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The brain’s complex organization spans from molecular-level processes within

neurons to large-scale networks, making it essential to understand this

multiscale structure to uncover brain functions and address neurological

disorders. Multiscale brain modeling has emerged as a transformative approach,

integrating computational models, advanced imaging, and big data to

bridge these levels of organization. This review explores the challenges

and opportunities in linking microscopic phenomena to macroscopic brain

functions, emphasizing the methodologies driving progress in the field. It

also highlights the clinical potential of multiscale models, including their role

in advancing artificial intelligence (AI) applications and improving healthcare

technologies. By examining current research and proposing future directions

for interdisciplinary collaboration, this work demonstrates how multiscale brain

modeling can revolutionize both scientific understanding and clinical practice.
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1 Introduction

The brain is an extraordinary organ, orchestrating dynamic processes that span
multiple scales—from the molecular activity within neurons to the large-scale interactions
between brain regions that govern thought, emotion, and behavior. Understanding this
multiscale organization is essential for uncovering the fundamental principles of brain
function and identifying the mechanisms behind its dysfunctions in neurological and
psychiatric disorders (Jiang et al., 2024; Lu et al., 2022). Modern experimental advances,
such as breakthroughs in genetics, molecular biology, cell physiology, and neuroimaging,
have provided detailed insights into specific aspects of brain activity at each of these levels
(Laasya et al., 2024; Yen et al., 2023). However, integrating these findings into a unified
multiscale framework that bridges molecular, cellular, circuit, and systems-level dynamics
remains one of the greatest challenges in neuroscience.

While significant progress has been made in isolating and characterizing brain
processes at individual scales (Ozdemir et al., 2020; Poldrack et al., 2009), the brain’s
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complexity demands an approach that accounts for interactions
across these levels. For instance, understanding how molecular
disruptions, such as ion channel mutations, manifest as
circuit-wide abnormalities or how these changes propagate
to affect whole-brain dynamics and behavior requires
sophisticated methods capable of capturing cross-scale
relationships (Dulla et al., 2016; Kullmann, 2010). Addressing
these challenges is not merely an academic exercise; it has
profound implications for advancing our understanding of
brain function in health and disease and for developing targeted
interventions.

The emergence of advanced computational techniques, big
data analytics, and informatics tools provides an unprecedented
opportunity to construct multiscale models of brain function
(Dura-Bernal et al., 2024). These models aim to integrate diverse
datasets—ranging from genetic profiles and electrophysiological
recordings to large-scale imaging data—into cohesive
representations that can simulate interactions between neuronal
populations and broader brain networks. By capturing these
complex dynamics, multiscale models can offer insights into how
microscopic phenomena drive macroscopic brain activity and
behavior. Such approaches not only hold promise for unraveling
the basic mechanisms of the brain but also for addressing critical
questions in clinical neuroscience and applied fields such as
neuroengineering and artificial intelligence.

This review explores the current state of multiscale brain
modeling, examining the methodologies and tools that enable
researchers to bridge the diverse scales of brain organization.
It highlights key advances in experimental and computational
techniques, as well as the challenges inherent in constructing
accurate and predictive multiscale models. Furthermore, we
discuss the potential applications of these models in clinical
practice, neurological research, and the development of AI-based
technologies. By synthesizing findings across disciplines and scales,
multiscale brain modeling stands poised to unlock transformative
insights into the brain’s workings, its pathologies, and its role in
shaping human behavior and cognition.

2 Defining multiscale brain models

A multiscale brain model seeks to bridge the gap between
microscopic (molecular, cellular) and macroscopic (whole brain,
behavior) phenomena (Dura-Bernal et al., 2024). While we have
models that simulate neuronal activity at the synaptic level, the
challenge lies in scaling these simulations up to understand higher-
order brain functions (Varley et al., 2023). In this section, we
examine the methodologies used to achieve multiscale modeling
and the key challenges inherent in this effort.

2.1 Microscopic scale: molecular and
cellular models

At the microscopic scale (Deistler et al., 2024), advances in
computational neuroscience have allowed researchers to model the
biophysical properties of neurons and synapses in unprecedented
detail.

Studies emphasize the importance of neurotransmitter
dynamics, receptor interactions, and synaptic vesicle release
mechanisms in shaping the overall network response. For
instance, a study focused on asymmetric voltage attenuation along
dendrites, shedding light on how ion channels and structural
plasticity contribute to learning processes (Moldwin et al., 2023).
Additionally, scientists provided quantitative insights into calcium-
triggered neurotransmitter release, which plays a critical role in
synaptic efficacy and homeostasis (Rizo, 2018).

