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Major depressive disorder (MDD) is one of the most common mental health

conditions, characterized by pervasive and persistent low mood, low self-

esteem, and a loss of interest or pleasure in activities that are typically

enjoyable. Despite decades of research into the etiology and pathophysiological

mechanisms of depression, the therapeutic outcomes for many individuals

remain less than expected. A promising new area of research focuses on

stress-induced neuroinflammatory processes, such as the excessive activation

and crosstalk of microglia and astrocytes in the central nervous system

under stress, as well as elevated levels of pro-inflammatory cytokines, which

are closely linked to the onset and progression of depression. This review

summarizes the mechanisms through which neuroinflammation induces or

promotes the development of depression, and also highlights the effective

roles of small molecules with anti-inflammatory activity in the treatment of

MDD. Understanding the specific mechanisms through which stress-induced

neuroinflammation further impacts depression, and using technologies such as

single-cell RNA sequencing to elucidate the specific subtypes and interactions

of microglia and astrocytes in depression, is of great importance for developing

more effective therapeutic strategies for MDD.

KEYWORDS
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1 Introduction

Depression is the most common neuropsychiatric disorder and a leading cause of
disability (Clayton et al., 2024; Zeng et al., 2024). According to the World Health
Organization, about 350 million people worldwide suffer from depression, and among
them about 1 million people commit suicide each year (Ara, 2022). The major clinical
symptoms of depression include persistent feelings of sadness, anhedonia, worthlessness,
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hopelessness or guilt, difficulty with thinking and decision-making,
suicidal ideation, and changes in weight, appetite, and sleep (Otte
et al., 2016; Nestler et al., 2002). At present, the pathogenic factors
of depression include environmental factors, biological factors,
psychological factors, genetic factors, etc., (Cui et al., 2024).

Currently, there are several main treatments for depression,
such as (1) antidepressants, (2) evidence-based psychotherapy,
(3) somatic non-drug therapies (Marwaha et al., 2023).
Antidepressants are mainly classified according to their mechanism
of action, and the more common types are listed below: (1) Tricyclic
drugs (TCAs): Imipramine, Amitriptyline, Clomipramine, etc.,
(2) Monoamine oxidase inhibitors (MAOIs): Tranylcypromine,
Phenelzine, Selegiline, Rasagiline, etc., (3) Serotonin reuptake
inhibitors (SSRIs): Fluoxetine, paroxetine, Escitalopram, etc.,
(4) Norepinephrine reuptake inhibitors (NERIs): Bupropion,
Reboxetine, Atomoxetine, etc., (5) Serotonin-norepinephrine
reuptake inhibitors (SNRIs): Venlafaxine, Desvenlafaxine,
Duloxetine, etc., (6) Norepinephrine and specific serotonergic
antidepressants (NaSSAs): Mirtazapine, etc., (Ménard et al.,
2016; Li and Zhang, 2020). Most treatment for depression
have not achieved satisfactory clinical results, in approximately
50% of previously untreated depression patients, monotherapy
with antidepressants or evidence-based psychotherapy provides
some relief, but does not reverse depressive symptoms and
return patients to their pre-illness state (Hengartner, 2020;
Malhi and Mann, 2018). Clinical studies suggest that the poor
efficacy of clinical antidepressants may be related to the complex
pathogenesis of depression (Ye et al., 2023). At present, the
known pathophysiological mechanisms of depression include
the monoamine hypothesis, receptor hypothesis, neuroendocrine
hypothesis, neuroplasticity hypothesis, inflammation hypothesis,
excitatory amino acid hypothesis, and intestinal flora imbalance
hypothesis (Jesulola et al., 2018; Stetler and Miller, 2011). Among
these hypotheses, the neuroinflammatory hypothesis has attracted
increasing attention in recent years.

Immune activation and inflammatory responses are believed to
be important causes of many brain diseases, such as Parkinson’s
disease, Alzheimer’s disease, and Huntington’s disease (Hurley and
Tizabi, 2013; Wu et al., 2021). Ongoing studies in neurophysiology
and neuropsychiatry are increasingly focusing on the relationship
between neuroinflammation and depression, suggesting that the
immune system is involved in the pathophysiology of depression
(Troubat et al., 2021). Microglia and astrocytes are important
participants in the neuroimmune response. Microglia play a crucial
role in brain development by regulating neurogenesis, synapse
formation and elimination, and the assembly of neuronal circuits
(Kreisel et al., 2014). Astrocytes, the most abundant glial cells
in the central nervous system, are fundamental in regulating
normal brain function and are involved in the pathologies of
psychiatric and neurodegenerative diseases. Reactive astrocytes are
highly heterogeneous and play an important role in restoring
homeostasis and limiting tissue damage in the central nervous
system (Leng et al., 2018). However, in the presence of stress
or endotoxin stimulation, overactivated microglia and astrocytes
can release an excessive amount of inflammatory factors. These
overproduced inflammatory factors can lead to neuronal damage
and are considered to induce depression (Nettis and Pariante,
2020).

This paper summarizes the roles of different polarization
phenotypes of microglia and astrocytes in stress-induced
neuroinflammation and their potential mechanisms in depression.
Additionally, it reviews recent research on the therapeutic
potential of natural compounds with anti-inflammatory properties
for treating depression. The importance of identifying specific
subtypes of microglia and astrocytes, as well as effective genetic
targets, for depression therapy is discussed. Furthermore, the
paper explores the therapeutic potential of natural compounds
in modulating these distinct phenotypes and genes in the
treatment of depression.

2 Manuscript formatting

2.1 Neuroinflammation

The human immune system can be viewed as a multi-layered
defense network that comprehensively protects the body from
external threats and internal damage. It crucially prevents the
invasion of foreign microorganisms, mitigates the pathogenicity
of microorganisms within the body, inhibits the proliferation of
cancer cells, and promotes the rejection of transplanted tissues
(Kölliker-Frers et al., 2021; Berk et al., 2013). Immune defense
includes physical barriers such as the skin, various epithelia, and
blood-brain barrier. The innate immune system, which relies on
leukocytes, responds to infections or tissue damage through early
inflammatory reactions. The adaptive immune system, which is
composed of T lymphocytes and B lymphocytes, interacts with
specific antigens and forms immunological memory (Zhou et al.,
2024).

Inflammatory responses play a protective role in the body.
Transient inflammation in the nervous system typically occurs
in response to central nervous system (CNS) injury, infection,
toxin exposure, or autoimmune reactions (Sarno et al., 2021;
Table 1). This response is beneficial during tissue repair
and development (Heneka et al., 2018). Neuroinflammation
activates innate immune molecules and cellular pathways (Parsi
et al., 2024). In particular, peripheral immune cells, including
monocytes, granulocytes, and dendritic cells, migrate to the
brain through the blood and lymphatic systems to survey
for pathogens or damage and support neurological function.
Animal studies have shown that endotoxin administration triggers
perivascular macrophage-derived monocytes to initiate an adaptive
neuroinflammatory response, involving prostaglandins and anti-
inflammatory feedback mechanisms (Serna-Rodríguez et al., 2022;
Balistreri and Monastero, 2023). Furthermore, exogenous immune
cells, such as lymphocytes, play a critical role in limiting damage
spread, providing neuroprotection, and influencing cognitive
function after brain injury (Wohleb et al., 2016).

