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Acute stress results from sudden short-term events, and individuals need to

quickly adjust their physiological and psychological to re-establish balance.

Chronic stress, on the other hand, results in long-term physiological and

psychological burdens due to the continued existence of stressors, making it

di�cult for individuals to recover and prone to pathological symptoms. Both

types of stress can a�ect working memory and change cognitive function. In

this study, we explored the impact of acute and chronic stress on synaptic

modulation using a biologically inspired, data-driven rodent prefrontal neural

network model. The model consists of a specific number of excitatory

and inhibitory neurons that are connected through AMPA, NMDA, and GABA

synapses. The study used a short-term recall to simulate working memory tasks

and assess the ability of neuronal populations to maintain information over time.

The results showed that acute stress can enhance working memory information

retention by enhancing AMPA and NMDA synaptic currents. In contrast, chronic

stress reduces dendritic spine density and weakens the regulatory e�ect of GABA

currents on working memory tasks. In addition, this structural damage can be

complemented by strong connections between excitatory neurons with the

same selectivity. These findings provide a reference scheme for understanding

the neural basis of working memory under di�erent stress conditions.

KEYWORDS

short-term (working) memory, short-term plasticity, acute stress, chronic stress, rat,

SNN

1 Introduction

As a high-level cognitive cortex, the prefrontal cortex can perform various tasks, such

as working memory, rule processing, and concept expression (Miller and Cohen, 2001).

Working memory refers to the temporary storage of information in the short term, which

is essential for decision-making and plays an important role in cognitive tasks (Baddeley,

1992; Cowan, 2008). When animals are engaged in working memory tasks, continuous

neural activity can be observed (D’Esposito, 2007; Miller, 2013; Durstewitz et al., 2000),

and fuster first showed that a single neuron in the monkey prefrontal cortex showed

Frontiers inCellularNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2025.1534839
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2025.1534839&domain=pdf&date_stamp=2025-03-19
mailto:q.zhang@ia.ac.cn
mailto:yi.zeng@braincog.ai
https://doi.org/10.3389/fncel.2025.1534839
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncel.2025.1534839/full
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Du et al. 10.3389/fncel.2025.1534839

continuous activity throughout the delay period of a delayed

response task (Fuster, 1973). Meyer et al. (2011) trained monkeys

to perform behavioral tasks of spatial location and feature working

memory. In addition to the ability of neurons to maintain

discharge, the capacity and accuracy of working memory can also

directly affect the performance of cognitive tasks (Engle, 2010).

Prefrontal cortex is crucial to determining the capacity of working

memory (Barbey et al., 2013). In most human subjects, working

memory capacity is typically between three and six items (Cowan,

2010). Working memory capacity can be expanded through

training, and human imaging studies and neurophysiological

recordings in non-human primates and computational modeling

studies have shown that training increases the activity of prefrontal

neurons and the strength of connections between the prefrontal

cortex and the parietal cortex (Constantinidis and Klingberg, 2016).

However, working memory ability is not constant and is also

affected by stress.

Stress hormones have significant effects on cognition andmood

(Christoffel et al., 2011). Therefore, it is crucial to understand

the synaptic basis behind its behavior in the brain (Shansky and

Lipps, 2013; Cerqueira et al., 2007). The prefrontal cortex is

particularly sensitive to stress (Robbins and Arnsten, 2009), and

its internal microcircuitry can inhibit irrational reactions even

under optimal conditions (Musazzi et al., 2015). Additionally,

specific neurotransmitter effects influence changes in working

memory capacity. Acute stress triggers NMDAR- and AMPAR-

mediated increases in synaptic currents in prefrontal cortex

pyramidal neurons via glucocorticoid receptors (GR), thereby

enhancing firing activity and improving working memory capacity

(Musazzi et al., 2010; Yuen et al., 2009). Chronic stress can

lead to the loss of postsynaptic spines and apical dendrites

in rodent prefrontal cortex layer 2/3 pyramidal cells (Witztum

et al., 2023; Radley et al., 2004, 2006; Shansky et al., 2009;

Cook and Wellman, 2004). Repeated restraint stress affects the

morphology of pyramidal neurons in the rat medial prefrontal

cortex (Moda-Sava et al., 2019). In the acute phase, glucocorticoid

stress hormones increase the excitability of prefrontal pyramidal

cells by enhancing glutamatergic synaptic transmission through

increased presynaptic release and postsynaptic AMPA and NMDA

receptor trafficking (Popoli et al., 2012). However, chronic

exposure to excessive glucocorticoids may compensate for this

increased excitability by inducing a net loss of dendritic spines

(Liston and Gan, 2011), disrupting local connections and altering

dynamic interactions between pyramidal cells and interneurons.

This ultimately reduces the inhibitory input to pyramidal cell

dendrites, impairing working memory and disrupting the normal

functioning of prefrontal microcircuits (Witztum et al., 2023).

Chronic behavioral stress can impair both the function and

structure of the prefrontal GABAergic network, significantly

disrupting GABAergic neurotransmission (Czéh et al., 2018).

Compared to anatomical experimental evidence, constructing a

complementary dynamic framework through biocomputational

modeling to understand the interactions between different receptor

types and their role in neural network behavior under stress is

crucial. Some experiments have shown a significant relationship

between recent life stress and reduced working memory capacity

(Shields et al., 2019; Klein and Boals, 2001). However, the synaptic

plasticity mechanisms that lead to this decrease in capacity are not

fully understood.

Working memory performance is reflected in the ability to

maintain information within a population of neurons, as well as

in terms of working memory capacity, which refers to the number

of items that can be processed simultaneously. Prefrontal cortex

is capable of handling multiple tasks simultaneously, owing to

neurons with mixed selectivity (Miller, 2013; Manohar et al., 2019).