Moreover, molecular-level models like the Hodgkin-Huxley
framework simulate ion channel gating kinetics, offering a robust
foundation for understanding action potential propagation (Kumar
et al., 2024; Tekin, 2022). Innovations such as differentiable neural
simulators have further extended traditional biophysical models
by enabling the integration of large-scale transcriptomics and
proteomics data to refine predictions about cellular responses
in healthy and diseased states. Studies on voltage-gated calcium
channels and their cooperative interactions have illustrated how
subtle molecular changes can cascade into large-scale neuronal
oscillations (Dave and Jha, 2021).

To ensure reproducibility and scalability, platforms such as
Neuron and Blue Brain Project simulators have been employed
to incorporate synapse-level data, enabling researchers to build
more comprehensive, data-driven models of molecular signaling
and network connectivity (Hjorth et al., 2021; Suzuki et al., 2012;
Tretter, 2010).

These models have helped clarify how changes in neuronal
behavior impact higher-order cognitive functions. However, while
cellular-level models are valuable for understanding localized
processes, connecting them to global brain activity remains an open
question (Vila-Vidal et al., 2022).

2.2 Mesoscale: neuronal ensembles and
microcircuits

Moving beyond individual neurons, models at the mesoscale
level focus on microcircuits—localized networks of interconnected
neurons that perform specialized tasks (Lee et al., 2023). Recent
advances in connectomics and optogenetics have enabled detailed
mapping of these circuits, which are thought to underlie core
cognitive processes such as memory encoding and sensory
processing (Berndt et al., 2023; Swanson et al., 2022). Network
models, often employing graph theory, capture how information
flows through these circuits (Anand A. et al., 2024; Sener et al.,
2023). However, scaling up these models to understand how they
interact across larger brain regions requires integrating additional
layers of complexity, such as plasticity and feedback loops.

2.3 Macroscopic scale: large-scale brain
networks

At the macroscopic level (Castaldo et al., 2022), computational
models aim to describe large-scale brain networks that are
responsible for coordinating sensory, motor, and cognitive
functions (Pathak et al., 2022). These models often rely on data
from non-invasive imaging techniques such as MRI, EEG, MEG,
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and PET, which offer ensemble measurements of brain activity.
Functional connectivity analyses, which study the correlation
patterns between different brain regions, provide valuable insights
into network dynamics (Varga et al., 2024).

EEG and MEG, known for their high temporal resolution
(Burgess, 2018), have been employed to model the timing and
synchronization of neuronal populations. For instance, a study
developed a multi-scale neural model using MEG data to simulate
cortical excitability at the cellular level, providing insights into
how fast oscillatory activity is modulated by synaptic interactions
(van Nifterick et al., 2022). Similarly, another study demonstrated
how EEG-informed computational models can simulate the
propagation of alpha oscillations, linking macroscopic recordings
to microscopic cellular dynamics (Sigala et al., 2014).

PET imaging, while traditionally associated with metabolic
studies (Vizza et al., 2024), has also been used to create microscopic
models of neurotransmitter activity. For example, scientists utilized
PET-based kinetic modeling to investigate synaptic receptor
binding and its contribution to neuron-to-neuron communication
in microscopic circuits (Marner, 2012). This approach has been
particularly valuable in studies of neurotransmitter dysfunction
in psychiatric disorders, where synaptic changes often precede
macroscopic brain alterations.

However, one of the most pressing challenges is inferring
microscopic mechanisms (e.g., synaptic transmission) from such
macroscopic data. The development of multiscale models could be
pivotal in bridging this gap.

Emerging technologies are closing the gap between micro-
and macroscales by integrating high-resolution molecular data
with large-scale neuroimaging. Techniques such as two-photon
microscopy and expansion microscopy provide subcellular
resolution while capturing the architecture of larger neural
circuits (Sneve and Piatkevich, 2022). For example, optogenetics
and CRISPR-based neurogenetic tracing allow for precise
manipulations of neuronal activity, enabling researchers to
investigate causal relationships between molecular mechanisms
and large-scale network dynamics (Seki et al., 2023).

