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Many retinal diseases are characterized by direct or indirect retinal ganglion cell 
(RGC) neurodegeneration. In glaucoma and optic nerve neuropathies, RGCs are 
the primary affected cells, whereas in photoreceptor dystrophies, RGC loss is 
secondary to the death of rods and cones. The death of RGCs in either case 
will irreversibly cause loss of vision, as RGCs are the sole output neurons of the 
retina. RGC neurodegeneration affects certain neurons preferentially, resulting in 
subpopulations of resilient and susceptible cells. Neurotrophins (NTs) are known to 
mediate neuronal survival through the downstream activation of various anti-apoptotic 
pathways. In this review, we summarize the current methods of RGC identification 
and quantification in animal models of direct or indirect neurodegeneration, and 
describe the advantages and disadvantages associated with these techniques. 
Using these techniques, multiple studies have uncovered the potential role of NTs 
in protecting RGCs during direct neurodegeneration, with BDNF and NGF delivery 
promoting RGC survival in models of experimental glaucoma. Many fewer studies 
have addressed similar questions in retinal diseases where RGC loss is secondary 
to photoreceptor degeneration, yielding conflicting results. Our analysis suggests 
that these seemingly contradictory results can be explained by the varying onset 
and geographic distribution of photoreceptor death.
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1 Introduction

The retina is a multi-layered tissue containing various cell types that create circuits which 
detect light and transmit electrical signals. The various layers of the retina can 
be compartmentalized into the outer and inner retina. The outer retina contains rods and 
cones, the light-sensing photoreceptor cells, which connect to second-order neurons of the 
inner retina including horizontal, bipolar, amacrine, and Muller glial cells (Hoon et al., 2014; 
Malhotra et al., 2021; Kolb, 1995). These cells synapse onto the retinal ganglion cells (RGCs) 
at the inner plexiform layer (Todorova et al., 2022; Varshney et al., 2015). All signals initiated 
and transmitted by the phototransduction cascade eventually lead to RGC firing of action 
potentials, and the transmission by RGCs of visual information via the optic nerve (ON), to 
the brain (Rose et al., 2017; Mead and Tomarev, 2016). With RGCs being the only output 
neurons in the retina, RGC survival is necessary for vision preservation and restoration (Yuan 
et al., 2021).

During development, RGCs are first to differentiate from multipotent retinal progenitor 
cells through the activity of the transcription factor Atoh7 (Lyu and Mu, 2021). The expression 
of various genes affects the physical properties and functions of RGCs, generating several 
different RGC subtypes, classified based on morphological features such as soma size and 
dendritic arborization, physiological responses to stimuli, and gene expression profiles 
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(Rheaume et al., 2018; Laboissonniere et al., 2019; Tapia et al., 2022). 
The subtypes of RGCs differ among species, with approximately 20 
and 40 subtypes identified so far in primates and rodents, respectively, 
(Kim et al., 2021; Langer et al., 2018; Jacoby and Schwartz, 2018). 
Following the processing of incoming visual signals, RGCs are 
responsible for relaying information to various locations in the brain. 
In mammals, the superior colliculus (SC) and lateral geniculate 
nucleus (LGN) are the primary recipients of RGC projections, but 
many other regions also receive input (Martersteck et al., 2017; Linden 
and Perry, 1983; Morin and Studholme, 2014). RGC subtype in the 
retina determine their axonal projections and influence the types of 
information relayed to the brain, including that related to attention, 
circadian rhythms, oculomotor control, and more (Goetz et al., 2022).

The direct or indirect loss of RGCs irreversibly leads to progressive 
vision loss. In diseases causing direct loss of RGCs, such as glaucoma, 
RGCs are the primary cells undergoing apoptosis, whereas in diseases 
causing photoreceptor loss, RGC neurodegeneration is secondary and 
downstream to the degeneration of other retinal neurons. Recent 
studies indicate that, regardless of how RGC loss occurs, some RGC 
subtypes are more resilient to neurodegeneration than others, 
suggesting the activation of a subtype-specific survival mechanism 
(Zhang et  al., 2022b; Tapia et  al., 2022; Duan et  al., 2015). Here 
we review neurotrophins (NTs) and their potential role in mediating 
anti-apoptotic signals, promoting RGC survival and conferring a 
resilient cellular identity to a subset of RGCs.