This suggests that the brain can use the same pool of neurons

to selectively respond to different external inputs (Xie et al.,

2022). For example, category-sensitive neurons can simultaneously

distinguish between cats and dogs, and sports cars and sedans,

rather than classifying them separately. Experimental evidence

suggests that the maintenance of an item in working memory is

achieved by the sustained activity of selective neural components

in the cortex. Rolls et al. (2013) used synaptic connections in the

prefrontal cortex to simulate an attractor network within a local

cortical network, thereby increasing the number of short-term

memory representations that can remain active simultaneously.

Mi et al. (2017), based on synaptic theory, adjusted the number

of items retained in working memory through external stimuli.

Kim (2021) developed a spiking recurrent neural network model

that successfully completed the working memory delayed matching

sample (DMS) task. The temporal characteristics of the model

closely resemble biological data, and enhancing the inhibitory-

inhibitory connections within the network structure can improve

task performance. These findings offer valuable insights for the

development of working memory networks.

This study aims to investigate the mechanisms underlying

the effects of acute and chronic stress on working memory

performance through computational modeling, and to validate

existing biological conclusions. By incorporating existing biological

experimental results from rodents under acute and chronic

stress, we constructed a brain-inspired spiking neural network

with short-term synaptic plasticity. Specifically, we developed

a rodent prefrontal neural network model with heterogeneity,

driven by in vivo biological data, and a homogeneous network

composed of random parameters as a control, to perform working

memory tasks under different stress conditions. Heterogeneous

networks are defined as networks where the values assigned

to the network elements (such as connection probabilities, and

neuronal properties) are drawn from a Gaussian distribution,

informed by biological data. This approach allows for the

incorporation of biological variability and complexity, better

reflecting the diversity and organization observed in biological

neural networks.Homogeneous networks are defined as networks

where values are assigned uniformly, using random numbers.

There are no distinctions made between neuron types, and

all elements of the network are treated equally in terms

of their parameters. The heterogeneous network integrates in

vivo biological data from rodents, including the connection

probabilities of neurons in layer 2/3 of the prefrontal cortex, the

proportions of different types of neurons in the layer, neuronal

electrophysiological parameters, and the number of dendritic

spines. The results demonstrate that our heterogeneous network

model improves the ability of neurons to maintain information

under acute stress, which is attributed to the enhancement of
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AMPA and NMDA synaptic currents. This experimental result is

consistent with the findings of Yuen et al. (2009). In contrast, the

loss of dendritic spines in the chronic stress network impairs the

ability of GABA currents to regulate working memory capacity;

however, this structural loss can be compensated by intra-group

excitatory connections. At the same time, both acute and chronic

stress networks with heterogeneous parameters exhibit greater

time scale and parameter regulation capabilities compared to

homogeneous networks, suggesting that rodent biological data

enhances performance in working memory tasks. In general, our

study reveals how different stress states affect synaptic modulation

and memory retention and clarifies the role of rodent biological

information in the network.

2 Results

2.1 Working memory experimental
paradigm

To study the mechanism of stress on working memory, we

used a spiking neural network for modeling and analysis. Given the

diverse and complex nature of actual stress behavioral experiments,

we approached the analysis from the perspective of neural activity,

using a simple short-term working memory recall paradigm, as

shown in Figure 1A. This task paradigm begins with a 1-second

fixation period, followed by a 400-ms long-term input stimulus

(memory period), a 1,000-ms delay (intermediate delay period),

and a 5-ms cue stimulus (cue prompt period). If a neuronal group

can maintain discharge when the stimulus input to the network is

applied, it indicates successful memory of the stimulus information.

The input to the network involves simultaneously stimulating all

excitatory neurons, with inputs following a Poisson distribution,

as shown in Figure 1C. The intensity of the input stimulus is

determined by frequency and changes according to a specified

gradient.

The theoretical maximum memory capacity of our spiking

neuron cortical network model is 4, corresponding to 4 distinct

groups of neurons. As shown in Figure 1B, each group consists of

excitatory neurons (red) and inhibitory neurons (blue), with the

central blue region serving as the boundary between groups. In

the figure, in addition to excitatory neurons, inhibitory neurons

also exhibit continuous discharge in the groups that are capable

of sustained activity. The fact that only two groups of neurons

fired continuously suggests that the inhibitory neurons suppress

the activity of the other groups of neurons. The figure shows that

a maximum of two neuron groups can discharge continuously,

indicating that the network’s current memory capacity is 2. The

network connection structure sets up four different neuron groups.

When one of the groups discharges continuously, it means that the

memory is successful, and the network memory capacity increases

by one. The network’s current memory capacity is 2 because, in its

steady state, only two neuron groups can discharge continuously.

The remaining two groups are suppressed by GABA currents,

preventing them from firing.

Based on the existing working memory experimental paradigm

and network structure, we model acute and chronic stress

separately. As shown in Figure 1D, from a computational modeling

perspective, the characteristics of acute and chronic stress are

distinguished by the structure of dendritic spines and synaptic

currents. In the neuronal model, the number of dendritic spines

and the three synaptic currents AMPA, NMDA, and GABA are

modeled, with changes in these characteristics based on real stress

experiments used to simulate the effects of stress.

2.2 Network structure

Animals exhibit synaptic organization principles that group

neurons in specific ways (Perin et al., 2011; Pals et al., 2020).

These components combine in various ways to form unique

neural circuits (Bouchacourt and Buschman, 2019).Our network

model represents “capacity” in the form of neuronal groups.

All excitatory neurons receive input simultaneously, but due to

differences in the organizational structure of synaptic connections,

they exhibit varying capabilities for maintaining discharge. The

specific neuronal group connection relationship is shown in

Figure 1E. Each group has excitatory neurons and inhibitory

neurons, which are connected to each other within the group and

to neurons outside the group. Individual neuronal groups follow

specific connection probabilities, are not fully interconnected, and

exhibit variable connection strength. As shown in Figure 1G, the

connection strength of neurons within a group is higher than that

of neurons between groups. When all excitatory neurons receive

external Poisson stimulation, this synaptic organization results in

some neuronal groups maintaining discharge while others do not.