When combined with neuroimaging techniques like MRI,
fMRI, and MEG, these tools bridge the molecular, cellular, and
system levels of brain analysis. For instance, studies have shown
how transcriptomic profiles from the Allen Brain Atlas can be
mapped onto large-scale connectomic data to better understand
human brain network hubs’ vulnerability to neurodegenerative
diseases (Anand C. et al., 2024; Xu et al., 2021; Xu et al., 2022).

By employing these integrative approaches, researchers can
reveal the effects of genetic mutations and molecular dysregulation
on whole-brain dynamics, facilitating more accurate modeling
of disease progression and therapeutic interventions. These
advancements highlight the potential of multi-modal tools in
closing the gap between micro- and macroscales and enabling
more comprehensive investigations into neural function across
species and conditions.

2.4 Cross-species multiscale modeling

The study of neural dynamics across different species provides
crucial insights into the evolutionary conservation and divergence

of brain mechanisms, shedding light on the complexities of
both normal cognitive functions and disease processes. Cross-
species multiscale modeling integrates data at molecular, cellular,
and system levels from animal models and humans, enabling
researchers to make meaningful comparisons and generalizations
(Kharche et al., 2022). However, this approach presents significant
challenges alongside its potential benefits.

A major challenge lies in the comparability of datasets across
species due to differences in anatomical structures, physiological
processes, and experimental protocols. For instance, while the
overall organization of brain regions may be conserved across
species, there are substantial variations in cortical thickness,
synaptic density, and neuronal firing patterns (Mahon, 2024).
These differences can affect the interpretation of multiscale models
and introduce inconsistencies in cross-species comparisons.
Additionally, variations in data collection techniques—such as
differences in temporal resolutions and imaging modalities—
further complicate the integration of datasets from different
species (Balk et al., 2022). Standardizing experimental conditions,
developing interoperable data formats, and adopting common
ontologies for neural components are essential steps toward
improving data harmonization.

Numerous studies have demonstrated the importance of cross-
species modeling in neuroscience research. For example, the Allen
Brain Atlas has provided a comprehensive comparison of gene
expression patterns across human and mouse brains, highlighting
conserved and divergent pathways that influence brain function
(Sunkin et al., 2013). Similarly, another study employed non-
human primates to investigate neural regeneration, using their
findings to inform human clinical trials for spinal cord injuries
(Howard and Strittmatter, 2023).

Animal models, particularly rodents and non-human primates,
provide a controlled environment for causal experimentation,
allowing researchers to manipulate specific neural circuits and
observe the resulting effects (Neziri et al., 2024). Optogenetic
studies in rodents, for instance, have been pivotal in elucidating
network-level dynamics that correspond to functional connectivity
patterns observed in human fMRI studies (Moon et al., 2023).
A study demonstrated how precise control of neuronal firing
in mice could reproduce connectivity patterns seen in human
imaging studies, bridging the gap between microcircuit dynamics
and macroscopic observations (Ragone et al., 2023). These findings
have been informed by studies by researchers who used combined
EEG-fMRI approaches to validate similar network-level disruptions
in neuropsychiatric conditions.

Emerging computational frameworks have further facilitated
cross-species research by simulating disease mechanisms and
testing hypotheses across biological scales. Machine learning
algorithms and statistical modeling approaches can reconcile
differences between species by accounting for anatomical and
functional variations (Majumder and Mason, 2024). Comparative
studies have also highlighted the importance of transcriptomic and
proteomic data in linking molecular changes to large-scale brain
network alterations (Weith et al., 2022).

Open-access repositories, supported by initiatives such as the
Human Connectome Project and the BRAIN Initiative, have
made significant strides in making cross-species datasets more
accessible, thereby fostering collaborative research efforts (Lu et al.,
2024). These platforms provide researchers with tools to integrate
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molecular data from animal models with human neuroimaging
datasets, enabling comprehensive cross-species comparisons.

Cross-species multiscale modeling is instrumental in
improving the translatability of preclinical findings to human
applications (Shalash et al., 2024; Wang et al., 2022). By leveraging
data from both animal and human studies, researchers can build
more robust models that account for interspecies variability
and refine predictions about disease progression and treatment
outcomes. This approach holds promise for advancing precision
medicine and developing more effective interventions for complex
neurological disorders. Addressing the existing limitations in
dataset compatibility and experimental design will further enhance
the potential of cross-species multiscale modeling in neuroscience
research.