2 Direct RGC neurodegeneration

RGC neurodegeneration is part of the natural aging process, with 
an approximate loss of 0.6% of RGCs per year in healthy humans 
(Harwerth et al., 2008). However, various animal models show no 
RGC loss with age, such as rats, which have stable RGC counts from 
a balance of retinal growth and density reduction, and marmosets 
(Harman et al., 2003; Nadal-Nicolás et al., 2018; Haverkamp et al., 
2022). Therefore, findings in human retinas should be interpreted 
cautiously as quantification often relies on sampling and lacks the use 
of RGC-specific markers. Direct RGC degeneration is observed in 
glaucoma or ON injury, secondary neuritis such as in multiple 
sclerosis and other retinal and neurological diseases (Vernazza et al., 
2021; Garcia-Martin et  al., 2017). Of these, glaucoma is the most 
prominent disease, affecting 80 million people worldwide and is 
characterized by ON damage and the progressive death of RGCs 
(Tribble et al., 2023). Apart from childhood glaucoma, it is mostly an 
idiopathic disease, but the presence of single-nucleotide 
polymorphisms has been associated with increased risk (Kumar et al., 
2024; Wang et  al., 2022). Glaucoma is primarily associated with 
increased intraocular pressure (IOP) and/or reduced blood supply, 
activating apoptotic signals in RGCs (Qu et al., 2010; Zeitz et al., 
2006). Although many treatments aim to reduce IOP, this strategy 
only hinders disease progression and does not reverse the RGC loss 
that prompted the initial diagnosis. Moreover, normal tension 
glaucoma presents RGC loss without an elevation in IOP, illustrating 
that IOP is not necessary for glaucoma pathogenesis (Anderson 
et al., 2001).

Glaucoma is studied in various animal models including 
non-human primates (NHPs), pigs, rabbits, and rodents (Evangelho 
et  al., 2019). Although the NHP model provides the greatest 

anatomical similarity with the human eye, NHPs are often impractical 
for studies due to incomplete genomic data, long generation time, 
small litter size, high costs, and various ethical concerns. Pigs, rabbits, 
and rodents resolve the limitation of cost, but rodents prove to be the 
most feasible model due to fast generation time, general similarity 
with the human eye, and availability of diverse transgenic strains. 
Moreover, rodents such as the ground squirrel and tree shrew 
showcase visual streaks which resemble maculae, with tree shrews 
additionally possessing a lamina cribrosa, providing further 
anatomical similarities to the human eye (Xiao et  al., 2021; 
Grannonico et al., 2024; Samuels et al., 2018). Despite their various 
advantages, rodent limitations include smaller overall eye size, making 
targets harder to access and manipulate, and the lack of a macula and 
lamina cribrosa in select rodents such as rats and mice (Chen and 
Zhang, 2015). Pressure-dependent rodent models of experimental 
glaucoma exhibit elevated IOP, caused by mutations or physical 
induction. For example, in the ocular hypertension model, magnetic 
microbeads are injected into the anterior chamber, leading to a 
sustained elevation in IOP for 4–6 weeks (Cwerman-Thibault et al., 
2017). Other methods of IOP induction are intracameral injections, 
sclerosis of outflow pathway, cautery of extraocular veins, and 
transduction of trabecular meshwork with glaucoma associated genes 
(Pang and Clark, 2020). However, the more commonly used models 
have mutations resulting in elevated IOP, such as the DBA/2 mouse, 
carrying an inherited mutation in melanosomal protein genes Tyrp1b 
and GpnmbR150X causing iris cell apoptosis (Cwerman-Thibault et al., 
2017). This model develops elevated IOP between 6 and 9 months of 
age, resulting in RGC loss and reduced light responses (Amato et al., 
2023; Inman et al., 2006).