The number of groups that can maintain discharge defines the

network’s current memory capacity (the maximum number of

items that can be remembered). During the stimulation window,

excitatory neurons within the same group facilitate each other’s

firing, while inhibitory neurons within the group actively suppress

the firing of neurons in other groups. The network consists of

four groups of selective neurons, but not all groups can maintain

information simultaneously. Furthermore, they can be inhibited by

inhibitory neurons from other groups. Thus, the ability to maintain

information concurrently is influenced by the network structure

and synaptic strength.

To model acute and chronic stress, the neuron model uses a

two-compartment structure. The specific connection relationships

between the two compartments are shown in Figure 1G. From

a computational modeling perspective, both the dendritic and

somatic compartments receive external information. In our

two-compartment model, the dendrite receives excitatory and

inhibitory synaptic currents from the external environment, which

are transmitted through the axon and attenuated before reaching

the soma. The soma integrates these currents from the dendrites

and the external input to support its discharge activity.

To model the impact of acute and chronic stress on working

memory tasks, we developed four distinct network models, as

shown in Figure 1F. These models are generally divided into

two categories: one based on a heterogeneous network using

neural data from the 2/3 layer of the rodent prefrontal cortex

(Hass et al., 2016), and the other a homogeneous network

built with random parameters. The biological data for layer 2/3

of the mouse prefrontal cortex are comprehensive and closely
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FIGURE 1

(A) Working memory short-term recall paradigm (Shields et al., 2019). The network includes a 400-ms memory period, a 1,000-ms delay, followed by

a 5-ms short stimulus to test the network’s memory. (B) Schematic of spike discharge in the spiking neural network. Red dots represent excitatory

neurons, and blue dots represent inhibitory neurons. The figure shows 4 groups of neural populations capable of memory, with only two groups

successfully maintaining discharge. It represents a scenario where the connectivity strength between excitatory neurons is enhanced under chronic

stress conditions. (C) Schematic of network input. All excitatory neurons receive simultaneous input, with the input frequency intensity gradient

following a Poisson distribution. (D) Schematic of computational modeling for acute and chronic stress. (E) Schematic of the connections between

excitatory and inhibitory neuron groups within and between the groups. (F) The network types used in this study are divided into two categories:

heterogeneous networks based on biological data from the 2/3 layer of the rodent prefrontal cortex, and homogeneous networks with random

parameters. For specific sources of biological data, refer to the Methods Section. (G) On the left, a general schematic of the four neuronal groups in

the network. The specific connections between two-compartment neurons are shown in the upper right. The lower right panel shows a schematic

of the synaptic currents received by two-compartment neurons, including AMPA and NMDA excitatory synaptic currents, as well as GABA inhibitory

synaptic currents.
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related to the primary function (Shrestha et al., 2015) of working

memory in mice. In addition, chronic stress has been shown

to significantly affect this layer, leading to significant changes

in dendritic structure. Based on the heterogeneous network

structure, we created models for acute stress, chronic stress,

and a control network. The heterogeneous network incorporates

biological data, such as the connection probability between

neurons, the distribution of pyramidal neurons and interneurons,

neuronal electrophysiological parameters, and the average number

of dendritic spines in the prefrontal cortex, as detailed in the

Methods Section. Some parameters of the homogeneous network

are derived from existing working memory models (Brunel and

Wang, 2001; Rolls et al., 2013). Specifically, for acute stress,

we used both the acute stress heterogeneous and homogeneous

networks, while for chronic stress, we used the chronic stress

heterogeneous network, the control heterogeneous network, and

the homogeneous network. Since we only simulated the effect of

acute stress on excitatory synaptic currents, the control network

with a scaling factor set to 1 can be directly incorporated into the

acute stress heterogeneous network without needing to re-establish

the control network.

2.3 Increased AMPA and NMDA current
intensity during acute stress enhances
working memory capacity

Previous research has demonstrated that activation of the

cortical glutamate system can enhance working memory under

acute stress (Kim, 2021; Popoli et al., 2012). However, how

can the primary mechanisms by which glutamatergic activity

affects working memory be quantified? What changes in network

dynamics induced by acute stress promote working memory?

As shown in Figure 2A, in vivo stressors act on pyramidal

neurons via glucocorticoid receptors (GR), enhancing AMPA

and NMDA synaptic currents in the prefrontal cortex (Kim,

2021; Yuen et al., 2011). Various types of acute stress, such as

swimming for 20 min (Roche et al., 2003), confinement in a

cubicle for 2 h (Mitra et al., 2005), placement on an elevated

platform for 20 min (Xu et al., 1997), or a single cortical

injection of ketamine (Yuen et al., 2009), have been shown to

significantly enhance NMDAR-EPSC and AMPAR-EPSC activity in

prefrontal cortical pyramidal neurons, thereby improving working

memory capacity. Using forced swimming stress as an example

(descriptions of the remaining three conditions are detailed in

the Supplementary material), acute stress significantly enhanced

NMDAR-EPSC (control: 197 ≤ 15 pA, n = 14; swim stress: 425

≤ 20.5 pA, n = 15, P < 0.001, ANOVA) and AMPAR-EPSC

(control: 58.6 ≤ 4.4 pA, n = 12; swim stress: 98.8 ≤ 3.7 pA, n =

12, P < 0.001, ANOVA) magnitudes in PFC pyramidal neurons

(Yuen et al., 2009). To simulate this physiological process, we

adjusted the ratio of AMPA toNMDA receptor-mediated excitatory

postsynaptic currents in our model based on the synaptic current

ratio observed in acute stress biological experiments (see Methods

for details). Correspondingly, we increased the intensity of AMPA

and NMDA channels and recorded network dynamics to observe

working memory changes over different time scales (Geißler et al.,

2023). Additionally, we conducted experiments on a homogeneous

network to investigate the factors influencing biological data from

rodent prefrontal layer 2/3 during stress-related working memory

tasks. As shown in Figure 2E, we recorded the AMPA and NMDA

current values of excitatory neurons. While these values do not

perfectly match actual biological data, we observed that increasing

the intensity of the NMDA channel fraction with a longer decay

time constant resulted in an overall enhancement of current values.