3 Clinical implications of multiscale
models

The potential clinical applications of multiscale brain modeling
are vast. By providing a more accurate understanding of brain
function and dysfunction, these models could transform diagnostic
and therapeutic approaches for a range of neurological disorders.
In this section, we discuss some of the most promising clinical
applications of multiscale modeling.

3.1 Neurological disorders and
personalized medicine

Multiscale models provide a powerful framework for
uncovering the mechanisms underlying neurological disorders
such as epilepsy, Alzheimer’s disease, and Parkinson’s disease,
offering opportunities to advance both diagnosis and treatment. In
epilepsy, for example, multiscale modeling enables the simulation
of abnormal network activity progression, which can help pinpoint
optimal intervention targets for therapeutic electrical stimulation
(Yu et al., 2023). Studies have demonstrated that these models
can identify specific brain regions or neural pathways where
interventions like deep brain stimulation (DBS) can disrupt seizure
propagation, improving treatment efficacy (Acerbo et al., 2022;
Yang et al., 2023).

In the context of neurodegenerative diseases such as
Alzheimer’s and Parkinson’s disease, multiscale models allow
researchers to link cellular-level pathologies to their large-scale
network effects. For instance, by simulating the accumulation
and spread of amyloid-beta plaques in Alzheimer’s disease, these
models provide insights into how molecular changes translate into
cognitive deficits and network dysfunctions over time (Cabrera-
Álvarez et al., 2023). Similarly, in Parkinson’s disease, multiscale
approaches have been used to study how dopaminergic neuron
loss impacts motor control circuits, aiding in the development of
targeted therapies (Khan et al., 2023; Yan et al., 2024).

The integration of patient-specific data into multiscale models
is particularly promising for advancing personalized medicine
(Trezza et al., 2024). By incorporating individual variations in brain
structure, connectivity, and functional dynamics, these models can
predict how a specific patient might respond to various treatment

options. For example, personalized simulations can optimize
DBS parameters or predict the effectiveness of pharmacological
treatments, tailoring interventions to a patient’s unique neural
architecture (Sendi et al., 2024). This personalized approach not
only enhances treatment outcomes but also minimizes side effects,
aligning with the growing emphasis on precision medicine in
healthcare.

3.2 Applications in brain-machine
interfaces

Multiscale models hold significant promise for advancing
brain-machine interfaces (BMIs), which rely on the precise
decoding of brain signals to control external devices such as
prosthetic limbs, communication tools, or robotic systems. BMIs
translate neural activity into actionable commands, enabling
individuals to interact with their environment despite severe
physical limitations (Belwafi and Ghaffari, 2024). However, current
BMI systems often face challenges such as signal variability, noise,
and limited understanding of the multiscale dynamics underlying
neural processes (Katoozian et al., 2024).

Multiscale brain models that integrate cellular, circuit-level, and
network-level data could address these challenges by providing
a more comprehensive representation of brain activity. At the
cellular level, these models capture the intricate firing patterns and
synaptic dynamics of neurons, while at the network level, they
reflect the large-scale connectivity and dynamics of brain regions.
Studies have shown that integrating data across these scales can
enhance BMI performance by improving decoding algorithms and
providing more robust control (Haghi et al., 2019; Hsieh et al., 2017;
Li et al., 2022). For instance, researchers have emphasized the role
of large-scale connectivity in improving motor control accuracy in
BMIs designed for prosthetic limb use (Benz et al., 2012), while
other studies have explored how synaptic-level details can reduce
signal noise and variability (Gatys et al., 2015; Lotter et al., 2022).

The incorporation of multiscale insights into BMI design can
significantly improve the accuracy and reliability of these systems.
By modeling neural activity across multiple scales, BMIs can
achieve finer control over external devices, enabling more natural
and intuitive movements (Chen et al., 2020; Rouse and Schieber,
2015; Sorrell et al., 2021). This approach has proven particularly
beneficial in clinical settings, such as restoring motor functions in
patients with paralysis. Similarly, BMIs leveraging multiscale neural
data have been applied in stroke rehabilitation, enabling targeted
reactivation of neural circuits to support motor recovery (Jia et al.,
2022).

