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The nervous system relies on a balance of excitatory and inhibitory signals.

Aberrant neuronal hyperactivity is a pathological phenotype associated with

several neurological disorders, with its most severe effects observed in epilepsy

patients. This review explores the literature on spontaneous synchronized

neuronal activity, its physiological role, and its aberrant forms in disease.

Emphasizing the importance of targeting underlying disease mechanisms

beyond traditional neuron-focused therapies, the review delves into the role

of astroglia in epilepsy progression. We detail how astroglia transitions from a

normal to a pathological state, leading to epileptogenic seizures and cognitive

decline. Astroglia activity is correlated with epileptiform activity in both animal

models and human tissue, indicating their potential role in seizure induction

and modulation. Understanding astroglia’s dual beneficial and detrimental roles

could lead to novel treatments for epilepsy and other neurological disorders with

aberrant neuronal activity as the underlying disease substrate.

KEYWORDS
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1 Introduction

Nervous system function is mediated by a proper balance of excitatory and inhibitory
signals. However, abnormal neuronal hyperactivity is a key feature in normal aging (Zullo
et al., 2019) as well as several pathological conditions including epilepsy (Engel, 2001),
Alzheimer’s Disease (Lam et al., 2017), Glioma (Snijders et al., 2017) and even severe SARS-
CoV2 infection (Lin et al., 2021). In addition to causing debilitating seizures, neuronal
hyperactivity is associated with progressive cognitive decline in patients with epilepsy
(Coan and Cendes, 2013), as well as subclinical epileptiform activity (Vossel et al., 2016).
In the first part of this review (see section “2.1 Synchronized spontaneous neuronal activity
in the developing brain”–“2.3 Synchronized spontaneous neuronal activity in pathology”),
we summarize the current literature for synchronized spontaneous neuronal activity in
healthy physiological state and further discuss its aberrant forms in pathology (Figure 1).
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In the second part (see section “3.1 Epileptogenesis and key
cellular events,” “3.2 Expanding beyond neurons: a neuronal centric
view on human epilepsy drug development and the need for
broader perspectives”) we discuss the underlying pathological
changes and key cellular players that trigger sudden aberrant
neuronal hyperactivity in the brain. In the third part of this review
(see section “4.1 Astrocytes function in homeostatic neuronal
activity”–“4.7 Astroglia in epilepsy associated mental health
comorbidities”), we address the potential mechanisms by which
astroglia transitions from a physiological to pathological state
and how it could lead to triggering seizures through integration
of spatiotemporal signals and later aggravating progressive
cognitive impairment via chronic inflammation. Studies using
mouse and zebrafish models have identified surges in astroglial
activity prior to seizure activity (Diaz Verdugo et al., 2019;
Tian et al., 2005). Our recent research using hippocampal
tissue from human epilepsy surgical resections, shows that
human immature astroglia activity anti-correlates with neuronal
hyperactivity (Ammothumkandy et al., 2022). There is growing
evidence that suggests astroglia’s role in neuronal network rhythmic
activity and synchronization, mediating sudden behavioral state
switches in physiology (Oliveira and Araque, 2022). Understanding
how astroglia spatiotemporally integrate neuronal activity for
influencing physiological functions and its evolution in disease
progression could provide a novel therapeutic target for epilepsy
as well as other pathological conditions with epileptiform activity.
Most of the current anti-epileptic drugs are targeted at neuronal
cells and therefore identifying novel cellular targets to prevent
seizures as well as cognitive co-morbidities can have huge clinical
impact.

2 Synchronized spontaneous
neuronal activity in physiological
and pathological brain

2.1 Synchronized spontaneous neuronal
activity in the developing brain

Spatiotemporally fine-tuned sparse electrical activity between
neurons is important for the normal function of the adult
nervous system. However, in the prenatal stages the neuronal
cells show highly synchronized spontaneous activity which plays
a key role in early developmental processes like neurogenesis,
migration, and formation of synaptic connections (Luhmann
et al., 2016; Molnár et al., 2020). Studies in rodent models have
shown that during early prenatal days, sensory-evoked excitatory
and inhibitory signals are less correlated, but as experience-
dependent refinement of intracortical inhibition occurs, excitation