The simulation results are shown in Figures 2B–D. Task

performance is measured using two indicators: working memory

capacity and time scale. By varying the channel score strength

of AMPA and NMDA, we can observe the impact of these

parameters on working memory through the result matrix.

Specifically, the horizontal axis of each sub-plot represents

increasing NMDA channel score strength, while the vertical axis

represents increasing AMPA channel score strength. Figure 2B

shows that both homogeneous and heterogeneous networks

exhibit a significant increase in working memory capacity as the

AMPA and NMDA channel score strength increases. Overall, the

heterogeneous network demonstrates a higher working memory

capacity than the homogeneous network, emphasizing the role of

rodent biological data in enhancing workingmemory performance.

The ability of neurons to maintain information is quantified by

the time scale: the larger the time scale, the stronger the ability

to maintain information. The calculation formula is provided in

the Methods Section. Figures 2C, D together illustrate the time

scale distribution of excitatory and inhibitory neurons during the

memory and cue prompt stages as the AMPA and NMDA channel

scores are varied. An increase in AMPA and NMDA channel score

strength leads to a greater time scale, improving the neurons’

ability to maintain information. The heterogeneous network shows

a larger time scale overall compared to the homogeneous network,

with a particularly notable increase in the time scale of inhibitory

neurons. The enhanced discharge capacity of inhibitory neurons

contributes to improved overall network performance in working

memory tasks.

2.4 Increased GABA currents under chronic
stress suppress working memory e�ects

As shown in Figure 3A, there are various ways to induce

chronic stress in animal models. Taking restraint stress as an

example, rodents are subjected to daily 6-h restraint with a wire

mesh for 21 consecutive days (Radley et al., 2004). This procedure

leads to a significant reduction (16%) in the density of apical

dendritic spines on pyramidal neurons in the medial prefrontal

cortex (Radley et al., 2006).

Considering these existing experimental results, we simulated

the the disruptive effects of chronic stress on GABAergic networks.

In our model, we explored the impact of this disruption on

working memory tasks in both homogeneous and heterogeneous

networks by varying the ratio of GABA channels. We then

examined strategies to compensate for this disruption. As shown

in Figure 3B, we tested four approaches to modify the connection

strength between neurons within a group. In this section, we

begin by discussing how changes in GABAergic signaling, in the
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FIGURE 2

(A) Schematic diagram showing the e�ect of glutamate on working memory under swimming stress in rodent. (B) Distribution of working memory

capacity in homogeneous and heterogeneous networks as the fractional strength of AMPA and NMDA channels changes. (C, D) Time scale

distribution of excitatory and inhibitory neurons in homogeneous and heterogeneous networks during the memory and cue stages, respectively, as

the two variable factors are altered. (E) Distribution of the mean AMPA and NMDA current magnitudes of excitatory neurons in the network.

form of synaptic currents, can alter network dynamics. Biological

experiments in rodents subjected to chronic stress also show

changes in average GABA currents. For instance, in the control

group, the average GABA BR-GIRK current was 152 ≤ 6 pA,

while in the stress-adapted group, it was 141 ≤ 12 pA, and in

the anhedonia group, it was 100 ≤ 5 pA. The stress-adapted

group and the anhedonic group were distinguished by the sucrose

consumption test. Under chronic stress, some animals exhibited

resilience, with increased sucrose intake, and were classified as

“stress-resilient.” In contrast, animals showing reduced sucrose

intake were classified as the “anhedonic” subgroup. Figure 3C

shows the schematic of average GABA current in inhibitory

neurons as the GABA channel score strength changes. In the

homogeneous network, increasing the GABA channel strength

led to a monotonic decrease in the GABA current received by

inhibitory neurons. Interestingly, in the heterogeneous network,

the response followed an inverted U-shaped curve. At low GABA

channel scores, increasing the channel strength enhanced the

GABA current. However, as the inhibitory current reached a

certain threshold, further increases in channel strength amplified

inhibition of excitatory neurons, ultimately reducing the intensity

of the GABA current in the inhibitory neurons.

To assess the performance of the network’s working memory

task under chronic stress, we used the pulse count autocorrelation

decay time constant as a measure of neuronal time scale (Cavanagh

et al., 2018; Wasmuht et al., 2018). A larger neuronal time scale

indicates longer sustained neuronal discharge, which corresponds

to better memory performance. We calculated self-decay curves

under different intensity factors and plotted the time constants

(time scales) of all curves separately as line graphs. The self-decay

curves were calculated at two initial time points: one at the start

of the memory phase and another at the start of the cue phase. If

the time scale calculated from the cue phase is higher than that

from the memory phase, it suggests that neurons are better able

to maintain discharge during the cue phase, leading to improved

memory ability. Chronic stress impaired the regulatory function of

GABA currents, weakening their association with reduced working

memory capacity. As shown in Figure 3D, as the GABA current

increases, the firing capacity of all inhibitory neurons is significantly

enhanced, and the excitatory neurons are inhibited when the

intensity increases to a certain extent. In heterogeneous networks,

the timescale of excitatory neurons under chronic stress conditions

is generally smaller than that under normal conditions. As shown

in Figure 3E, as the GABA current increased, the overall working

memory capacity of the network decreased significantly. Not only

was the time scale of the homogeneous network smaller than that of

the heterogeneous network, but its working memory capacity was

also lower. After adding rodent data to the network, both the time

scale and working memory capacity increased. As shown in the

table in Figure 3F, chronic stress reduced the correlation between
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FIGURE 3