Multiscale models also pave the way for personalized and
adaptive BMI systems that account for individual differences
in brain activity. By integrating data specific to a patient’s
unique neural architecture and dynamics, these systems can
adapt over time to changes such as neural plasticity, injury, or
disease progression (Jia et al., 2022). Studies have demonstrated
the potential of adaptive BMIs in managing neurodegenerative
conditions like ALS, where neural patterns evolve as the disease
progresses (Abbaspourazad et al., 2018; Fomina et al., 2016; Held
et al., 2019). Personalized systems ensure long-term efficacy and
usability, providing stable performance despite these changes.
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Beyond restoring motor functions, multiscale BMIs have
been explored in various other applications, such as enabling
communication for individuals with locked-in syndrome or
controlling robotic assistants in home care. Research has
shown that integrating multiscale models into BMI systems
can significantly improve their ability to interpret subtle neural
signals, opening possibilities for broader applications in clinical
and non-clinical settings (Hsieh et al., 2019; Kantawala et al., 2024).

In general, studies highlight that multiscale models offer a
transformative approach to BMI development, addressing key
limitations of existing systems and expanding their applicability.
By bridging the gap between cellular-level neural activity and
large-scale brain dynamics, these models enhance the precision,
adaptability, and usability of BMIs, ultimately improving quality of
life for patients and advancing the field of neurotechnology.

4 Technological impacts: AI and big
data integration

One of the most exciting frontiers in multiscale brain modeling
is its intersection with artificial intelligence (AI) and big data. These
technologies can assist in the construction, validation, and scaling
of brain models, while brain modeling, in turn, can inform the
development of more efficient AI systems.

4.1 Enhancing AI algorithms

Artificial intelligence (AI) has made significant strides by
leveraging biologically-inspired models such as artificial neural
networks (ANNs) and convolutional neural networks (CNNs),
which draw inspiration from the structure and function of the
human brain (Schmidgall et al., 2024). However, current AI systems
primarily rely on simplified abstractions of brain functions and
often ignore the multiscale nature of neural computations that
occur across cellular, circuit, and system levels (Badman et al.,
2020).

Multiscale brain models in AI: The multiscale organization of
the brain involves interactions at various levels, from molecular
dynamics within neurons to the coordinated activity of large-scale
networks such as the prefrontal cortex and hippocampus (Lewis
et al., 2023). Studies highlight the significance of understanding
the brain’s modular and hierarchical organization to achieve
efficient information processing (Coward, 2024; Pathak et al., 2024).
Incorporating such multiscale principles into AI could enable the
development of systems that are both computationally efficient and
capable of solving highly complex tasks in dynamic environments.

Efficiency and Robustness in Problem-Solving: The brain’s
ability to solve problems efficiently is closely tied to its multiscale
structure. For example, the interaction between local neural
circuits and global brain networks facilitates both specialization
and integration of information, allowing for adaptive and robust
decision-making (Kar et al., 2012). By mimicking these principles,
AI systems could exhibit enhanced adaptability and robustness.
Autonomous systems, for instance, could benefit from these
insights by improving their capacity to handle unstructured and

unpredictable scenarios, such as those encountered in autonomous
driving or robotic exploration.

Advancements in Machine Learning: Machine learning, a
subset of AI, could greatly benefit from the incorporation of
multiscale brain models. Current AI systems often face limitations
such as high energy consumption and lack of generalization (Goetz
et al., 2024). Recent studies have shown that energy-efficient
computational models inspired by neural sparsity and hierarchical
processing, such as spiking neural networks (SNNs), can achieve
brain-like efficiency in specific tasks (Li et al., 2024; Wang et al.,
2024). Extending these models with multiscale insights could
further enhance their capability to generalize across tasks and
reduce computational demands.

4.2 Big data and multiscale simulations

The advent of big data technologies has revolutionized
neuroscience research, enabling the analysis of vast and
diverse multimodal datasets such as genetics, neuroimaging,
and electrophysiology (Chung et al., 2023). These large-scale
datasets are pivotal in refining multiscale models of the brain,
enhancing their accuracy, and providing unprecedented insights
into the interactions between different levels of brain organization.
By integrating data from multiple modalities, researchers can
construct comprehensive models that bridge the molecular,
cellular, circuit, and network levels, offering a holistic view of brain
function and dysfunction.