Abbreviations: AED, anti-epileptic drugs; AMPAR, alpha-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptor;AQP4, aquaporin-4; EEG,
electroencephalography; BBB, Blood brain barrier; GABA, Gamma-
aminobutyric acid; GABAAR, GABA type A receptor; GAD, generalized anxiety
disorder; GFAP, Glial fibrillary acidic protein; MDD, major depressive disorder;
MRI, Magnetic resonance imaging; MT-I/II, Metallothioneins I/II; MTLE,
Mesial Temporal lobe Epilepsy; NMDAR, N-methyl-D-aspartate receptor;
NREM, non - rapid eye movement; PAP, presynaptic astrocytic processes;
PSD, post-traumatic stress disorder; TLE, Temporal lobe Epilepsy.

and inhibition becomes highly correlated (Dorrn et al., 2010).
In the first couple of prenatal weeks neural activity transforms
from a synchronized, dense oscillatory signal to sparse signals
which is either dependent or independent of sensory signals
(Golshani et al., 2009; Rochefort et al., 2009). This attainment of
sparse neural signals is considered to be important in efficient
encoding of sensory inputs in the mature brain (Olshausen
and Field, 2004). Similarly in humans, electroencephalography
(EEG) recordings in preterm babies have identified spontaneous
and transient neuronal activities in the prenatal stage which
declined with the time of normal birth (Vanhatalo et al., 2005).
Further studies have combined data from EEG and Magnetic
resonance imaging (MRI) to show that this increased early
spontaneous activity transients in the preterm babies correlated
with a faster growth of brain structures until the time of
normal birth (Benders et al., 2015). The decline of spontaneous
activity transients occurred in parallel with the developmental
maturation of functional Gamma-aminobutyric acid (GABA)
mediated inhibition (Vanhatalo et al., 2005). Therefore, both
studies in rodents and humans show that there is a fine tuning of
electrical activity that occurs during early prenatal and postnatal
developmental stages.

2.2 Synchronized spontaneous neuronal
activity in the adult brain

During early postnatal stages, neuronal activity becomes more
spatially restricted during wake states, while spontaneous large-
scale waves propagate across the cortex during sleep cycles
(Tabuena et al., 2022), a physiological process which continues
into adulthood. In adults, the synchronized spontaneous neuronal
oscillations are specifically observed during the non - rapid eye
movement (NREM) stage of sleep and are characterized by high
amplitude slow waves (< 1 Hz), delta waves (1–4 Hz) and
sleep spindles (12–16 Hz) (Brown et al., 2012; Dang-Vu et al.,
2008; Steriade et al., 1994). These high levels of synchronized
activity (denoted by high amplitude) during NREM sleep are
critical in consolidation of memory from hippocampus into the
neocortex (Geva-Sagiv et al., 2023; Helfrich et al., 2019; Rasch
and Born, 2013). During NREM sleep cycle, high frequency
(200 Hz) spontaneous network oscillations called sharp wave
ripples are observed in the hippocampus (Buzsáki et al., 1992).
Recently, spontaneous synchronized sharp wave ripples in the
hippocampus have also been observed in awake states in the
adult human brain in association with spontaneous free-memory
recall (Norman et al., 2019). There is also a synchrony of
spontaneous high frequency oscillations in the hippocampus and
cortex, which is considered critical for binding memory about
different aspects of an event across different cortical regions
(Dickey et al., 2022). Overall, spontaneous synchronized neuronal
network activity is a physiological process necessary for memory
consolidation. It is extensively studied in relation to normal sleep
cycles and is emerging as important for cognitive functioning
during wakefulness. Further research is needed to fully understand
its functional significance and the underlying mechanisms that
distinguish it from non-spontaneous, stimulus-evoked neuronal
activity.
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FIGURE 1

Spontaneous synchronous neuronal activity in development, physiology and pathology. Spontaneous synchronous neuronal activity occurs in the
brain during the pre-birth stage, facilitating the developmental maturation of neural circuits. After birth, neuronal activity becomes more
non-spontaneous, stimulus-evoked, and spatially restricted, except during free memory recall and memory consolidation in non - rapid eye
movement (NREM) sleep. Under pathological conditions, aberrant spontaneous synchronous neuronal activity, known as epileptiform activity, leads
to seizures.