Simulating the working memory task under chronic stress by modifying inhibitory synaptic current. (A) Schematic diagram showing changes in neural

currents and structures in rodents under chronic behavioral stress. (B) Schematic diagram of di�erent excitatory-excitatory (E-E),

inhibitory-excitatory (I-E), excitatory-inhibitory (E-I), and inhibitory-inhibitory (I-I) connections within the change group. Take one group as an

example. (C) Schematic diagram of changes in neuronal currents as the fractional strength of GABA channels is adjusted. The first column shows the

GABA currents of inhibitory neurons across ten groups with varying factor strengths, where colors from dark to light indicate increasing strength. The

second column illustrates the changes in the average GABA current with varying intensity factors. The third column shows changes in the average

AMPA and NMDA currents of excitatory neurons, with red indicating the AMPA current and green indicating the NMDA current. (D) Autocorrelation

decay curve and time constant changes: Each sub-figure represents the dynamic changes in excitatory and inhibitory neurons. The left panel shows

the autocorrelation decay curves for the memory and cue indication stages, with a color transition from green to red indicating an increase in GABA

current intensity. The right panel displays the time constant changes, with red representing changes in the memory stage and green representing

changes in the cue indication stage. (E) Network working memory capacity: This sub-figure illustrates the changes in network working memory

capacity across the three models as the GABA current scaling factor is varied. (F) Correlation and P value: This sub-figure shows the correlation and P

value between working memory capacity and changes in GABA current for each of the three models.
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the strength of the GABA channel score and the changes in the

working memory capacity of the network.s shown in Figure 3D,

the time scale of excitatory neurons in heterogeneous networks

under chronic stress is smaller than under control conditions.

Additionally, the time scale of homogeneous networks is smaller

than that of heterogeneous networks, and their working memory

capacity is also lower, as shown in Figure 3E. The inclusion of

rodent data in the network increased both the time scale and

working memory capacity. Chronic stress reduced the correlation

between the fractional strength of the GABA channel and changes

in network working memory capacity, as shown in the table in

Figure 3F. Under control conditions, changes in GABA current

strongly correlate with reductions in working memory capacity.

However, under chronic stress, this correlation weakens, consistent

with biological findings that chronic stress impairs the regulatory

function of the GABAergic network.

2.5 Increased E-E connection strength
under chronic stress is beneficial to
improving working memory ability

There are various treatments for chronic stress, one of which

is pharmacological intervention. Ketamine, administered at an

antidepressant dose, has been shown to partially restore the baseline

structure of dendritic spines in prefrontal cortex .Chronic stress

induces a reduction in dendritic and synaptic density in rodent

models, which is consistent with the changes in brain structure

observed in patients with depression (such as MDD and PTSD)

in clinical studies, especially in the hippocampus (HPC) and

prefrontal cortex (PFC) regions (Koolschijn et al., 2009). This

suggests that chronic stress not only changes the function of neural

circuits, but also affects working memory function by changing

neural structure.In network modeling, we adjusted the connection

strength between neurons.Previous studies have demonstrated that

stronger connections between excitatory neurons can slow down

the dynamic changes of neural networks (Chaudhuri et al., 2015;

Wang, 2008). Therefore, we proportionally altered the connection

strength between excitatory neurons (E-E) within the same group

in the network (Lam et al., 2022). We also increased the NMDA

current intensity to simulate the process of ketamine treatment

of chronic stress. The experimental conclusions were similar to

those of increasing the intensity of excitatory neurons. The results

are shown in Supplementary Figure 6. To explore these effects, we

applied two input stimuli with different durations but the same

intensity, representing the memory phase and the cue prompt

phase, to both homogeneous and heterogeneous networks. We

then analyzed the resulting changes in network time scales and

working memory capacity. Furthermore, to investigate the impact

of various network connections on task performance, we conducted

experiments altering I-E, I-I, and E-I connections, as illustrated in

Figure 3B. The detailed results of these simulations are provided in

the Supplementary material.

Figure 4A shows that in the homogeneous network model,

excitatory neurons with enhanced EE connectivity exhibit a rapid

increase in time scale. In heterogeneous networks, the time scale

increase of excitatory neurons is more obvious. In addition, as

the E-E connection strength increases, the time scale of inhibitory

neurons in the heterogeneous network model changes in an

inverted U shape: initially, the time scale of inhibitory neurons

increases due to receiving more inputs, and the E-E connection

strength increases; however, when the E-E connection strength

is further enhanced, inhibitory neurons peak as a result of

receiving stimulation time scales from more excitatory neurons,

and inhibitory neurons with enhanced activity begin to inhibit

other neurons and thus overall inhibitory neurons activity begins

to decrease. This shows that rodent-specific biological information

can help the network become more flexible and adaptable in

the face of external input. From a time scale perspective, the

reduction in synaptic density of excitatory neurons has no

significant impact on network dynamics. This suggests that strong

connections between excitatory neurons may compensate for the

decrease in synaptic density in chronic stress models. But the

results of the other three connection-changing experiments were

not as significant as directly changing the connection strength

between excitatory neurons, which had a more obvious positive

impact on working memory performance. The specific results

are shown in Supplementary Figures S3–S5. Compared with the

homogeneous network, the overall working memory capacity of

the heterogeneous network is higher, as shown in Figure 4B.

We observed a strong correlation between increasing working

memory capacity and increasing E-E connection strength in all

three networks, as shown in Figure 4C. But we did not find

this relationship in the I-E, II, and E-I connections. In the

heterogeneous network, the impact of changes in these connections

on working memory capacity was not significant. In Figures 4B,

C, the working memory capacity of homogeneous networks was

overall lower than that of heterogeneous networks in all cases,

and the correlation between excitatory connections and working

memory capacity was the lowest. This finding is consistent with

Figures 3E, F. This fully demonstrates the importance of biological

data for improving network working memory capacity.