4.3 Big data in multiscale modeling

Advances in data acquisition technologies, such as high-
resolution MRI, single-cell RNA sequencing, and multi-electrode
arrays, have significantly expanded the availability of multimodal
brain data (Ramezani et al., 2023). Studies with the Human
Connectome Project illustrate how integrating imaging,
electrophysiological, and genetic data can create more detailed
models of brain connectivity (Chung et al., 2023). Similarly, The
Allen Brain Atlas has made significant contributions to brain
mapping by providing comprehensive gene expression maps for
both human and mouse brains. The atlas includes detailed data
on spatial gene expression patterns and integrates transcriptomic
data with anatomical and functional mapping. This has enabled
researchers to link molecular-level processes to brain regions
associated with specific functions or diseases (Martins et al., 2021).

The BigBrain atlas is a high-resolution, three-dimensional
reconstruction of a human brain, created using serial histological
sections at a resolution of 100 micrometers (Sainz Martinez
et al., 2022). This project has provided an unprecedented level of
detail in brain anatomy, allowing researchers to study the fine-
grained cortical layers and their organization. By integrating this
histological data with neuroimaging datasets, the BigBrain Project
bridges the gap between cellular-level structures and whole-brain
networks.

Brain Initiative Cell Census Network (BICCN) focuses on
creating a complete cell-type atlas for the human, mouse, and non-
human primate brains. By combining single-cell RNA sequencing
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with spatial transcriptomics, BICCN offers insights into the
diversity of neural cell types and their roles in brain circuits (Jung
and Kim, 2023). This multiscale dataset is crucial for understanding
how different cell types contribute to the formation and function of
brain networks.

Comparative projects, such as the Mouse Brain Atlas and the
PRIME-DE (Primate Data Exchange), provide detailed brain maps
across species (Milham et al., 2018; Zeng et al., 2015). These
resources enable researchers to study conserved neural circuits and
species-specific differences, aiding in the validation of preclinical
findings and improving the translatability of animal model studies.

Initiatives like the UK Biobank and the Adolescent Brain
Cognitive Development (ABCD) study have generated large-
scale neuroimaging datasets from diverse populations (Bernhardt
et al., 2023; Makowski et al., 2024). These open-access datasets
include structural MRI, diffusion tensor imaging (DTI), and
functional MRI data, facilitating cross-cohort comparisons and
meta-analyses that enhance our understanding of brain structure-
function relationships.

Machine learning has become indispensable in analyzing
and processing these complex datasets. For example, studies
demonstrated how machine learning can classify and map
brain regions using multimodal data, greatly advancing our
understanding of the brain’s functional and structural organization
(Anbarasi et al., 2024; Luo et al., 2024). Deep learning techniques
have also proven effective, with studies showing how biologically
inspired neural networks outperform traditional methods in
modeling sensory processing by predicting how neural activity
propagates across scales (Hua et al., 2024).

Big data-trained multiscale models have enabled researchers
to explore how various levels of brain organization interact under
different conditions. For instance, researchers used data-driven
modeling to simulate the impact of local synaptic changes on large-
scale network dynamics (Marsh et al., 2024; Piccinini et al., 2022).
These models not only improve accuracy but also offer actionable
insights for therapeutic applications, such as brain stimulation
techniques to treat neurological disorders.

4.4 The role of computing infrastructure

Analyzing and managing massive brain datasets requires
cutting-edge computational power. Cloud computing
and high-performance computing (HPC) systems play a
critical role in storing, processing, and simulating these
complex models. Platforms like EBRAINS, developed by the
Human Brain Project, exemplify this synergy by integrating
HPC and cloud-based tools to enable multiscale brain
modeling. These resources allow researchers to perform
simulations that would otherwise be impossible due to their
computational intensity.

The demands of multiscale modeling are immense, particularly
when working with datasets that include billions of variables, such
as whole-brain transcriptomics or extensive neural recordings.
As studies indicated, without sustained investment in HPC
infrastructure and the optimization of algorithms, unraveling
the brain’s multiscale organization will remain inaccessible
to many research groups (Bastiani and Roebroeck, 2015;
Bria et al., 2014).

Beyond enabling deeper exploration of brain function,
enhanced computational capabilities are driving innovation in
areas like drug discovery and personalized medicine (Lewandowski
and Koller, 2023). Multiscale simulations, for example, have been
instrumental in predicting how genetic mutations affect brain
connectivity, paving the way for targeted therapies for conditions
like epilepsy and schizophrenia (Lu et al., 2022; Lytton et al.,
2017). These applications underscore the transformative potential
of advanced computing in neuroscience and medicine.