2.3 Synchronized spontaneous neuronal
activity in pathology

Abnormal synchronized spontaneous neuronal hyperactivity is
a pathological hallmark of several neurological disorders such as
epilepsy (Engel, 2001), Alzheimer’s Disease (Lam et al., 2017; Vossel
et al., 2016), Glioma (Snijders et al., 2017), and Huntington’s disease
(Landau and Cannard, 2003). The aberrant electrical activity
creates an imbalance in the nervous system’s homeostatic ability
to fine tune human behavior. This leads to sudden changes in
movement, consciousness, and sensory feelings which are called
seizures (Devinsky et al., 2018). This aberrant electrical activity in
the brain during a seizure can be detected by EEG and is called
epileptiform activity, characterized by brain waves with altered
amplitude and frequency patterns (Fisher et al., 2014; Wang and
Mengoni, 2022). In certain neurological conditions the patient does
not have a seizure, but EEG recordings of the brain detect aberrant
electrical activity which is classified as sub clinical epileptiform
activity. Both epileptiform activity (Coan and Cendes, 2013) as well
as subclinical epileptiform activity (Horváth et al., 2018; Vossel
et al., 2016) progressively leads to cognitive decline. In addition
to neurological disorders, neuronal hyperactivity is also associated

with aging (Zullo et al., 2019), and might be a potential substate for
age associated cognitive decline.

3 Underlying pathological changes
and key cellular players in epilepsy

3.1 Epileptogenesis and key cellular
events

The progression of a balanced homeostatic brain to an epileptic
brain is called epileptogenesis (Pitkänen and Lukasiuk, 2011).
Epilepsy is either caused by genetic mutations (Noebels, 2015)
leading to abnormal circuit development or is acquired by a
brain insult (Devinsky et al., 2018). Stroke, traumatic brain injury,
infection, tumor, neurodegenerative condition, and other unknown
factors can act as brain insults that lead to acquired forms of
epilepsy. Currently lifestyle changes have not shown to be a direct
cause for epilepsy; however, factors like alcohol, unhealthy diet,
pollutants, poor sleep, lack of exercise are all factors that increase
the vulnerability of other brain disorders (Kip and Parr-Brownlie,
2023; Popa-Wagner et al., 2020) which can then potentially
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lead to epilepsy as a secondary event. Brain insult leading to
epilepsy occurs over a latency period during which several cellular
and molecular changes accumulate within the brain leading to
imbalance in excitatory and inhibitory signals (Herman, 2002).
A cascade of aberrant cellular events that are common to all these
brain disorders and the subsequent acquired epilepsy (Klein et al.,
2018) are Blood brain barrier (BBB) leakage (Gorter et al., 2019;
Knox et al., 2022), oxidative stress (Fesharaki-Zadeh, 2022; Patel,
2002; Zilberter et al., 2022) and neuroinflammation (Chen Y. et al.,
2023; Mishra et al., 2021; Simon et al., 2017). Further it leads to
loss of homeostasis in the fine tuning of neuronal activity leading
to seizures (Casillas-Espinosa et al., 2012). This non-homeostatic
state is maintained in a vicious cycle that can chronically cause
neurodegeneration (Casillas-Espinosa et al., 2020), which then
progressively leads to cognitive decline and mental health issues
(Holmes, 2015; Figure 2).

In response to brain insult, the neuroinflammatory pathways
can be triggered immediately by extracellular inflammation
mediators released by necrotic cells (Scaffidi et al., 2002).
Recent study has shown that even acute neuroinflammation
disrupts neuronal chloride regulation, which leads to loss of
GABAergic inhibition and neuronal hyperexcitability (Kurki
et al., 2023). Neuroinflammation over time activates microglia
and astrocytes to pro-inflammatory state leading to a positive
feedback loop of excess pro-inflammatory cytokine production
which further leads to epileptogenesis (Chen Y. et al., 2023;
Vezzani et al., 2011). The neuroinflammatory pathways can
also result in BBB disruption, oxidative stress, and pathogenesis
(Evran et al., 2020). BBB disruption leads to serum protein
exposure in the brain contributing to epileptogenesis (Seiffert
et al., 2004). The exposure to albumin results in astrocyte
dysfunction, impairing its ability to clear excess potassium and
glutamate causing neuronal hyperexcitability (David et al., 2009). In
human Temporal lobe Epilepsy (TLE), albumin extravasation was
observed in the astrocytes and neurons of epileptic hippocampus
compared to control autopsies and the levels were highest in
association with status epilepticus (van Vliet et al., 2007). Brain
insult, neuroinflammation and BBB disruption can all lead to
oxidative stress in neurons and glia which also augments the
pathophysiological process involved in epileptogenesis (Fesharaki-
Zadeh, 2022; Patel, 2002). Oxidative stress is observed both
in rodent epilepsy models as well as human hippocampi post-
status epilepticus. Transient treatment with antioxidant drugs
during epileptogenesis in rats significantly reduced oxidative
stress, delayed epilepsy onset, blocked disease progression, reduced
seizure frequency, decreased hippocampal neuron loss, and rescued
cognitive deficits (Pauletti et al., 2019). The collective effects of
neuroinflammation, BBB break down, oxidative stress and loss of
homeostatic neuronal activity leads to neuronal cell death and
neurodegeneration (Farrell et al., 2017). Neuronal cell death can
then feed to the vicious cycle of neuroinflammation and thereby
epilepsy progression (Scaffidi et al., 2002). This might explain
the progressive decline of cognition that is observed in epilepsy
patients (Hermann et al., 2007) as well as the shared pathology
between epilepsy and neurogenerative disorders (Negi et al., 2023;
Targa Dias Anastacio et al., 2022). Inflammation is also known to
detrimentally effect learning and memory by negative regulation
of adult neurogenesis (Ekdahl et al., 2003; Jessberger et al., 2009;
Monje et al., 2003; Shariq et al., 2021; Villeda et al., 2011). Similarly,