Chronic inflammatory responses may lead to excessive
production of inflammatory factors and abnormal activation
of immune cells, ultimately resulting in tissue damage. These
inflammatory processes are mediated by pro-inflammatory
cytokines [e.g., interleukin-1β (IL-1β), interleukin-6 (IL-6),
tumor necrosis factor-α (TNF-α)], chemokines [e.g., C-C motif
chemokine ligand 2 (CCL2), C-C motif chemokine ligand 5
(CCL5), C-X-C motif chemokine ligand 1 (CXCL1)], secondary
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TABLE 1 Abbreviations.

Abbreviations Full name

5-HT 5-hydroxytryptamine

AHR Aryl hydrocarbon receptor

AKT Protein kinase B

ALKBH5 Human Alk B homolog

AMPK Adenosine 5′-monophosphate-activated protein kinase

APN Aminopeptidase N

ATG3 Autophagy-related protein 3

ATG5 Autophagy-related protein 5

ATP Adenosine triphosphate

B2M Beta-2-microglobulin

BBB Blood-brain barrier

BDNF Brain derived neurotrophic factor

BMAL1 Basic Helix-Loop-Helix ARNT Like 1

C1Q Complement component C1q

C3 Complement C3

CAMKII Calcium/calmodulin-dependent protein kinase II

CCL2 C-C motif chemokine ligand 2

CCL5 C-C motif chemokine ligand 5

CD11B CD11 antigen-like-family-member B

CD16 Low affinity immunoglobulin gamma Fc region receptor III-A

CD206 Mannose Recepto

CD32 Low affinity immunoglobulin gamma Fc region receptor II-b

CD86 CD86 molecule

CGMP Cyclic guanosine monophosphate

CLEC2D C-type lectin domain family 2 member D

CLIC6 Chloride intracellular channel 6

CNS Central nervous system

COX2 Cytochrome c oxidase subunit 2

CRH Corticotropin releasing hormone

CRP C-reactive protein

CRS Chronic restraint stress

CRY2 Cryptochrome circadian regulator 2

CSDS Chronic social defeat stress

CUMS Chronic unpredictable mild stress

CX30 Connexin 30

CX3CL1 C-X3-C motif chemokine ligand 1

CX43 Connexin 43

CXCL1 C-X-C motif chemokine ligand 1

CXCL10 C-X-C motif chemokine ligand 10

CYSLT1R Cysteinyl leukotriene type 1 receptor

CYT-1 Cytokinesis deficient 1

DAXX Death Domain Associated Protein

EGR1 Early growth responsive gene-1

EGR2 Early growth responsive gene-2

(Continued)

TABLE 1 (Continued)

Abbreviations Full name

EGR3 Early growth responsive gene-3

EGR4 Early growth responsive gene-4

ERK Extracellular regulated protein kinases

FOS Fos proto-oncogene

FOS2 FosB proto-oncogene

FOXO1 Forkhead box O1

FOXO3A Transcription factor Forkhead box protein O3

FSTL1 Follistatin Like 1

FTO Fat mass and obesity-associated protein

GABRA2 Gamma-aminobutyric acid type A receptor subunit alpha2

GAD67 Glutamate decarboxylase 67

GLT-1 Glucose transporter type 1

GLUN2B NMDA receptor 2B

GM-CSF Granulocyte-macrophage colony-stimulating factor

GPX4 Glutathione peroxidase 4

GSDMD Gasdermin D

GSH Glutathione

HIPK2 Homeodomain interacting protein kinase 2

HMGB1 High mobility group box 1 protein

HO-1 Heme oxygenase 1

IDO Indoleamine 2, 3-dioxygenase

IGF-1 Insulin-like growth factor 1

IKKA/B Inhibitory kappa B kinase α/β

IL-1 Interleukin-1

IL-10 Interleukin-10

IL-13 Interleukin-13

IL-18 Interleukin-18

IL-1A Interleukin-1α

IL-1B Interleukin-1β

IL-4 Interleukin-4

IL-6 Interleukin-6

IFN-A Interferon-α

IFN-B Interferon-β

INOS Inducible nitric oxide synthase

IRF3 Interferon regulatory Factor 3

JAK1 Janus Kinase 1

JNK C-JunN-terminal kinase

KCNE2 potassium voltage-gated channel subfamily E regulatory
subunit 2

KCNJ13 Potassium inwardly rectifying channel subfamily J member 13

LC3B-2 Microtubule-associated protein 1 light chain 3

LPS Lipopolysaccharide

LTP Long term potentiation

MAFG MAF BZIP transcription factor G

MAPK Mitogen-activated protein kinase

(Continued)
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TABLE 1 (Continued)

Abbreviations Full name

MCOLIN Mucolipin

MDA Malondialdehyde

MDD Major depressive disorder

METTL14 Methyltransferase 14

METTL3 Methyltransferase 3

MKP-1 Mitogen-activated protein kinase phosphatase-1

MTNR1B Melatonin receptor 1B

MTROS Mitochondrial reactive oxygen species

MYD88 Myeloid differentiation primary response 88

NF-KB Nuclear factor kappa-B

NLRC5 NLR family CARD domain containing 5

NLRP3 NOD-like receptor thermal protein domain associated
protein 3

NMDA N-methyl-D-aspartic acid receptor

NO Nitric oxide

NOS2 Nitric oxide synthase 2

NR2C Nuclear receptor subfamily 2 group C

NR4A2 Nuclear receptor subfamily 4, group A, member 2

NRF2 Nuclear factor erythroid 2-related factor 2

OGT O-linked N-acetylglucosamine transferase

OPN Osteopontin

ORAI1 Calcium release-activated calcium modulator 1

PDCD4 Programmed cell death factor 4

PER2 Period circadian regulator 2

PGC-1A Peroxisome proliferator-activated receptor gamma
coactivator 1α

PI3K Phosphatidylinositol-3-kinase

PPAR0 Peroxisome proliferator-activated receptor γ

PPP1R1B Protein Phosphatase 1 Regulatory Inhibitor Subunit 1B

PRMT2 Protein arginine methyltransferase 2

PRMT3 Protein arginine methyltransferase 3

PRMT4 Protein arginine methyltransferase 4

PRMT6 Protein arginine methyltransferase 6

PSD-95 Postsynaptic protein-95

RAGE The receptor of advanced glycation endproducts

ROS Reactive oxygen species

SIRT1 Sirtuin 1

SLC7A11 Solute carrier family7member 11

SOCE Store-operated calcium entry

SOCS3 suppressor of cytokine signaling 3

STAT1 Signal transducer and activator of transcription 1

STAT3 Signal transducer and activator of transcription 3

STING Stimulator of interferon genes

TBK1 TANK-binding kinase 1

TFEB Transcription factor EB

(Continued)