A critical problem in characterizing glaucoma is quantifying RGC 
density. RGC quantification methods include immunostaining with 
specific antibodies such as RBPMS, Brn3a or Thy-1, and retrograde 
tracing from SC, LGN and other areas. Immunostaining presents a 
robust labeling technique, with RBPMS staining the majority of RGC 
subtypes in mice and Brn3a labeling 80% of RBPMS immunoreactive 
RGCs (Rodriguez et al., 2014; Kwong et al., 2010; Nadal-Nicolás et al., 
2009). Thy-1 is less commonly used due to its lack of specificity, with 
additional labeling of amacrine cells, and reduction in expression 
before and during RGC loss (Lin et al., 2024; Dabin and Barnstable, 
1995; Huang et al., 2006). Although RBPMS quantification is prone to 
counting error due to staining of overlapping cells with undefined 
borders, recent advances in artificial intelligence have improved 
quantification (Meng et al., 2024; Masin et al., 2021; Zhang et al., 
2022a). Moreover, combining automated counting methods with 
other RGC specific antibodies such as Brn3a and POU6f2 will allow 
for more accurate total RGC counts (Lin et al., 2024). Altogether, 
immunolabeling provides reliable, consistent results in animal models 
but remains unsuitable for evaluating RGC survival in patients. 
Retrograde neuroanatomical tracing of RGCs, from the SC or LGN, 
using dyes such as cholera toxin subunit B and Fluorogold, or viruses, 
allows for reliable quantification of RGCs and enables highly detailed 
morphological assessment, but will fail to label RGCs projecting to 
other brain areas and requires invasive non-terminal surgical 
procedures in the mouse brain (Masin et al., 2021; Yao et al., 2018). 
Recent studies have utilized Fluorogold tracing from the intact ON 
and optic tract, providing the most accurate identification of the entire 
RGC population (Nadal-Nicolás et al., 2015). Moreover, RGC markers 
often have species-specific considerations, with certain markers being 
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more effective in targeting RGCs within specific animal models 
(Nadal-Nicolás et al., 2023).

Quantification of RGCs via RBPMS immunofluorescence in the 
DBA/2 mouse model showed initial maintenance of RGC density in 
the central and peripheral retina at 2 and 6 months, but revealed a 
reduction of about 80% at 15 months (Amato et al., 2023). Another 
study in the same model compared RGC density with age-matched 
healthy mice, in which RGC loss began at 12 months of age and 
resulted in a 71% reduction in the DBA/2 mouse and 46% reduction 
in the healthy control after 18 months (Danias et al., 2003). RGC loss 
in the ocular hypertension model yielded similar outcomes with an 
expedited timeline, showing a 77% decrease in RGC density at 21 days 
post-injection, as measured by Brn3a immunolabeling (Trost et al., 
2015). In both induced and genetic models of experimental glaucoma, 
late-stage degeneration results in significant RGC loss, with a 
reduction of approximately 70–80%. Moreover, RGC density is 
typically stable in early to mid-disease stages, with exponential 
reductions in RGC density observed in later stages, associated with the 
sustained elevation of IOP (Buckingham et  al., 2008). Studies in 
rodent models of optic nerve crush have also found RGC subtype-
specific resilience to degeneration, with intrinsically photosensitive 
RGCs demonstrating increased resilience and regeneration in 
response to damage whereas ON–OFF direction selective RGCs are 
more susceptible (VanderWall et al., 2020; Tapia et al., 2022). Together, 
this suggests the presence of a selective mechanism for degeneration 
in models of direct RGC neurodegeneration.

3 Indirect RGC neurodegeneration

Gradual RGC loss can be  triggered by the primary death of 
photoreceptors. Photoreceptor loss can be  idiopathic, such as 
age-related macular degeneration (AMD), or inherited, such as 
retinitis pigmentosa (RP). AMD affects nearly 200 million people 
worldwide and results from the gradual deterioration of the macula. 
Inherited retinal degenerations affect over 5.5 million people globally, 
with over 50 subtypes identified, of which RP is the most prevalent, 
affecting 1 in every 4,000 individuals (Ben-Yosef, 2022; Cross et al., 
2022; Georgiou et al., 2021). In all forms of retinal degeneration, the 

sequential loss of photoreceptors leads to downstream 
pathophysiological changes in the inner retina known as remodeling, 
affecting RGCs, bipolar and amacrine cells (Figure 1) (Telias et al., 
2020). One study showed that in advanced human cone-decimating 
RP, more than 80% of RGCs are lost, whereas in human cone-sparing 
RP in which central vision is preserved, RGCs seem to be maintained 
(Marc et al., 2003; Henriksen et al., 2014). Continued remodeling 
leads to the extensive loss of inner retinal neurons, including the loss 
of 70% of RGCs in RP, after which vision restoration is impossible 
(Pfeiffer and Jones, 2022; Santos et al., 1997).