3 Discussion

In this study, we investigated how synaptic conductance,

specifically glutamatergic and GABAergic synaptic modulation,

is affected in the context of stress by constructing a spiking

neural network. The network consists of excitatory and inhibitory

neurons interconnected through AMPA, NMDA, and GABA-

conducting synapses. We simulated a short-term recall paradigm

of working memory tasks under acute and chronic stress. Our

network design focused on simulating the dynamics of different

networks under different parameter factors, and we investigated

the correlation between AMPA/NMDA currents under acute stress,

GABA currents under chronic stress, and the connectivity of

excitatory neurons and working memory capacity. In addition,

we incorporated rodent biological information into the network

to improve its overall time scale and memory capacity. This

integration also enhanced the effects of specific currents and

connection structures on working memory tasks.

Acute electric shock stress enhances the depolarization-induced

glutamate release of presynaptic terminals in the prefrontal

and frontal cortex of rats (Musazzi et al., 2010), and activates
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FIGURE 4

Simulation of working memory task e�ects under chronic stress by modifying network connection structure. (A) Autocorrelation Decay Curves and

Time Constant Changes: Each subplot represents the dynamic changes of excitatory and inhibitory neurons. The left part displays the autocorrelation

decay curves during the memory phase and cue indication phase, with colors transitioning from green to red indicating an increase in E-E

connection strength. The right part shows time constant changes, with red representing changes during the memory phase and green representing

changes during the cue indication phase. (B) Network Working Memory Capacity: This subplot illustrates the changes in network working memory

capacity as a function of E-E connection strength variation by proportionality factor across the three models. (C) Correlation and P Value: The

correlation and P value between changes in working memory capacity and E-E connection strength are shown in the three models respectively.

glucocorticoid receptors, increasing the transport and function

of NMDAR and AMPAR via the SGK/Rab4 signaling pathway,

thereby enhancing synaptic transmission and promoting PFC-

mediated cognitive processes (Yuen et al., 2011). Our study

investigated the effects of acute stress situations, such as forced

swimming, on the function of excitatory and inhibitory neurons

in simulated neural networks. We found that under these stress

conditions, NMDA and AMPA currents in excitatory neurons

increased, which may enhance working memory capacity. These

results are consistent with previous experimental studies. In

addition, when we introduced rodent information into the

network, we observed that inhibitory neurons showed better

long-term performance than excitatory neurons. The overall

improvement in memory capacity suggests that inhibitory neurons

play a crucial role in maintaining network stability and working

memory function. By balancing and regulating the activity of

excitatory neurons, enhanced inhibitory neuronal activity not

only enhances memory capacity but also ensures overall network

stability (Topolnik and Tamboli, 2022). In addition, the sustained

activity of inhibitory neurons may contribute to the formation

and maintenance of long-term memory , an aspect that could be

explored in future work. Our results highlight the importance of

incorporating animal models in neural network simulations and

emphasize the important role of inhibitory neurons in cognitive

function (Topolnik and Tamboli, 2022). Based on the same network

structure, heterogeneous networks modeled with animal biological

data have higher working memory capacity as a whole than

homogeneous networks, and have stronger regulation of current

and connection strength. Inhibitory neurons are able to effectively

regulate the balance of network discharge. In our model, inhibitory

neurons work together with excitatory neurons to balance network

discharge. Specifically, in a group, inhibitory neurons inhibit the

activity of neurons in other groups, thereby helping their own

group to maintain continuous discharge (Deco and Rolls, 2003).

This dynamic plays a key role in defining the concept of working

memory capacity, where the interaction between excitatory and

inhibitory neurons ensures the stability of memory maintenance.

The effects of chronic stress on working memory are

multifaceted. Chronic stress-induced changes in neural circuits,

such as dysfunction of the dopamine system and reward circuit,
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are often associated with anxiety-like and depression-like behaviors

(Sanacora et al., 2022). We observed that chronic stress leads

to a loss of excitatory postsynaptic spines, disrupting local

connections of PFC pyramidal neurons. In chronic stress, the

loss of postsynaptic spines, particularly due to dendritic atrophy

of pyramidal neurons in the prefrontal cortex (PFC), damages

the PFC because these dendrites are key targets for long-range

excitatory cortical projections. These structural changes may

compensate for reduced local glutamate release by decreasing

the excitatory drive to PFC pyramidal cells. This synaptic loss

on the apical dendrites can impair working memory by either

affecting the activity of PFC pyramidal cells or disrupting long-

range inputs from other regions, such as the hippocampus and

thalamus, which are crucial for working memory processes (Bolkan

et al., 2017; Witztum et al., 2023). This phenomenonmay be a focus

of future studies to establish the cortical and subcortical nuclei

connectivity circuits involved in long-distance inputs to working

memory under stress. At the same time, it reduces the frequency

of spontaneous postsynaptic inhibitory currents. To simulate this

process, we adjusted the proportion of GABA receptor currents in

excitatory neurons in the network. Our simulation results show

that increasing GABA currents contributes to an overall increase

in the timescale of inhibitory neurons, but does not significantly

affect the timescale of excitatory neurons. This enhanced GABA

current was significantly correlated with the decrease in memory

capacity, indicating that the ability of neural networks to regulate

working memory through GABA currents is weakened under

chronic stress.

Under simulated chronic stress conditions, it has been observed

that adjusting the strength of connections between the same

selective excitatory neurons (E-E) helps to offset the loss of synapse

number caused by chronic stress. This enhanced E-E connection

is closely associated with an increase in working memory capacity

in all three network models. This suggests that while chronic stress

may lead to a decrease in synaptic density of excitatory neurons,

enhanced E-E connections are able to partially compensate for this

loss, thereby preserving working memory function.