in addition to loss of neurons, seizures can also result in cognitive
decline by depletion of neuro stem cells and altered cell fate from
neurogenesis to astrogenesis (Aimone et al., 2010; Fu et al., 2019;
Sierra et al., 2015). Our recent studies in human MTLE showed
that with increase in epilepsy disease duration there is a decline
in neurogenesis (Ammothumkandy et al., 2022), which also linked
with cognitive decline (Ammothumkandy et al., 2025). Therefore,
the progressive neurodegeneration that occurs in epilepsy is
attributed to both increase in neuronal cell death and a reduction
in neurogenesis. Collectively epileptogenesis involves a complex
interplay of non-homeostatic cellular and molecular changes
leading to seizures and cognitive decline. While neurons have
been the primary focus in epilepsy treatments, emerging evidence
establishes the pivotal role of underlying disease mechanisms,
which opens new avenues for therapeutic interventions.

3.2 Expanding beyond neurons: a
neuronal centric view on human epilepsy
drug development and the need for
broader perspectives

Within the past 150 years there have been three generation
of anti-epileptic drugs (AED) that have reached epileptic patients
and/or have passed the FDAs drug safety and efficacy requirements.
All three generations of AEDs target either inhibitory or excitatory
neurons to mitigate onset and severity of seizures (Löscher
and Schmidt, 2011; Sánchez et al., 2024). This is because
Glutamatergic neurons have been known to play the central
role in initiating seizure onset, which is caused by disharmony
between excitatory and inhibitory cellular mechanisms (Barker-
Haliski and Steve White, 2015). Glutamate is the most common
form of excitatory neurotransmitter, and its intracellular build
up plays an important role in epileptogenesis and cumulative
excitotoxicity. A nefarious cycle of deviant neuronal connectivity
and sporadic depolarization leads to higher glutamate in the post
synaptic cleft leading to seizures. Therefore, the focus of AED
drug development has been on reducing the excitatory function
of glutamatergic neurons directly, or indirectly by increasing the
function of inhibitory neurons (Corrales-Hernández et al., 2023;
Löscher and Schmidt, 2011). There are approximately 30 approved
AEDs currently, yet roughly thirty percent of epileptic patients
are still refractory to these treatments and necessitate surgical
resectioning of their focal epileptic tissue in order to obtain seizure
freedom (Löscher and Schmidt, 2011). Though the AEDS provide
moderate seizure control in about 70% of patients, despondently
60% of patients experience adverse side effects (Hanaya and
Arita, 2016). Identifying new AEDs that target the underlying
disease mechanisms and epileptogenesis is critical for (1) treating
pharmacoresistant seizures, (2) avoiding adverse AED side effects,
(3) curing epilepsy seizures, cognitive and mental health co-
morbidities. There is a significant gap in AED targeting of non-
neuronal cell types, with virtually no AED specifically targeting
astrocytes. This is despite extensive research demonstrating the role
of astrocytes in modulating physiological neuronal activity as well
as pathological neuronal hyperexcitability, contributing to seizure
onset and disease progression (Vezzani et al., 2022).
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FIGURE 2

Key cellular events that lead to epileptogenesis. Genetic mutations and lifestyle factors influence the brain’s vulnerability to undergo pathological
changes following brain insults, potentially leading to epilepsy. The progression to epilepsy occurs over a latency period during which numerous
cellular and molecular changes accumulate. A common cascade of aberrant cellular events that occur during epileptogenesis, regardless of etiology
includes Blood brain barrier (BBB) leakage, oxidative stress and neuroinflammation. These events disrupt homeostasis, cause abnormal circuit
development, and lead to seizures. This non-homeostatic state perpetuates a vicious cycle that can chronically cause neurodegeneration, resulting
in cognitive decline and mental health issues.