Due to the complexities of RGC quantification previously 
discussed, studies in animal models of RP show conflicting results 
regarding RGC loss. One frequently used mouse model of aggressive 
RP is the RD1 model (Pde6βrd1/rd1), consisting of a mutation in 
phosphodiesterase 6β subunit found in rods, leading to initial 
photoreceptor loss by postnatal day (P) 21 and complete degeneration 
by P60 (Han et al., 2013). In this model, a longitudinal analysis of RGC 
density tracked using Thy-1 showed no significant changes in RGC 
density up to 18 months (Lin and Peng, 2013). However, as previously 
stated, Thy-1 may non-specifically label other inner retinal cells, 
suggesting that the stable RGC density observed might not be accurate. 
Another study, which utilized nuclear staining, concluded no 
significant differences in RGC density up to 12 months (Damiani 
et al., 2012). This conclusion is limited as RGCs were identified by 
nuclear morphology and similar RGC density was assumed across 
different retinal regions. Previous studies have established that density 
differs based on proximity and orientation relative to the ON (Dräger 
and Olsen, 1981). For example, RBPMS labeling in the RD1 model 
showed RGC density reduction of about 15% in the peripheral retina 
exclusively, as early as 3 months of age (Saha et al., 2016). However, it 
is possible that RBPMS preferentially labeled only a specific susceptible 
subpopulation of RGCs (Saha et al., 2016; Corral-Domenge et al., 
2022; Stapley et  al., 2022). By revealing axons, RGCs can 
be conclusively discriminated from other retinal cells, providing the 
most accurate identification method. Nevertheless, to date, no studies 
in RD1 mice or similar models have used axonal labeling to 
quantify RGCs.

Other commonly used models of RP are the P23H rat model, in 
which rhodopsin is misfolded, and the Royal College of Surgeons 

FIGURE 1

Photoreceptor degeneration leads to inner retinal remodeling and RGC loss. Schematic representation of the progression of photoreceptor 
degeneration characterized by the gradual loss of rods and cones. The left panel shows the anatomy of healthy retinal tissue with all the layers intact, 
and the position of the retina in the eye. The right panel depicts the progression of photoreceptor degeneration through early and late stages, showing 
the death of photoreceptors and the subsequent downstream pathophysiological remodeling in the layers of the inner retina, such as 
hyperpermeability and hyperactivity of RGCs. In early stages of photoreceptor loss, RGCs undergo remodeling but do not exhibit increased death rate. 
In late stages of photoreceptor loss and advanced remodeling, up to 80% of RGCs die but a subpopulation of resilient cells survive (depicted in red). 
Created in BioRender. Abraham, A. (2024), https://BioRender.com/l46y674.
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(RCS) rat model, in which the Mertk gene expressed in the retinal 
pigmented epithelium is mutated (Ryals et al., 2017; Orhan et al., 
2015). The P23H model exhibits slow photoreceptor loss, with 
significant rod degeneration around P300, whereas the RCS model 
exhibits rapid photoreceptor loss as early as P18 (García-Ayuso et al., 
2014; Sekirnjak et al., 2011). One study tracked RGC density in the 
P23H rat using Brn3a immunolabeling and Fluorogold retrograde 
tracing from the SC, showing an RGC density reduction of 15–20% in 
each label at 12 months (García-Ayuso et al., 2010). Another study in 
the same model found increased RGC degeneration through Brn3a 
labelling in the central retina as compared to the periphery, consistent 
with the pattern of photoreceptor loss (Kolomiets et al., 2010). Similar 
quantification of RGC density in the RCS model showed a 40% 
reduction after 18 months, with sections of the retina lacking both 
Fluorogold and Brn3a positive cells (García-Ayuso et  al., 2014). 
Collectively, these studies suggest that the loss of RGCs may follow the 
geographic pattern of photoreceptor loss, indicating that a 
degeneration-dependent signal is affecting RGC survival.