TABLE 1 (Continued)

Abbreviations Full name

TGF-A Transforming growth factor-α

TGF-B Transforming growth factor-β

TLR4 Toll-like receptor 4

TLR9 Toll-like receptor 9

TNF-A Tumor necrosis factor-α

TRAF6 Tumor necrosis factor receptor-associated factor 6

TREM1 Triggering receptor expressed on myeloid cells-1

TREM2 Triggering receptor expressed on myeloid cells-2

TRKB Tyrosine kinase receptor B

TRPML1 Transient receptor potential mucolipin channel 1

VEGF-B Vascular endothelial growth factor B

messengers [e.g., nitric oxide (NO), prostaglandins], and reactive
oxygen species (ROS) (Baumeister et al., 2014). Studies have
shown that under pathological conditions, the permeability of
the blood-brain barrier (BBB) increases, allowing peripheral
cytokines to stimulate the activation of microglia and astrocytes,
thereby exacerbating the inflammatory response (Abbott et al.,
2010). These pro-inflammatory factors, by reducing the activity
of glutamine synthetase, lead to the accumulation of glutamate,
which enhances the activation of excitatory neurons, thereby
triggering excitotoxicity and cell apoptosis (Alzarea et al., 2024).
Meanwhile, inflammatory factors can also lead to mitochondrial
dysfunction, cytochrome C release, adenosine triphosphate (ATP)
depletion, free radical generation, and oxidative damage (Bhatt
et al., 2023; Culmsee et al., 2018). Some therapeutic agents, such as
interferon-α (IFN-α), are effective in alleviating somatic diseases;
however, due to their pro-inflammatory effects, they often induce
mild to moderate depressive symptoms by impairing the function
of brain regions involved in emotional regulation, such as the
prefrontal cortex (PFC) and the amygdala (Vignau et al., 2005;
Pinto and Andrade, 2016). Important emotional regulation areas
in the brain, such as the PFC and amygdala, are directly affected
by the overactivation of cytokine networks. Pro-inflammatory
cytokines have been reported to reduce neurotrophic supply and
down-regulate neurogenesis via the brain-derived neurotrophic
factor (BDNF) signaling pathway, and to debilitate hippocampal
cell proliferation via the nuclear factor kappa B (NF-κB) signaling
pathway. Moreover, they lead to damage to the body by increasing
glutamate levels through N-methyl-D-aspartic acid receptor
(NMDA) receptor activation, leading to excitotoxicity and reduced
neurogenesis (Kiecolt-Glaser et al., 2015).

In recent years, the role of inflammation in neurological
disorders has attracted significant attention. Research has shown
that the excessive activation of pro-inflammatory cytokines, such as
IL-1β, TNF-α, and IL-6, is closely associated with the pathogenesis
of many central nervous system disorders, including depression
(Dantzer et al., 2008; Na et al., 2014). These inflammatory
mediators contribute to the development of depressive symptoms
by affecting brain tissue, modulating the monoaminergic system,
and triggering neurotoxic processes (Arioz et al., 2019; Shi et al.,
2023; Zhou et al., 2024). Animal models established through the
in vivo injection of lipopolysaccharide (LPS) or inflammatory
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FIGURE 1

Polarization-inducing factors and dynamic properties of microglia and astrocyte. Microglia and astrocytes are polarized by many external stressors,
such as prolonged stressful events, cell aging, obesity, cytokine, lipopolysaccharide (LPS) or adenosine triphosphate (ATP) stimulation, and dietary
imbalance. External stress activates microglia through microglia receptors. Microglia polarized to the M1 phenotype synthesize interleukin-1β (IL-1β),
tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), superoxide anion radicals, glutamate, and NO, ultimately clearing infection and repairing tissue.
Cytokines such as IL-4, IL-13, or IL-25 trigger M2 activation and promote M2 microglia to release anti-inflammatory cytokines such as IL-10,
insulin-like growth factor-1 (IGF-1), transforming growth factor-β (TGF-β), and brain-derived neurotrophic factor (BDNF). Astrocytes can
differentiate into A1 reactive astrocytes or A2 astrocytes in response to central nervous system injury, such as injury, neurodegeneration, or infection.
The expressions of complement cascade gene, IL-1β, TNF-α and NO in A1 astrocytes were significantly up-regulated. A2 astrocytes can up-regulate
neurotrophic or anti-inflammatory genes, promoting the survival and growth of neurons.

factors also exhibit typical depressive symptoms, such as a decrease
in aggression and curiosity (Zhang et al., 2023; Zhou et al., 2024).
Inhibition of the production of inflammatory cytokines, such as
IL-1β, IL-6, and TNF-α, exerts antidepressant effects (Şahin et al.,
2015; Zhang et al., 2017; Cheng et al., 2016). These findings suggest
that the activation of microglia is closely associated with depression,
and inhibiting neuroinflammation may provide a novel therapeutic
target for the treatment of depression.

2.1.1 Microglia
Microglia are the primary immune cells in the brain and serve

as the first line of defense. In recent years, they have garnered
significant attention due to their roles in immune responses and
neuroinflammation. They play a crucial role in brain development
by regulating neurogenesis, synaptogenesis, synapse elimination,
and the formation of neuronal circuits. Furthermore, microglia
possess the ability to recognize pathogens, perform phagocytosis,
present antigens, and remodel synapses (DiSabato et al., 2016).

Under normal conditions, resting microglia continuously
monitor the surrounding environment. Upon injury or changes
in the external environment, they become activated and undergo
morphological changes. Microglial cells transform from a branched
form to an amoeboid shape, with cell body swelling, shortened
processes, increased phagocytic activity, and elevated cytokine
production. This process is referred to as microglial activation
(Boche et al., 2013). Microglial activation is triggered by the
recognition of pattern recognition receptors (PRRs), pathogen-
associated molecular patterns (PAMPs), and damage-associated

molecular patterns (DAMPs). PAMPs and DAMPs interact with
microglial receptors such as Toll-like receptors (TLRs) and the
receptor for advanced glycation end products (RAGE), thereby
initiating the synthesis and release of inflammatory mediators
and promoting the transmission of inflammatory signals (Liu
et al., 2023). Microglial activation can occur through two main
pathways: the classical M1 activation and the selective M2
activation (Jia et al., 2021). Various factors, such as cellular
aging, endotoxins, inflammatory cytokines, and ROS, can drive
microglia to polarize toward the M1 phenotype. M1 microglia
produce pro-inflammatory factors, including IL-1β, TNF-α, IL-6,
and superoxide radicals, which help clear infections and repair
tissues (Takahashi et al., 2024). In contrast, M2 activation is
induced by cytokines such as interleukin-4 (IL-4) and interleukin-
13 (IL-13), accompanied by the release of anti-inflammatory factors
like Interleukin-10 (IL-10), insulin-like growth factor-1 (IGF 1),
and transforming growth factor-β (TGF-β), which promote tissue
healing, regeneration, and angiogenesis, and also repair neuronal
damage (Butovsky et al., 2014; Parkhurst et al., 2013; Yi et al., 2020).
It promotes healing, tissue regeneration, and angiogenesis, and can
inhibit or promote the repair of neuronal injury (Wang et al., 2022;
Figure 1).