In future studies, it is crucial to expand the scope of research

on changes in biological information under stress to include

more species, such as primates and humans. Working memory

differs significantly between rodents, non-human primates, and

human primates, mainly in the complexity of neural mechanisms

and the ability to perform working memory tasks. Another

significant limitation of rodent models is that they are unable

to display core symptoms of depression (such as low mood

and anhedonia) due to their relatively simple brain structure

(Song and Leonard, 2005). Unlike humans, nonhuman primates

are able to respond to stress by producing cortisol and display

core depressive-like symptoms after exposure to chronic mild

stress (Qin et al., 2015). In addition, enhancing the diversity

of neurons in the network, increasing the complexity of the

tasks, and improving network models to closely simulate actual

biological systems will allow us to gain a deeper understanding

of the effects of stress on working memory. By conducting these

efforts, we can more accurately simulate and predict changes

in cognitive function under various stress conditions. Therefore,

this will provide deeper insights and potential treatments for

studying stress-related cognitive disorders. In conclusion, our study

provides insights into how acute and chronic stress affects working

memory, particularly at the level of neural network dynamics and

synaptic connectivity. We use short-term synaptic plasticity to

update the neuronal state of the working memory network, which

belongs to short-term memory. In future work, we plan to further

explore other synaptic plasticity mechanisms, study long-term

synaptic plasticity, and study the impact on memory from multiple

perspectives across brain regions and species. These findings have

important implications for understanding the neurobiological basis

of working memory and how stress affects cognitive function.

Future studies could further explore how to use more refined

neuronal morphology models to discuss the effects of stress on

working memory.

4 Methods

4.1 Model architecture

Our network is a feedforward spike neuron network, in

which neurons update spikes through postsynaptic currents.

Specifically, we studied how the currents of other neurons affected

by short-term synaptic plasticity are transmitted to the target

neurons in the neuron model. This study aims to simulate

different stress states by updating the network state through

synaptic dynamics. The network consists of a single layer of

spike neurons, and external stimuli are input to excitatory

neurons through Poisson coding. Excitatory neurons stimulate

the intra-group neurons and inter-group neurons connected to

them. We use a short-term working memory task paradigm to

record the spike discharge state of neurons updated at each

time step. When the effect of changes in synaptic connections

on neuronal discharge can be directly counted, the ability of

neurons to maintain information changes dynamically, and the

entire neuronal group as a whole shows a large amount of

discharge or no discharge. The discharge of different neuronal

groups constructs the concept of discrete values of working

memory capacity, which is used to measure the task effect under

current conditions.

4.2 Biological data

The connection probability and number ratio of excitatory

neurons and inhibitory neurons in the network were determined

using published mouse in vivo anatomical data (Hass et al., 2016),

and the electrophysiological parameters of pyramidal neurons and

intermediate-type neurons in the second and third layers of the

rodent prefrontal cortex were selected. The effects of acute stress

on mouse pyramidal neurons were achieved by exposing animals

to different stressors, such as: forced swimming, acute restraint

stress, elevated platform stress, and corticosterone injection (Yuen

et al., 2011). Changes in neuronal AMPA and NMDA currents

were caused and incorporated into the modeling as a scaling factor

for synaptic currents. The effects of chronic stress on neuronal

structure in mice were investigated by daily restraint stress or

Frontiers inCellularNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncel.2025.1534839
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Du et al. 10.3389/fncel.2025.1534839

exposure to repeated swimming stress (Strekalova and Steinbusch,

2010), which resulted in the reorganization of the apical dendritic

structure of pyramidal neurons in the rat prefrontal area (Radley

et al., 2006; Cook and Wellman, 2004), reducing the density

and total length of apical dendritic spines (Radley et al., 2006).

In order to simulate the changes in dendrite morphology of

pyramidal neurons, the neuron model uses a multi-compartment

model and introduces the newly published excitatory nerves in

the mouse L2 layer ACC brain area (anterior cingulate cortex)

measured using 3D electron microscopy (Loomba et al., 2022).

The number of spine neurons and inhibitory neurons, among

which inhibitory neurons are divided into MP (multipolar) and

BP (bipolar) according to their morphology (Loomba et al., 2022).

According to existing literature, synapses on mouse dendritic

spines are mainly excitatory (Braitenberg and Schüz, 2013), while

synapses on dendritic shafts are mainly inhibitory (Karimi et al.,

2020), therefore it is necessary to distinguish the number of

excitatory synapses and inhibitory synapses on different types of

neurons according to the proportion of inhibitory inputs to the

corresponding neurons (Loomba et al., 2022). The specific value

table is shown in the Supplementary material.

4.3 Neuron model

Each population of identically preferred neurons consists of

excitatory and inhibitory populations. Our model is based on

Integrate-and-Fire spiking neuron (IF) (Abbott, 1999; Hertäg et al.,

2012; Zeng et al., 2023):

Cm
dV(t)

dt
= −g

(

V(t)− VL

)

− Isyn(t) (1)

Vdenotes the subthreshold membrane potential of neurons

within the ith selective population, withmembrane capacitanceCm,

resting potential VL, and synaptic current Isyn.

4.4 Synaptic current calculation

Synaptic currents include glutamatergic excitatory components

mediated by AMPA and NMDA receptors, inhibitory components

mediated by GABA receptors, dendritic currents, and background

currents. External stimuli contribute currents through AMPA

receptors. βNMDA and βAMPA are factors used to measure

the multiples of current growth in biological experiments

during acute stress conditions (actual acute stress current

size/control group current size). The acute stress model

in the biological model corresponds to the proportional

factors of AMPA and NMDA current changes under three

stress stimuli. Among them, external stimuli are input

through IAMPA,ext current. The total current is shown in the

figure below:

Itotal = βNMDAI
NMDA,rec

+ IAMPA,ext
+ βAMPAI

AMPA,rec
+ IGABA

+ Isoma,dend
+ Ibg (2)

The number of dendritic spines affects the reception of

synaptic current (Froudist-Walsh et al., 2021). We established the

relationship between the number of dendritic spines and synaptic

current as follows:

EXN = EXN × (1− fac) (3)

µNMDA, rec
e = EXN × (1− EXN_IN)× 0.5 (4)

µAMPA, rec
e = EXN × (1− EXN_IN)× 0.5 (5)

µGABA
e = EXN × EXN_IN (6)

µ
NMDA, rec
i = BP × (1− BP_IN)× 0.5+MP × (1−MP_IN)× 0.5 (7)