4 Astroglia transitions from a
physiological to pathological state
leading to epilepsy progression

4.1 Astrocytes function in homeostatic
neuronal activity

Normal neuronal excitability relies on a fine balance between
excitation and inhibition (E/I ratio), which is classically believed
to be regulated by neuronal synaptic plasticity (Bhatia et al., 2019).
Historically, astrocytes were thought to play a supportive role, but
recent research has revealed their crucial functional role in the
regulation of neuronal activity, synaptic plasticity, learning and
memory. N-methyl-D-aspartate receptors (NMDARs) are essential
ionotropic receptors that play significant roles in both developing
and adult brain functions (Adesnik et al., 2008; Åmellem et al.,
2021; Mu et al., 2015). NMDARs are known to influence two
key postsynaptic receptors, alpha-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR) and GABA type A
receptor (GABAAR), leading to the regulation of the excitation-
to-inhibition balance in neurons (Adesnik et al., 2008; Lu et al.,
2011; Marsden et al., 2007; Muir et al., 2010). This E/I balance
is vital for proper brain development, as well as for maintaining
homeostatic neuronal activity in the adult brain. NMDARs control
neuronal excitability by modulating the intracellular calcium
influx upon activation, and their dysregulation is linked to a
spectrum of neuropsychiatric and neurodegenerative disorders
such as autism (Won et al., 2012), epilepsy (Sadeghi et al.,
2021), Alzheimer’s (Olajide et al., 2021) and schizophrenia
(Gilmour et al., 2009; Krystal et al., 2002). Astrocytes regulate
extrasynaptic glutamate to modulate the activation of extrasynaptic

NMDARs, which eventually leads to the regulation of synaptic
transmission. Astrocytes can enhance synaptic efficacy through
NMDAR activation via the secretion of ligands like glutamate
and D-serine (Oliveira and Araque, 2022). A wide variety of
neurotransmitters influence internal astrocytic calcium levels,
which in turn results in the release of neuroactive molecules
termed gliotransmitters, which modulate synaptic transmission
and neuronal activity (Lines et al., 2020). Astrocyte-interneuron
interactions are also known to regulate neural network activity
within the hippocampus (Perea et al., 2016). Astrocytes exhibit
both GABAergic and GABAceptive properties, playing a vital
role in maintaining GABA homeostasis at intra and extracellular
levels (Le Meur et al., 2012; Liu S. H. et al., 2022; Yoon et al.,
2012). They primarily express the GABA transporters GAT1 and
GAT3, which are crucial for modulating tonic inhibitory currents
at the post synapse (Kersanté et al., 2013; Melone et al., 2015;
Schousboe et al., 2017). Through GAT1 and GAT3 mediated GABA
regulation, astrocytes influence synaptic efficacy and intracellular
Ca2+ dynamics (Doengi et al., 2009; Matos et al., 2018; Parpura
and Verkhratsky, 2012). Additionally, they contribute to BBB
regulation by modulating vasodilation and vasoconstriction (Liu
S. H. et al., 2022). Dysregulation of astrocytic GABA has been
implicated in several neurological disorders, including Alzheimer’s
disease (Brawek et al., 2018), epilepsy (Eid et al., 2013; Müller
et al., 2020), and Parkinson’s disease (Roberts et al., 2020). The
complex regulation of neuronal activity by astrocyte mediated
regulation of ions and neurotransmitters is further reinforced
by astrocytic morphological dynamics. Hormones like oxytocin
(Theodosis and Poulain, 2001), norepinephrine (NE) (Sherpa
et al., 2016; Vardjan et al., 2014), and serotonin (Müller et al.,
2021) affects the morphology of presynaptic astrocytic processes
(PAP). Additionally, physiological changes induced by fear memory
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formation (Badia-Soteras et al., 2023), caloric restriction (Popov
et al., 2020), and long-term potentiation (LTP) (Henneberger
et al., 2020) also alter PAP morphology in astrocytes. An increase
or decrease in the volume of PAP impacts NMDAR-mediated
activity regulation (Popov et al., 2020). Overall, this highlights the
various facets by which astrocytes regulate homeostatic neuronal
excitability. Dysregulation in astrocytic function could lead to a loss
of E/I balance and hyperexcitability, resulting in the manifestation
of brain disorders.