However, recent research has revealed that categorizing
microglia solely into M1 and M2 phenotypes is an
oversimplification. Through high-throughput single-cell RNA
sequencing, researchers have analyzed the RNA expression
patterns of over 76,000 microglial cells from mice at different
developmental stages, during aging, and in response to brain
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injury. The study identified at least nine distinct microglial
states, which vary according to development, aging, and injury
(Hammond et al., 2019). Refining the classification of microglia
will help to better understand the functions, signaling mechanisms,
and interactions of these subtypes with other brain cells. This,
in turn, could facilitate the identification of specific microglial
biomarkers for assessing human health and disease states.

Activated microglia show different responses to external
stimuli, which is a double-edged sword: Acutely activated microglia
usually promote tissue repair by removing invading pathogens
and cell debris; Sustained microglial activation causes chronic
neuroinflammation, which worsens the damage and promotes
disease progression. With the deepening of the research on
the pathogenesis of depression, the role of microglia in the
pathogenesis of depression has also been proved in large numbers,
so depression is also considered to be a microglia-related disease
(microgliosis) (Yirmiya et al., 2015; Wang et al., 2022; Deng et al.,
2020). Here, we summarize recent research over the past 3 years
on the mechanisms through which the modulation of microglial
phenotype exerts anti-inflammatory and antidepressant effects.
Understanding these mechanisms is crucial for identifying new
directions in the treatment and drug development for depression
(Table 2).

2.1.2 Astrocytes
Traditionally, astrocytes have been regarded as supportive cells

for neurons, playing a critical role in maintaining brain homeostasis
and the normal function of neurons. As the largest cell type in
the CNS, astrocytes provide energy, recycle neurotransmitters,
supply neurotrophic factors, and regulate synaptic formation
and elimination. They also maintain the BBB and participate
in immune signaling (Colombo and Farina, 2016). When the
CNS undergoes damage, such as trauma, neurodegenerative
diseases, or infections, astrocytes exhibit rapid changes in gene
expression, morphology, and function, a response known as
astrocyte reactivity (Stoklund Dittlau and Freude, 2024). Research
indicates that reactive astrocytes may have detrimental effects, such
as exacerbating neuroinflammation, inhibiting synaptic sprouting,
or axonal growth. However, some studies suggest that A1 and
A2 reactive astrocytes have beneficial roles, including anti-
inflammatory effects, neuroprotection, and BBB repair (Rupareliya
et al., 2023). Compared to normal astrocytes, A1 astrocytes lose
many critical functions, particularly the maintenance of synaptic
activity. Furthermore, A1 astrocytes significantly upregulate
substances that are harmful to synapses, such as complement
cascade factors, IL-1β, TNF-α, and NO (Cong et al., 2023).
In contrast, A2 astrocytes can upregulate neurotrophic factors
or anti-inflammatory genes, promoting neuronal survival and
growth, and playing an active role in neurorepair. Astrocytes are
also responsible for the uptake and metabolism of over 90% of
glutamate in the brain (Mahmoud et al., 2019). When astrocytes are
deficient, excessive accumulation of glutamate in the synaptic cleft
may lead to excitotoxicity and an imbalance in neuronal activity
(Wang et al., 2017; Figure 1).

Recent studies, however, have shown that A1 and A2 types
only represent two of the potential astrocyte transcriptomes
when classifying astrocytes using multi-dimensional data and co-
clustering methods. Moreover, research has found that astrocytes
in a healthy brain are highly diverse and perform specific

roles in different CNS circuits. Reactive astrocytes are equally
heterogeneous, with RNA sequencing and microarray analysis data
indicating that reactive astrocytes in various disease models exhibit
distinct molecular characteristics (Henrik Heiland et al., 2019).

Current research has confirmed that astrocytes are closely
involved in the pathophysiology of depression. In rodent models,
chronic mild stress induces overexpression of glial fibrillary acidic
protein (GFAP). Increased numbers of astrocytes have also been
found in the hippocampus and medial prefrontal cortex (mPFC)
of patients with major depressive disorder (Wen et al., 2024;
Yuan et al., 2024). Additionally, elevated levels of glutamate have
been observed in the brains and cerebrospinal fluid of depression
patients, and chronic stress appears to induce brain structural
atrophy by disrupting the GFAP astrocytic network (Rajkowska
and Stockmeier, 2013). We summarize researches conducted over
the past 3 years on the mechanisms through which astrocytes
mediate antidepressant effects (Table 3). These mechanistic insights
may serve as potential targets for the prevention and treatment of
depression (Wang J. Y. et al., 2024).

2.1.3 Crosstalk between microglia and astrocytes
in neuroinflammation

Microglia and astrocytes play dual roles in brain diseases.
They not only enhance immune responses and promote
neurodegeneration, but also modulate the inflammatory responses
in the central nervous system (Goshi et al., 2020). Furthermore, the
interaction between astrocytes and microglia plays a critical role in
neuroinflammatory responses (Olude et al., 2022).

These two types of glial cells regulate inflammation in the
central nervous system through the secretion of cytokines and
inflammatory mediators (Kim and Son, 2021). For example, LPS-
activated microglia can induce a neurotoxic phenotype in astrocytes
by secreting Interleukin-1α (IL-1α), TNF-α, and complement
component C1q, triggering transcriptional responses in astrocytes
that lead to the production of neurotoxic factors while inhibiting
phagocytic function and the expression of neurotrophic factors (Li
S. et al., 2022). Moreover, aryl hydrocarbon receptor (AHR) in
microglia regulates the expression of vascular endothelial growth
factor B (VEGF-B) and Transforming growth factor-α (TGF-
α), further promoting the expression of pro-inflammatory genes
in astrocytes, such as CCL2, IL-1β, and nitric oxide synthase 2
(NOS2) (Ge et al., 2021). The production of TNF-α enhances the
release of glutamate from astrocytes, thereby increasing neuronal
excitotoxicity. Studies have also shown that NF-κB signaling
in microglia activates the NOD-like receptor thermal protein
domain associated protein 3 (NLRP3) inflammasome, which in
turn triggers A1-type astrocytes through caspase-1 activation.
A1 astrocytes secrete factors such as CCL2, C-X3-C motif
chemokine ligand 1 (CX3CL1), C-X-C motif chemokine ligand
10 (CXCL10), granulocyte-macrophage colony-stimulating factor
(GM-CSF), and interleukin-1 (IL-1), which in turn activate pro-
inflammatory microglia (Linnerbauer et al., 2020; Jha et al., 2019).
Furthermore, the deficiency of sigma-1 receptors in astrocytes leads
to the activation of the NF-κB pathway, thereby amplifying the
interaction between reactive astrocytes and activated microglia,
exacerbating neuroinflammation and triggering stress-induced
neuronal apoptosis, ultimately resulting in depressive-like behavior
in mice (Figure 2).
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TABLE 2 Microglia regulate depression-related pathways.

