al., 2023). These limitations led to the development 
of transcutaneous VNS (tVNS) by stimulating the auricular branch of 
the vagus nerve at the tragus or the concha of the ear (Stavrakis et al., 
2024; Hanna et al., 2021; Stavrakis et al., 2020; Tran et al., 2019). This 
technique is associated with minimal risk, thus opening up the 
possibility for novel applications even in healthy individuals (Figure 6).

taVNS in combination with tone therapy has been demonstrated to 
be  an efficient and safe method that does not have significant side 
effects. Several preclinical and small cohort clinical studies support this 
assumption to combine taVNS with tones to improve auditory 
processing, e.g., in patients with tinnitus or possibly NIHL (Kochilas 
et al., 2020; Yakunina et al., 2018; Raj-Koziak et al., 2023; Suk et al., 2018).

FIGURE 6

Transcutaneous vagus nerve stimulation targeting the auricular branch of the vagus nerve: taVNS. Noninvasive taVNS delivery systems rely on the 
cutaneous distribution of vagal fibers at the external ear (auricular branch of the vagus nerve) (Butt et al., 2020), as detailed in the insert. The red circles 
in the main image and the clamps in the insert represent the best anatomical sites for active left tragus stimulation by the taVNS device, and the blue 
circles and clamps represent the sham control stimulation sites.
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With respect to acquired hearing loss following noise trauma, one 
could refer to reports in animals showing that VNS paired with specific 
tones improved tinnitus during follow-up and was sufficient to reverse 
the abnormal plasticity of the primary auditory cortex shown to 
be associated with tinnitus (Engineer et al., 2011). On the other hand, 
pilot clinical studies highlight the feasibility and safety of VNS paired 
with tones in patients with moderate to severe chronic tinnitus (Tyler 
et al., 2017). These studies combined with reported beneficial effects on 
hypertension (Annoni et al., 2015; Chapleau et al., 2016; Annoni et al., 
2019; Nagai et al., 2023) and heart failure (Tran et al., 2019; Stavrakis 
et al., 2022), with minimal, if any, side effects, provide sufficient evidence 
that studies on this topic should be extended and moved forward.

Notably, noninvasive vagus nerve stimulation reduces BBB 
disruption in a rat model of ischemic stroke (Yang et al., 2018) such 
that a transferable effect to the strial BLB following NIHL can 
be assumed. VNS is known to reduce inflammation and oxidative 
stress, which are key factors in both BBB and BLB disruption. Given 
the functional similarities between the BBB and BLB, it is reasonable 
to hypothesize that VNS could protect the BLB in NIHL. However, 
direct experimental evidence is needed to confirm this effect, as the 
current assumption is based on indirect findings from stroke models. 
Further research is needed to validate the potential protective role of 
VNS in preserving BLB integrity in NIHL.

7 Conclusion

According to the 2020 World Report on hearing by the World 
Health Organization (Nieman and McMahon, 2020), disabling 
hearing loss affects more than 5% of the global population, with 
SNHL being a major contributor. SNHL can result from various 
factors, including vascular disorders, viral infections, ototoxic drugs, 
systemic inflammation, labyrinthine membrane degeneration, and 
NIHL. Prolonged exposure to loud sounds, typically above 85 dB, 
leads to permanent hearing loss and related health issues. In this 
work, advanced strategies and computational methods are explored 
for developing treatments for NIHL as well as its major comorbidity, 
hypertension, thereby offering potential solutions to this widespread 
problem. We recommend limiting exposure to noise to less than 
85 dB in light of evidence showing that exposure above that threshold 
leads to autonomic changes and alterations in blood pressure 
(Wojciechowska et  al., 2022; Thiesse et  al., 2020; Gangwar et  al., 
2023). If exposure to levels above 85 dB occurs, concomitant taVNS 
treatment may dampen the adverse effects on autonomic tone and 
prevent hypertension. This notion needs to be  studied in 
clinical trials.

A substantial amount of evidence is presented in this paper to 
demonstrate that computational methods and taVNS are suitable for 
developing future NIHL and hypertension treatments, thus providing 
possible solutions to this widespread issue.
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Glossary

ARHL - age-related hearing loss

BBB - blood–brain barrier

BLB - blood–labyrinth barrier

EP - endocochlear potential

HC - hair cell

LA - labyrinth artery

NIHL - noise–induced hearing loss

OoC - organ of Corti

PTS - permanent threshold shift

QSAR - quantitative structure–activity relationship

QSPR - quantitative structure–peritoneal relationship

RM - Reissner membrane

ScV - scala vestibule

SL - spiral ligament

SMA - spiral modular artery

SM - scala media

SNHL - sensorineural hearing loss

SSNHL - sudden sensorineural hearing loss

ST - scala tympani

SV - stria vascularis

taVNS - transcutaneous auricular vagus nerve stimulation

TTS - temporary threshold shift

tVNS - transcutaneous vagus nerve stimulation
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