4 Potential role of neurotrophins

NTs, such as brain derived neurotrophic factor (BDNF), nerve 
growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4/5 
(NT-4/5), are growth factors which play essential roles in neuron 
development, proliferation, and survival (Colardo et al., 2021). NTs 
preferentially bind a class of transmembrane receptors known as 
tropomyosin receptor kinases (TRKs), with NGF binding TrkA, 
NT-4/5 and BDNF binding TrkB, and NT-3 binding TrkC (Lin et al., 
2021). NTs are translated into premature peptides, or 
proneurotrophins, which are synthesized into their mature form by 
cleavage of the C-terminal domain. The canonical activation of TRKs 
results from mature NT binding, leading to the downstream activation 
of several pro-survival pathways, including phospholipase C-γ 
(PLC-γ), mitogen-activated protein kinase (MAPK), and 
phosphoinositide-3-kinase (PI3K-Akt) pathways (Uren and Turnley, 
2014). Moreover, co-expression of nerve growth factor receptor 
(p75NTR) with TRKs can lead to high affinity binding of NTs, 
promoting synergistic downstream activation (Conroy and 
Coulson, 2022).

Alterations in NT secretion and activity characterize various 
neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and 
Huntington’s disease, leading to a decline in long term potentiation, 
synapse formation, and neuronal survival (Bathina and Das, 2015). 
The effects of NTs in direct RGC neurodegeneration, such as 
glaucoma, are postulated by the NT deprivation hypothesis, which 
states that elevated IOP prevents the retrograde transport of NTs to 
RGCs, resulting in a reduced neuroprotective state (Figure  2) 
(Chitranshi et al., 2018). This hypothesis stems from a reduction in 
intraocular NT secretion during elevated IOP due to a block in NT 
transport at the ON head (Quigley et al., 2000). Deprivation of NT 
supply in vitro has been shown to induce up to 83% RGC loss observed 
after 48 h, suggesting that RGC survival is dependent on the activity 
of NTs (Johnson et al., 2024). Although the retrograde supply of NTs 
may be disrupted in glaucoma, many retinal cells have the capability 
of producing NTs. Murphy et al. showed that axonal lesions on RGCs 
targeting the SC at P5 caused significant RGC loss after 5 months, 
while lesions at P30 caused no loss, suggesting that adult RGC survival 

relies primarily on intraocular NT sources (Murphy and Clarke, 
2006). Intraocular NT secretion has been observed in various studies, 
with BDNF expression occurring locally in astrocytes and RGCs 
(Gupta et al., 2014). Moreover, BDNF expression is locally upregulated 
in the ganglion cell layer immediately after ON injury (Pietrucha-
Dutczak et al., 2018; Gao et al., 1997). The role of intraocular BDNF 
in neuroprotection was shown by inducing ocular hypertension in a 
mouse either homozygous or heterozygous for BDNF. The BDNF+/− 
mouse showed a 40–45% reduction in GCL density and further 
reduced visual response as compared to the BDNF+/+ mouse, which 
showed a reduction of 30–35% (Gupta et al., 2014).

Since BDNF and other NTs are essential to RGC development and 
protection, many studies investigated the efficacy of introducing 
exogenous NTs to promote RGC survival. Intravitreal injections of 
recombinant BDNF in the ON crush cat model show positive 
correlations between dosage of BDNF injected and RGC density, with 
30 μg treatments at the time of ON injury showing 81% RGC survival 
1 week after administration (Chen and Weber, 2001). Moreover, 
higher doses of BDNF were associated with survival of medium-sized 
RGCs, likely due to this subpopulation comprising a larger proportion 
of all RGCs in the cat retina. Similarly, topical administration of NGF 
drops in rat IOP models resulted in greater RGC density after 7 weeks 
due to inhibition of apoptotic pathways, quantified by Bcl-2/Bax ratio 
(Lambiase et  al., 2009). Treatment of three advanced glaucoma 
patients with the same NGF drops for 3 months resulted in progressive 
improvement in inner retinal layer function, post retinal neuronal 
conduction, contrast sensitivity, and visual acuity, all of which was 
sustained up to 3 months after discontinuation of treatment. Recent 
studies have initiated the Phase I clinical testing of topical NGF drops 
for glaucoma, deeming its application safe and tolerable at high 
concentrations (Beykin et al., 2022).