Types of
stress

Experimental subject Stress-induced changes in
microglia

Conclusions/observations References

CRS C57BL/6 mice ↓STING, TBK1, IRF3, BDNF, Arg-1, ↑TNF-α,
IL-1β, IL-6, CXCL10, CCL2, Iba1, iNOS

Activation of the STING/TBK1/IRF3 pathway in microglia promotes the production
of IFN-β in mice under chronic restraint stress, thereby alleviating
neuroinflammation and improving depressive-like behaviors, while enhancing
microglial phagocytic activity

Duan et al., 2022

CSDS, LPS C57BL/6 mice, BV2 cell ↓Nrf2, TREM2, IL-4, IL-10, Arg-1, ↑Iba1 Activation of Nrf2 can initiate the transcription of TREM2, thereby enhancing the
anti-inflammatory microglial phenotype

He et al., 2022

LPS C57BL/6 mice ↓Fos, FosB, Nr4a1, Nr4a2, Nr4a3, Egr1, Egr2, Egr3,
Egr4, ↑Iba1

Nr4a2 may regulate LPS-induced depressive-like behaviors by reducing
neuroinflammation, as well as improving LPS-induced microglial activation and the
decreased neuronal activity of CamkII

He et al., 2023

LPS C57BL/6 mice ↑TNF-α, IL-1α, IL-6, Iba1, IL-1β, P- NF-κB/NF-κB,
P-STAT1/STAT1, P-IKKα/β/IKKα/β

APN deficiency can improve LPS-induced neuroinflammation and depressive-like
behaviors by inhibiting the effect of NF-κB on BDNF/TRKB signaling

Li J. M. et al., 2022

LPS C57BL/6 mice, BV2 cell ↓BDNF, TREM1, Copine6, Cyt-1, Per2, Cry2,
Clock, ↑TNF-α, IL-6, CRP, CRH, TREM2, Bmal1

LPS induces microglial activation both in vivo and in vitro, leading to an imbalance
in Bmal1 expression, which disrupts its regulation of circadian rhythm functions and
impairs synaptic plasticity

Xu D. D. et al., 2024

CUMS SD rat ↓ERK, p38, ↑MKP-1, TNF-α, IL-1β, IL-6, Iba1,
-JNK

Inhibition of MKP-1 can improve ERK/p38 MAPK/JNK signaling, reversing
CUMS-induced microglial activation and depressive-like behaviors in rats

Geng et al., 2024

CSDS, LPS C57BL/6 mice, BV2 cell, HMC3 cell ↓SOCS3, P62, ↑HMGB1, RAGE, TLR4, PI3K p85,
P-Akt/Akt, P-STAT3/STAT3, P-P65/P65, IL-1β,
IL-6, TNF-a, Iba1, Atg3, Atg5, Beclin-1, LC3B-II

The microglial HMGB1/STAT3/p65 axis directly mediates microglial activation and
autophagy in depression. Blockade of HMGB1 signaling is beneficial in improving
neuroinflammation and depressive-like behaviors

Xu K. et al., 2024

LPS BV2 cell, Primary microglia ↓PPARγ, IL-10, ↑Pdcd4, Iba1, iNOS, TNF-α,
IL-1β, CCL2, B2m

Microglial Pdcd4 promotes LPS-induced neuroinflammation and depressive-like
behaviors by inhibiting Daxx-mediated PPARγ nuclear translocation, thereby
suppressing the expression of the anti-inflammatory cytokine IL-10

Li et al., 2024

LPS C57BL/6 mice, BV2 cell ↓PRMT6, GPX4, GSH, ALKBH5, SLC7A11,
β-catenin, ↑PRMT2, PRMT3, PRMT4, Fe2+ , ROS,
4-HNE, MDA, TNF-α, IL-1β, IL-6, CD86, Iba1,
iNOS

ALKBH5 alleviates LPS-induced ferroptosis and M1 microglial polarization by
targeting the β-catenin-GPX4 axis to induce PRMT2 deficiency, ultimately exerting
an antidepressant effect

Mao et al., 2024

LPS C57BL/6 mice, BV2 cell ↓IL-4, Arg1, ↑MCPIP1, TNF-α, IL-1β, IL-6, CD16,
CD32, TLR4, MyD88, TRAF6, NF-κB, Iba1, iNOS,
-IL-10

MCPIP1 promotes M2 polarization of microglial cells and alleviates LPS-induced
depressive-like behaviors by inhibiting the TLR4/TRAF6/NF-κB signaling pathway

Zhou et al., 2024

LPS, CUMS C57BL/6 mice, Nlrc5−/−mice ↑TNF-α, IL-1β, IL-6, nuclear P65, Cleave Caspase1,
P-IKK-α/β/IKK-α/β, Iba1

NLRC5 promotes the activation of classical NF-κB signaling induced by LPS by
forming a complex with IKKα/β and enhancing their phosphorylation. Nlrc5
deficiency inhibits microglial activation and alleviates depressive-like behaviors in
LPS and CUMS-induced mouse models of depression

Sun et al., 2023

CUMS FSTL1± mice ↑Iba1, TNF-α, IL-1β, IL-6, TLR4, MyD88, p-NF-κB Partial knockdown of FSTL1 can rescue CUMS-induced microglial activation,
depressive-like symptoms, and synaptic dysfunction through TLR4/MyD88/NF-κB
signaling pathway

Xiao et al., 2022

(Continued)
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2.2 Stress induces neuroinflammation in
depression

Stress is an external stimulus that affects both the body and
mind, often manifesting as emotional responses. Research suggests
that the onset of depression may be related to an individual’s
ability to cope with stress (Yaribeygi et al., 2017). Studies have
shown that individuals who experience significant stressful events
(such as the loss of a loved one, divorce, relocation, or social
failure) are at a 5–6-fold increased risk of depression within
6 months (Kessler, 1997). Extensive research has demonstrated
a significant causal relationship between stressful life events and
the occurrence of major depressive episodes (Du Preez et al.,
2021). Acute stressors are a natural physiological response to
sudden events, whereas prolonged exposure to stress may lead to
neuroendocrine dysfunction and emotional blunting, which can
trigger mental health issues such as anxiety and depression (Lee
et al., 2021).