µ
AMPA, rec
i = BP × (1− BP_IN)× 0.5+MP × (1−MP_IN)× 0.5 (8)

µGABA
i = BP × (1− BP_IN)× 0.5+MP × (1−MP_IN)× 0.5 (9)

Among them, EXN represents the average number of

dendritic spines of excitatory neurons, BP represents the

average number of dendritic spines of bipolar neurons, and

MP represents the average number of dendritic spines of

multipolar neurons. EXNIN represents the estimated value

of the inhibitory input fraction [i/(i+e)] on the dendrites of

mouse excitatory neurons, BPIN and MPIN represent the

inhibitory input fraction values of bipolar interneurons and

multipolar interneurons, respectively. When simulating the

scenario of chronic stress, the percentage of dendritic spines

of excitatory neurons decreased, fac was 0.16 in chronic stress

and 0 in other cases. The specific values above are from the

experimental literature (Loomba et al., 2022). The subscript

e represents excitatory neurons, and i represents the value of

inhibitory neurons.

The NMDA current is calculated as shown below:

INMDA(t) = µNMDA,rec g
NMDA,rec

(

V(t)− VL
)

1+ γ exp(−βV(t))

N
∑

j=1

wjs
NMDA,rec
j (t)uj(t)

(10)

µNMDA,rec corresponds to the proportion of the number

of NMDA receptor synapses of actual excitatory pyramidal

neurons in the biological model, taking the average number of

excitatory synapses. gNMDA,rec is the synaptic conductance of

the receptor NMDA in excitatory neurons, VL is the reversal

potential, sNMDA,recis the fraction of receptor NMDA open

channels, and wj is the synaptic weight. The factor uj regulates

excitatory synapses. γ and β are constants.N is the number

of neurons.

The AMPA current is calculated as shown below:

IAMPA,ext(t) = gAMPA,ext
(

V(t)− VL

)

Next
∑

j=1

sAMPA,ext
j (t) (11)

where gAMPA,ext
E is the synaptic conductance of the

receptor AMPA in excitatory neurons, and sAMPA,extis

the fraction of receptor AMPA open channels that also

receive external input. In most simulations, external EPSCs

were mediated exclusively by AMPA receptors. In a few
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simulations, we introduced NMDA receptors in external inputs

(Brunel and Wang, 2001).

IAMPA,rec(t) = µAMPA,recgAMPA,rec (V(t)− VL
)

N
∑

j=1

wjs
AMPA,rec
j (t)uj(t)

(12)

µAMPA,rec corresponds to the proportion of the number of

AMPA receptor synapses of actual excitatory pyramidal neurons

in the biological model, taking the average number of excitatory

synapses. gAMPA,rec is the synaptic conductance of the receptor

AMPA in excitatory neurons, and sAMPA,rec is the fraction of

receptor AMPA open channels. N is the number of neurons.

The GABA current is calculated as shown below:

IGABA(t) = µGABAgGABA
(

V(t)− VL

)

N
∑

j=1

sGABAj (t) (13)

where gGABA is the synaptic conductance of the receptor GABA

in inhibitory neurons, and sGABA is the fraction of receptor GABA

open channels. N is the number of neurons.

The dendritic currents current is calculated as shown below:

Idend,exc = INMDA
+ IAMPA,ext

++IAMPA,rec
+ Ibg (14)

Idend,inh = IGABA (15)

Isoma,dend
= fI

(

Idend,exc , Idend,inh
)

= c1 ·

[

tanh

(

Idend,exc + c3I
dend,inh + c4

c5e−Idend , inh /c6

)]

+ c2

(16)

Idend,exc is the excitatory current flowing into the dendrites,

Idend,inh is the inhibitory current flowing into the dendrites, and

Isoma,dend is the current from the dendrites to the soma. c1 to

c6 control the gain, translation, inversion point, and shape of the

nonlinear function (Marlin and Carter, 2014).

4.5 Short-term synaptic plasticity

After introducing a short-term synaptic plasticity mechanism

for excitatory synapses, as follows (Mi et al., 2017; Froudist-Walsh

et al., 2021; Mongillo et al., 2008):

dsAMPA
j (t)

dt
= −

sAMPA
j (t)

τAMPA
+ xuγAMPA

∑

k

δ

(

t − tkj

)

(17)

dsNMDA
j (t)

dt
= −

sNMDA
j (t)

τNMDA
+ xu

(

1− sNMDA
j (t)

)

γNMDA

∑

k

δ

(

t − tkj

)

(18)

sGABAj (t)

dt
= −

sGABAj (t)

τGABA
+ γI

∑

k

δ

(

t − tkj

)

(19)

du

dt
=

U − u

τu
+ U(1− u)

∑

k

δ

(

t − tkj

)

(20)

dx

dt
=

1− x

τ x
− ux

∑

k

δ

(

t − tkj

)

(21)

Among them, U=0.15, τu = 1, 500ms, τ x = 2ms, γAMPA,

γNMDA are two factors used to regulate the magnitude of the two

currents under acute stress. The coefficient factor γI is used to

regulate the GABA current and is used to change the proportion

of the GABA current under chronic stress.

4.6 Timescale

To calculate the neuron time scale we calculated the decay time

constant of the spike-count autocorrelation function for each unit

during the fixation period (Murray et al., 2014). We calculated

the neuron firing sequence for the first 5 seconds of the network,

using the 50 ms Convert the neuronal firing sequence into a spike

count matrix for a time window of unit length. Next, we calculated

the Pearson correlation coefficient between the two time windows

(corresponding columns of the spike count matrix) lagged 1.

Fit an exponential decay function (ρ̄) to the Pearson correlation

coefficient at each lag value using Levenberg-Marquardt (Moré,

2006; Kim, 2021) nonlinear least squares method:

ρ̄(1) = a

(

exp

(

−
1

τ

)

+ b

)

(22)

where a is the fitted amplitude and b is the offset. τ is the time

scale of the neuron, measuring the decay rate of the autocorrelation

coefficient.
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