The limitations of topical NT administration, such as slow 
diffusion and short half-life (Wang et al., 2014) can be overcome by 
gene delivery through adeno-associated viral (AAV) vectors, which 
provide sustained upregulation and secretion. Various studies utilizing 
AAV-BDNF gene therapy have found success in sustained 
maintenance of IOP and reduced RGC loss. One study, which utilized 
a laser-induced rat IOP model, developed an AAV-BDNF, which 
resulted in 20% less RGC axonal loss after 4 weeks of elevated IOP 
(Martin et al., 2003). The sustained impact of BDNF delivery can 
be improved by studying the availability of its receptor TRKB during 
the progression of the disease. One study in microbead trabecular 
occlusion model of glaucoma found four-fold overall TRKB 
upregulation alongside reduction in BDNF (Wójcik-Gryciuk et al., 
2020). In this study, moderate overexpression of AAV2-BDNF resulted 
in long-term RGC neuroprotection by restoring normal levels of 
TRKB expression. Moreover, rat models of induced IOP have 
increased activation of SH2 domain-containing phosphatase-2, a 
cytoplasmic protein which downregulates TRKB (Gupta et al., 2012). 
These studies suggest the importance of maintaining optimal BDNF 
and TRKB levels for therapies aimed at reducing RGC loss (Osborne 
et al., 2018).

The role of NTs in indirect RGC neurodegeneration has not been 
thoroughly studied. Some studies in the RD1 model have observed 
downregulation of TRKB, TRKC, BDNF, and ciliary neurotrophic 
factor (CNTF) (Xiaobei Yin et  al., 2020). Intravitreal delivery of 
AAV-CNTF in the RD1 model showed increased photoreceptor layer 
thickness after 18 days (Cayouette and Gravel, 1997). Simultaneous 
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treatment with recombinant CNTF and BDNF in RD1 retinal explants 
which were harvested at P2 and cultured for 9 days resulted in a 
reduction of TUNEL-positive photoreceptors and upregulated the 
activity of downstream survival factors such as Akt, ERK and CREB 
(Azadi et al., 2007). Similarly, supplementation of CNTF for up to 
24 months in humans with RP through an encapsulated cell implant 
resulted in a dose-dependent increase in overall retinal and outer 
nuclear layer thickness (Birch et al., 2013). However, there was no 
change in thickness of photoreceptor outer segments and pigmented 
epithelium, and no improvement in vision. As none of these studies 
showed positive or negative effects on RGC density, further research 
on NT-mediated RGC survival in photoreceptor degeneration can 
promote the development of therapeutics to prevent vision loss and 

support restoration technologies reliant on RGC output. Previous 
studies suggest that retinal remodeling, which occurs during 
photoreceptor degeneration, triggers RGC axonal damage through 
vascular remodeling induced axotomy (García-Ayuso et al., 2011; 
Villegas-Pérez et al., 1998; Nguyen et al., 2023).

5 Conclusion

The degeneration of RGCs leads to irreversible vision loss, and 
since there is no current method of RGC regeneration, understanding 
their death is essential for vision restoration. RGC degeneration 
manifests in various conditions, with some leading to direct RGC loss 

FIGURE 2

Neurotrophin deprivation in optic neuropathies. RGC survival is dependent on the continued activity of NTs, which are secreted locally in the retina and 
retrogradely transported from the brain. During glaucoma and other optic neuropathies, retrograde transport of NTs is disrupted due to ON damage, 
resulting in a reduced neuroprotective state. Reduction of retrograde sources of NTs triggers initial increases and later decreases in retinal NT secretion. 
Created in BioRender. Abraham, A. (2024), https://BioRender.com/d88b197.
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and others resulting in RGC death secondary to other retinal 
pathologies. There exists much conflicting evidence regarding RGC 
loss during photoreceptor degeneration due to the absence of a gold 
standard technique for identifying RGCs. Moreover, both glaucoma 
and inherited photoreceptor degeneration are studied through a wide 
variety of animal models, with various advantages and disadvantages, 
further contributing to the discrepancies between studies. NTs 
regulate the development and survival of RGCs, making them 
candidates for neuroprotection. Their neuroprotective effect in direct 
degeneration may suggest that their application can be beneficial in 
RGC preservation during indirect degeneration as well.
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