Stress exposure experiments in rodents have shown that
stress can induce the excessive secretion of cytokines (Munhoz
et al., 2008). Studies have found that stress leads to elevated
levels of the cytokine IL-6 in the plasma of rodents (Xu et al.,
2020; Xu K. et al., 2024). Furthermore, acute restraint stress
has been shown to increase the expression of IL-1β mRNA
in the hypothalamus of rats (Liu H. et al., 2022; Liu et al.,
2021). These findings suggest that psychosocial stressors may
play an important role in the pathophysiology of stress-related
disorders, such as depression, by regulating the production of
pro-inflammatory and anti-inflammatory cytokines. In addition,
research has revealed that stress mediators can cross the BBB
and influence the immune system. Microglial cells are considered
the primary source of these cytokines, and chronic stress can
alter their morphology (Yao et al., 2022). In summary, the close
relationship between microglial activation and neuroinflammation
has been well-established. Therefore, psychological stress may
induce neuroinflammation, ultimately leading to the development
of depressive-like behavior.

2.3 Anti-inflammatory treatment can
alleviate depression

Based on the impact of various neuroinflammatory lesions
on the pathogenesis of depression, exploring the mechanisms
and treatment methods of depression from an anti-inflammatory
perspective has become a research focus in recent years (Patil
et al., 2023). It is noteworthy that some of the aforementioned
marketed antidepressants may alleviate depression to some extent
through anti-inflammatory effects (Eyre and Baune, 2012). The
serotonin reuptake inhibitor vortioxetine can inhibit the NLRP3
inflammasome pathway through its immunomodulatory effects,
thus exerting antidepressant and cognitive improvement effects
(Ciani et al., 2025). Additionally, a study showed that administering
10 mg/kg of ketamine to depressed model animals significantly
reduced the IL-1β levels in their hippocampus (Wang et al., 2015).
This suggests that anti-inflammatory treatment for depression may
be an effective strategy. Common anti-inflammatory medications,
such as non-steroidal anti-inflammatory drugs (NSAIDs), have
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TABLE 3 Astrocytes regulate depression-related pathways.

Types of
stress

Experimental subject Stress-induced changes in
astrocyte

Conclusions/observations References

LPS C57BL/6 mice, Orai1 KO mice ↓Orai1, SOCE Orai1 deficiency attenuates the increase in hippocampal inflammatory markers
induced by LPS in mice, as well as the inflammation-induced Ca2+ signaling in
astrocytes and inhibitory neurotransmission in the hippocampus

Novakovic et al., 2023

CSDS C57BL/6J mice, OGT-cKO mice ↑OGT, O-GlcNAc OGT protect mPFC pyramidal neurons from glutamate-transmission deficits under
social stress through the O-GlcNAcylation of GLT-1

Fan et al., 2023

CUMS C57BL/6 J mice, CysLT1R ACKO mice ↑CysLT1R CysLT1R knockout or knockdown in DG astrocytes improved CUMS-induced
depression-like behavior in mice and restored LTP, synapse loss, PSD-95 and GluN2B
levels, as well as reduced glutamate increase caused by NF-κB mediated GLT-1
reduction.

Liu X. et al., 2022

CSDS, LPS C57BL/6J mice, ALKBH5 KO mice ↓METTL3, ↑ALKBH5, METTL14, FTO Under chronic stress, astrocytic ALKBH5 preserves neuronal morphology, calcium
activity, and glutamatergic transmission through m6A modification of GLT-1

Guo et al., 2024

Mtnr1b cKOGfap Mtnr1b cKOGfap mice ↓Kcnj13, Kcne2, Gabra2, Ppp1r1b, Clic6, GAD67 The astrocyte-specific knockout in Mtnr1b cKOGfap mice results in anxiety-like
behavior, which is caused by down-regulation of gamma-aminobutyric acid-ergic
(GABAergic) synaptic function.

Meng et al., 2023

CUMS, SIRT6 AKO SIRT6 AKO mice ↓SIRT6, ↑Cgmp The deletion of SIRT6 in astrocytes alters purine metabolism homeostasis in the
medial prefrontal cortex of mice, leading to the improvement of depressive-like
behaviors in these animals

Hu et al., 2023

CUMS, LPS C57BL/6 mice ↑IL-1β, TNF-α, MAFG, GFAP, ROS, IL-6, C3,
MDA

MAFG knockdown attenuated CUMS-stimulated depression-like behaviors in mice
by astrocyte-mediated neuroinflammation via restoration of HMOX1

Ye et al., 2024

LPS Astyrocytic-NR2C KO mice ↑GFAP, IL-1β, TNF-α, IL-6, IL-4, IL-10, glutamate,
P-JNK/JNK, P-P65/P65

Astrocytic NR2C, in conjunction with the PI3K/AKT signaling pathway,
synchronously induces depression and further promotes synaptic dysfunction driven
by neuroinflammation

Gao et al., 2024

CSDS C57BL/6J mice, TRPML1 AcKO mice ↓MCOLIN, TRPML1, ↑SGALS3 The astrocytic TFEB-TRPML1 axis regulates depressive-like behaviors through ATP
release mediated by lysosomal exocytosis

Mo et al., 2024

CUMS, CSDS Kir6.1 CKO mice ↓Kir6.1, GFAP, ↑NLRP3, Caspase1, GSDMD-N,
IL-1β, IL-18

The deletion of Kir6.1 in astrocytes enhances astrocytic pyroptosis and exacerbates
depression through the mtROS-NLRP3-GSDMD signaling pathway

Li F. et al., 2022

MS C57BL/6 mice, CX43 knockdown
mice

↓CX43, GFAP, CX30, GLT-1 Upregulation of CX43 can alleviate depressive-like behaviors, cognitive deficits, and
astrocyte dysfunction induced by multiple sclerosis in mice

Wu et al., 2023

(↓, decrease; ↑, increase; -, no change).
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FIGURE 2

Possible mechanisms underlying crosstalk between microglia and astroglia. Interleukin-1α (IL-1α), tumor necrosis factor-α (TNF-α), and C1q secreted
by activated microglia induce transcription of astrocytes to produce neurotoxic factors. Microglia can regulate the expression of CCl2, IL-1β and
nitric oxide synthase 2 (NOS2) by regulating the expression of vascular endothelial growth factor B (VEGF-B) and transforming growth factor-β

(TGF-α) through aryl hydrocarbon receptor (AHR). Microglial TNF-α promotes the release of glutamate from astrocytes and produces neuronal
excitotoxicity. The NF-kB pathway in microglia activates the NLRP3 inflammasome, which in turn activates caspase-1 and induces the activation of
A1 astrocytes. A1 astrocytes secrete CCL2, CX3CL1, CXCL10, GM-CSF, and IL-1, which in turn activate proinflammatory microglia. The deficiency of
sigma-1 receptors in astrocytes leads to the activation of the NF-κB pathway, thereby amplifying the interaction between reactive astrocytes and
activated microglia.

shown in a meta-analysis that these drugs can effectively treat
depression in animal models when used alone or in combination
with antidepressants (Bai et al., 2020). However, some studies
indicate that these medications may affect the efficacy of
antidepressants. These mixed results may be attributed to various
experimental design factors. For instance, some studies involve
middle-aged patients, while others primarily focus on younger
individuals. The use of selective COX-1 and COX-2 inhibitors
NSAIDs has also demonstrated varying antidepressant efficacy.
Furthermore, the stage of depression in patients across different
studies may contribute to the observed differences in the efficacy
of NSAIDs (Eyre et al., 2015; Baune, 2017).