5 Challenges and future directions

Expanding on multiscale brain modeling requires a
comprehensive approach that considers both the current
challenges and future directions within this emerging field.
A key challenge lies in the need for extensive datasets that can
capture brain activity across various scales. Current techniques
such as electroencephalography (EEG), functional magnetic
resonance imaging (fMRI), and magnetoencephalography (MEG)
provide valuable insights but often lack the integration needed
to connect cellular activity with large-scale network behaviors
(Caznok Silveira et al., 2024). Research shows that combining
multimodal data is essential for constructing accurate models that
can bridge these scales (Gottipati and Thumbur, 2024; Luo et al.,
2024). For example, advances in neuroimaging techniques are
beginning to offer ways to connect micro-level data, such as gene
expression, with macroscale brain activity, but more progress is
required to make these methods scalable and clinically applicable
(Hoang et al., 2024).

The computational complexity involved in modeling the brain
at multiple scales is a significant obstacle that requires sophisticated
solutions. The brain’s intricate neural architecture operates with
highly non-linear dynamics, requiring simulations that capture
both short-term processes, such as synaptic transmission and
neural firing patterns, and long-term processes, including synaptic
plasticity and memory consolidation. This complexity necessitates
advanced algorithms and substantial computational power to
ensure accurate and efficient modeling across spatial and temporal
scales (Li et al., 2019).

Recent advancements in computational approaches have
begun to address these challenges. Transformer-based neural
networks, originally designed for natural language processing,
have demonstrated considerable potential in approximating non-
linear brain dynamics (Zhu et al., 2024). Their ability to handle
sequential data efficiently allows for more accurate representations
of neural interactions over time. Furthermore, neuromorphic
computing systems—designed to mimic the structure and function
of biological neurons—have emerged as a game-changer. These
systems offer significant reductions in energy consumption
and improvements in computational speed, making large-scale
simulations more feasible (Raikar et al., 2024).

In addition to algorithmic innovations, the growth of cloud-
based platforms and distributed computing infrastructures
has played a crucial role in supporting brain modeling efforts.
Cloud platforms provide scalable resources that can handle
massive datasets, enabling researchers to perform real-time
simulations and analyses of brain networks at multiple
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scales. Distributed computing allows the division of complex
simulations across multiple nodes, reducing processing time
and facilitating collaborative research across institutions
(Liu and Zhao, 2022).

Despite these advancements, challenges remain, such as
optimizing neuromorphic systems for broader applications
and ensuring that distributed computing frameworks maintain
data security and consistency. Future research must focus
on enhancing the interoperability of these technologies and
integrating them seamlessly into multiscale brain modeling
workflows. By addressing these computational bottlenecks,
researchers can make significant strides in understanding the
brain’s function and dysfunction, leading to breakthroughs in
neuroscience and the development of more precise diagnostic and
therapeutic tools.

Acquiring datasets across scales remains a significant
bottleneck due to the specialized equipment required for cellular
and molecular imaging and the complexities of patient consent for
clinical data collection. Integration requires harmonization across
different data formats, temporal resolutions, and experimental
methods. These challenges are compounded when datasets
are collected across multiple institutions, often resulting in
heterogeneity in protocols and data standards. For example,
the BRAIN Initiative has aimed to overcome such hurdles by
fostering technological innovations and collaborative frameworks
that allow for large-scale neural data acquisition and sharing
(Rahimzadeh et al., 2023). Similarly, the Human Cell Atlas
initiative provides a roadmap for standardizing data collection
and making comprehensive single-cell atlases publicly available,
illustrating the power of open-access repositories in facilitating
multiscale research (Kirby et al., 2024).

Recent advancements in machine learning and data
integration techniques have enabled the combination of
functional neuroimaging data (such as fMRI and EEG) with
single-cell transcriptomics to generate more accurate multiscale
representations of brain function. For instance, studies have
demonstrated the utility of multi-modal approaches, where
neuroimaging data are parcellated and combined with gene
expression profiles to uncover the underlying cellular basis of
observed neural activity patterns (Jiao et al., 2024). Platforms like
the Human Connectome Project and frameworks for single-cell
integration pipelines have highlighted the potential of these
combined methodologies.

Moreover, machine-learning-driven frameworks enhance
integration by addressing variations in temporal and spatial
resolution. For example, integrating transcriptomic data with
large-scale fMRI maps using computational models has helped
resolve discrepancies in cross-scale analysis (Gryglewski et al.,
2018; Selvaggi et al., 2021). These efforts underscore the potential of
emerging technologies to bridge cellular, molecular, and functional
scales in neuroscience research.

Interdisciplinary collaboration is critical to addressing the
many challenges posed by multiscale brain modeling. Researchers
from fields as diverse as neuroscience, data science, and
computer engineering must come together to develop models
that not only simulate brain activity but also translate into
clinically relevant tools. For example, studies have shown that
when clinicians work closely with data scientists, it leads to
more precise models of neurological disorders, which could

result in earlier diagnoses and more personalized treatments
(Calderone et al., 2024; Manin et al., 2024).

Future research should also focus on integrating molecular,
cellular, and network-level data into cohesive models that offer
a holistic view of brain function. This integration is vital
for answering key questions about how microscopic cellular
events contribute to large-scale phenomena such as behavior and
cognition. For example, recent studies have attempted to model
how disruptions at the cellular level, such as protein misfolding,
lead to neurodegenerative diseases like Alzheimer’s (Patel et al.,
2024; Ramazi et al., 2024). However, the field is still far from a
comprehensive model that integrates these disparate scales of brain
function.

Moreover, ensuring the clinical validity of multiscale models is
paramount. Without rigorous validation against clinical outcomes,
the insights provided by these models may not translate into
actionable strategies for diagnosis and treatment. One promising
avenue is using patient-specific data to create individualized
brain models that can predict how a patient’s condition will
progress, thus enabling more targeted treatments. Clinical trials and
collaborations with healthcare providers are needed to establish the
real-world utility of these models.

Finally, as multiscale brain modeling increasingly intersects
with artificial intelligence (AI) and brain-machine interfaces,
ethical considerations will become even more important. Questions
surrounding data privacy, the role of AI in clinical decision-
making, and the societal impact of such technologies must be
addressed. As these models begin to shape both research and
clinical practices, establishing ethical frameworks will be essential
to ensuring they are used responsibly and equitably.

6 Conclusion

Multiscale brain modeling is an innovative and rapidly
advancing field that holds immense promise for transforming
our understanding of the brain’s complex structure and function.
These models aim to bridge the gap between the microscopic
and macroscopic levels of brain organization, connecting cellular
and molecular processes to the larger-scale dynamics observed in
brain networks and behavior. By capturing interactions across these
scales, multiscale models offer a more comprehensive view of how
the brain functions under normal conditions and how it undergoes
changes in pathological states.

One of the key strengths of multiscale brain modeling lies
in its ability to integrate diverse types of data, ranging from
molecular imaging and electrophysiological recordings to whole-
brain imaging techniques like fMRI and MEG. This integration
enables researchers to develop more accurate and predictive models
of brain activity, shedding light on phenomena that are difficult
to understand when studied at a single scale. For instance,
multiscale models can help identify how microscopic disruptions,
such as ion channel dysfunctions or synaptic abnormalities,
lead to macroscopic manifestations like epileptic seizures or
neurodegenerative disorders.

The potential applications of multiscale brain modeling
extend far beyond basic neuroscience. Clinically, these models
could revolutionize how we diagnose and treat neurological
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and psychiatric disorders. By simulating brain activity across scales,
researchers can develop personalized treatment strategies, such as
optimizing stimulation protocols for deep brain stimulation or
tailoring drug interventions based on individual brain dynamics.
In the technological domain, multiscale brain models could
inspire advances in brain-computer interfaces (BCIs), artificial
intelligence (AI), and neuroprosthetics, driving the development
of systems that mimic or augment brain functions with
unprecedented accuracy.

To fully realize the potential of multiscale brain modeling,
continued advancements in several key areas are essential. First,
computational methods must evolve to handle the immense
complexity of multiscale data, requiring new algorithms, machine
learning techniques, and high-performance computing resources.
Second, progress in data acquisition technologies, such as high-
resolution imaging and multimodal data integration, will be critical
to provide the detailed inputs needed for these models. Finally,
fostering interdisciplinary collaboration between neuroscientists,
engineers, mathematicians, and clinicians will be vital for
translating theoretical models into practical tools that can address
real-world challenges.

As the field continues to grow, multiscale brain modeling is
poised to unlock transformative insights into the brain’s workings
and its disorders, providing a foundation for breakthroughs in
neuroscience, medicine, and technology. By bridging scales and
integrating knowledge across disciplines, these models represent a
powerful approach to addressing critical questions about the brain
and its role in shaping human behavior and health.
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