2.3.1 Natural compounds with anti-inflammatory
properties have antidepressant effects

Increasingly, studies are concentrating on the mechanisms
and effects of natural products with anti-inflammatory activities
in improving depressive-like behaviors. The structural diversity
and broad pharmacological effects of natural products are
notable characteristics that are not commonly found in synthetic
antidepressants (Dai et al., 2022). Natural products can modulate
neural function through various mechanisms, such as affecting
receptors or regulating immune processes, thereby achieving anti-
inflammatory and antidepressant effects (Noori et al., 2022).

Compound 3C is a derivative of (+)-balasubramide, an
8-metalactam compound extracted from the yellow peel
leaf of the Sri Lankan plant, which has been shown to have
significant anti-inflammatory effects in microglia. Further
investigation of the pharmacological activity of compound
3C showed that compound 3C could improve the depressive
behavior of mice with endotoxins induced neuroinflammation
by promoting the anti-inflammatory activity of microglia
through adenosine 5’-monophosphate-activated protein kinase
(AMPK)/peroxisome proliferator-activated receptor gamma
coactivator 1α (PGC-1α) signaling pathway, enhancing the
expression of a variety of anti-inflammatory mediators, and
inhibiting the pro-inflammatory activity of microglia (Wang
et al., 2018). Astragaloside IV (AS-IV) has antioxidant, anti-
inflammatory, anti-hypertensive and neuroprotective effects
(Abd Elkader et al., 2021). It has been reported that AS-IV may
alleviate peroxisome proliferator-activated receptor γ (PPARγ)/
axis-mediated neuroinflammation and relieve depression-like
behaviors in chronic restraint stress-induced and LPS-induced
mice by up-regulating PPARγ expression. Baicalin, a widely used
drug, has strong anti-inflammatory, anti-oxidation and anti-
apoptosis activities (Song et al., 2018). Recent studies using chronic
unpredictable mild stress (CUMS)-induced and endotoxin-induced
depression mice have demonstrated that baicalin can improve
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FIGURE 3

The antidepressant mechanism of natural anti-inflammatory products. Compound 3C improves the depressive behavior of mice with endotoxins
induced neuroinflammation by promoting the anti-inflammatory activity of microglia through adenosine 5’-monophosphate-activated protein
kinase (AMPK)/ peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) signaling pathway. Astragaloside IV (AS-IV) alleviates
peroxisome proliferator-activated receptor γ (PPARγ)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3) axis-mediated
neuroinflammation and relieve depression-like behaviors in chronic unpredictable mild stress (CUMS) and lipopolysaccharide (LPS)-induced mice by
up-regulating PPARγ expression. Baicalin can improve depressive-like behavior and neuroinflammation in CUMS and LPS-induced mice by inhibiting
the Toll-like receptor 4 (TLR4) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/forkhead Box O1 (FOXO1) pathway. Ginsenoside Rg1
may reduce chronic social defeat stress (CSDS)-induced depressive-like behavior in mice by inhibiting the transcriptional activity of NF-κB and
regulating mitogen activation and SIRT1 signaling pathways. Pinocembrin can reverse CUMS-induced depression-like behaviors by regulating
nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) and NF-kB signaling pathways. Catalpol improves depression-like
behaviors in CUMS mice by alleviating oxidative stress-mediated NLRP3 inflammasome activation and neuroinflammation. Cinnamic acid can
attenuate LPS-induced depression-like behaviors by reducing oxidative stress, and ameliorating LPS-induced BDNF damage. Asperosaponin VI
exerts antidepressant effects by inhibiting TLR4/NF-κB signaling pathway, down-regulating the expression of indoleamine 2, 3-dioxygenase (IDO)
and normalizing abnormal glutamate transmission.

depressive-like behavior and neuroinflammation by inhibiting
the harmful overexpression of Toll-like receptor 4 (TLR4) by
inhibiting the phosphatidylinositol-3-kinase (PI3K)/protein
kinase B (AKT)/forkhead Box O1 (FOXO1) pathway (Guo et al.,
2019). Ginsenoside Rg1 is widely reported to have a strong
neuroprotective effect (Wang et al., 2023). Further evidence
suggests that Rg1 may inhibit the transcriptional activity of
NF-κB by increasing anti-inflammatory and inhibiting pro-
inflammatory cytokines, neurotoxic mediators, pro-apoptotic
proteins and microglia activation, as well as regulating mitogen
activation and sirtuin 1 (SIRT1) signaling pathways. Thus, it can
reduce chronic social defeat stress (CSDS) -induced hippocampal
neuroinflammation and improve adult hippocampal neurogenesis,
and play an antidepressant role (Jiang et al., 2020). Many previous
studies have found that pinocembrin exhibit antioxidant, anti-
inflammatory and neuroprotective effects both in vitro and in vivo
(Li J. M. et al., 2022). Current studies have shown that Pinocembrin

can reverse CUMS-induced depression-like behaviors by acting
against neuroinflammation and apoptosis through nuclear factor
erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1)
and NF-κB signaling pathways (Wang et al., 2020). In addition,
catalpol has been shown to have anti-inflammatory, anti-tumor
and anti-oxidative effects (Liang et al., 2023). Recently, catalpol has
been shown to improve depression-like behaviors in CUMS mice
by alleviating oxidative stress-mediated NLRP3 inflammasome
activation and neuroinflammation (Wang et al., 2021). Previous
studies have shown that cinnamic acid can attenuate LPS-induced
depression-like behaviors by reducing LPS-induced inflammation
and oxidative stress, and ameliorating LPS-induced BDNF
damage (Zhuo et al., 2022). In addition to the above related
findings, recent studies have also found that Asperosaponin VI
exerts antidepressant effects by inhibiting TLR4/NF-κB signaling
pathway, inhibiting microglia-mediated neuroinflammation,
down-regulating the expression of indoleamine 2, 3-dioxygenase
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TABLE 4 Some natural anti-inflammatory products and their role in depression.

Name Source Pharmacological action Mechanism Disease model Mode of
administration

Dose References

Compound 3C Leaves of the
Sri Lankan plant
Clausena indica

Anti-apoptosis, neuroprotection,
scavenging oxygen free radicals, etc.,

Promote the anti-inflammatory activity of
microglia through AMPK/PGC-1α

signaling pathway

C57BL/6 male mice
induced by LPS

Intraperitoneal
injection

1, 10 mg/kg Wang et al., 2018

Astragaloside IV Astragalus
membranaceus

(Fisch) Bge

Anti-oxidant, anti-inflammatory,
antihypertensive, nerve protection,

etc.,

Alleviate PPARγ/NLRP3 axis-mediated
neuroinflammation, up-regulate PPARγ

expression

C57BL/6 male mice
induced by CRS or LPS

Intragastrical
administration

16, 32, 64 mg/kg Song et al., 2018

Baicalin Radix Scutellariae Anti-inflammatory, antioxidant,
anti-apoptotic, neuroprotective, etc.,

Inhibit the harmful overexpression of
TLR4 and the PI3K/AKT/FOXO1

pathway

ICR male mice induced
by CUMS or LPS

Intragastrical
administration

30, 60 mg/kg Guo et al., 2019

Ginsenoside Rg1 Ginsenoside Anti-oxidation, immune regulation,
anti-tumor, anti-depression,

anti-fatigue, etc.,

Inhibit the transcriptional activity of
NF-κB, regulating mitogen activation and

SIRT1 signaling pathways

C57BL/6 male mice
induced by CSDS

Intragastrical
administration

20, 40 mg/kg Jiang et al., 2020

Pinocembrin Propolis, honey Antioxidant, anti-inflammatory,
neuroprotective, etc.,

Act against neuroinflammation and
apoptosis through Nrf2/HO-1 and NF-kB

signaling pathways

C57BL/6 male mice
induced by CUMS

Intragastrical
administration

10 mg/kg Wang et al., 2020

Catalpol Root of Rehmannia
glutinosa Libosch

Anti-inflammatory, anti-tumor,
anti-oxidation, etc.,

Alleviate oxidative stress-mediated
NLRP3 inflammasome activation and

neuroinflammation

C57BL/6 male mice
induced by CUMS

Intraperitoneal
injection

20 mg/kg Wang et al., 2021

Cinnamic acid Cinnamon Anti-inflammatory, anti-oxidation,
etc.,

Reduce LPS-induced inflammation and
oxidative stress, ameliorate LPS-induced

BDNF damage

C57BL/6 male mice
induced by LPS

Intragastrical
administration

50, 100, 200 mg/kg Zhuo et al., 2022

Asperosaponin VI Radix Dipsaci Anti-inflammatory, antioxidant
neuroprotection, etc.,

Inhibit TLR4/NF-κB signaling pathway,
microglia-mediated neuroinflammation,
down-regulate the expression of IDO and

normalize abnormal glutamate
transmission

C57BL/6 male mice
induced by LPS

Intraperitoneal
injection

10, 20, 40, 80 mg/kg Zhang et al., 2020
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FIGURE 4

Depression increases neuroinflammation. Compared with healthy women, pregnant women with depression have higher serum levels of the
inflammatory factor interleukin-6 (IL-6) after delivery. Similarly, continuous stress stimulation is more likely to lead to increased levels of
inflammatory factors in patients with depression than in healthy people.

(IDO) and normalizing abnormal glutamate transmission (Zhang
et al., 2020).

By exploring the specific mechanisms and effects of these
compounds in anti-inflammatory and anti-depressive effects in vivo
and in vitro depression models, it lays a foundation for the
pathogenesis and treatment of depression (Figure 3 and Table 4).

2.4 Depression increases
neuroinflammation

In summary, studies have found that depression and
inflammation are mutually reinforcing. As mentioned above,
inflammation plays a key role in the pathogenesis of depression
(Slavich and Irwin, 2014). It has been mentioned in many studies
related to the pathogenesis of depression that the activation of
microglial in the prefrontal cortex or hippocampus and the release
of pro-inflammatory factors such as IL-1β, TNF-α and IL-6 in
depressed animals with stress models (Su et al., 2017; McWhirt
et al., 2019). In addition, the presence of depression also triggers
more cytokines in the face of stressors and pathogens (Glaser
et al., 2003). Consistent with the animal literature, human studies
have shown that depression triggers an inflammatory response
that promotes an increase in cytokines that respond to stressors
and pathogens (Rohleder and Miller, 2008; Fagundes et al., 2013).
For example, in women who had just given birth, those with a

lifetime history of MDD had greater increases in serum levels of
IL-6 and soluble IL-6 receptors than those without a history of
depression (Maes et al., 2001). Similarly, MDD patients had greater
increases in inflammatory markers after stressor stimulation
than non-depressed controls. A similar conclusion was reached
in another study that individuals with more severe depressive
symptoms were more likely to induce an increase in IL-6 in
laboratory stressors. As a result, patients who are in the midst of
depression are exposed to stress again, and they may continue to
experience severe and recurring inflammatory responses (Pace
et al., 2006; Figure 4). This suggests that depression may enhance
stress response systems by promoting hyperinflammation. These
findings lead to a new understanding of the complex interplay
between stress, depression, and immune disorders, and the
possibility that combined treatment may promote recovery and
reduce relapse risk when inflammation and depression occur
simultaneously. Effective depression treatment can have profound
effects on mood, inflammation, and health (Kaye et al., 2000).

2.5 Conclusion and future perspectives

This review summarizes the relationship between long-term
stress-induced neuroinflammation and the increased incidence of
depression. Stress stimuli can activate the central immune system,
triggering neuroinflammation, which ultimately leads to the
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emergence of depressive symptoms. Chronic neuroinflammation
promotes the polarization of stress-induced microglia and
astrocytes, stimulating the release of neurotoxic inflammatory
mediators, which in turn induce symptoms such as anhedonia,
memory loss, and insomnia. Furthermore, the occurrence
of depression exacerbates neuroinflammation, leading to the
production and release of more pro-inflammatory mediators. This
review also discusses the specific mechanisms by which microglia
and astrocytes modulate depression. Modulating the phenotype
and function of these glial cells may provide effective strategies
for the prevention and treatment of depression. Additionally, we
highlight the potential of natural products with anti-inflammatory
properties in improving depressive symptoms, underscoring
their significant potential in the development of depression
therapies. In the future, technologies such as single-cell RNA
sequencing, PET, MRI, and CRISPR-Cas9 can be employed to
explore the specific activation phenotypes and gene expression
targets of microglia and astrocytes in depression, enabling real-time
monitoring of the activation of these two glial cells. Furthermore,
by targeting the specific polarization phenotypes and gene targets
of microglia and astrocytes in depression, natural products that
can modulate these phenotypes and act on multiple targets in
combination may become a promising strategy for the prevention
and treatment of depression.
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