4.2 Astrocyte dynamics in physiological
behavioral states

Astrocyte mediated regulation of synaptic transmission via
neurotransmitter fine tuning, underlies the neuronal activity
dynamics. They respond to a wide variety of stimuli under various
physiological, emotional and fear states. These regulations
of neuronal activity remodel the circuitry and eventually
impact the behavior and cognition at system level. Similar to
how establishment of social hierarchy roots from individualist
behaviors, to achieve higher social orders animal displays social
dominance which is modulated at a cellular level by E/I balance in
dorsal prefrontal cortex (Tan et al., 2018; Wang et al., 2011; Zhang
et al., 2022). Considering the role of astrocytes in maintaining
E/I balance and modulating synaptic transmission, it is plausible
that alterations in astrocyte function could significantly influence
the processes underlying social behavior. Activity in astrocytes
of globus pallidus region, of the basal ganglia participates in
selection strategies in rewards seeking behaviors (Kang et al.,
2023). Interestingly astrocytic network in hippocampus regulates
classical hippocampal dependent functions like contextual fear
memory (Badia-Soteras et al., 2023; Li et al., 2020; Orr et al.,
2015), spatial memory (Hösli et al., 2022) and working memory
(Nagai et al., 2021; Pinto-Duarte et al., 2019). Astrocytes have
the unique ability to rapidly respond to neuromodulators and
integrate signals across large populations of neurons inducing
neuronal oscillations (Buskila et al., 2019). Astroglia Ca2+

signaling contributes to neuronal oscillations and associated
cognitive functions (Lee et al., 2014). Selectively expressing
tetanus neurotoxin in astrocytes reduced hippocampal gamma
oscillations and impaired recognition memory (Lee et al., 2014).
Apart from having a role in general behavior functions, astrocytes
are particularly important in mediating abrupt state transitions
during physiological functions (Van Horn et al., 2021). The
ability to spatiotemporal integrate signals makes them well-suited
for orchestrating these sudden shifts in brain state. Research in
zebrafish has shown that astroglia can accumulate information
about behavioral functions in the form of Ca2+ signals which
further leads to behavioral state switches by activation of inhibitory
neurons when astroglial Ca2+ levels exceed a threshold (Mu et al.,
2019). Astroglia also plays a key role in sleep to wake transition
which is another sudden behavioral state transition. An increase
in Astrocytic Ca2+ signals is observed 1–2 s before the transition
from slow wave sleep to wakefulness, with peak astrocytic activity
observed upon awakening (Bojarskaite et al., 2020). In conclusion,
these studies imply that astroglia is not just a support cell, but
also a crucial player along with the neurons in modulation of

physiological behavior states via regulation of optimum E/I balance
and calcium homeostasis.

4.3 Astrocytes in epilepsy—delineating
the beneficial and detrimental functions?

With the focus of AED development expanding beyond
neurons, astroglial cells become particularly significant due to
their integral physiological role in fine tuning neuronal activity
at the tripartite synapse (Araque et al., 1999; Janigro and Walker,
2014; Oliveira and Araque, 2022). Additionally, in response to
various brain insults including epilepsy, astroglial cells are known
to undergo molecular, morphological and functional changes,
collectively called reactive astrogliosis (Escartin et al., 2021).
Astroglial cells that are crucial for homeostatic neuronal activity
and neuroprotection are therefore a potential therapeutic target
for neurological and neuropsychiatric disorders including epilepsy
(Verkhratsky et al., 2023). However, to achieve translational goals
understanding the temporal and spatial astroglial heterogeneity
and how it impacts distinct disease symptoms at various stages of
disease progression is essential. Deviation from a physiological to a
pathological astroglial function can be beneficial or detrimental to
the brain depending on the context and have been broadly classified
as neurotoxic A1 and neuroprotective A2 astrocytes (Liddelow
et al., 2017; Zamanian et al., 2012). The identification of similar
beneficial and detrimental astrocytes, along with their unique
molecular, cellular, and functional signatures at various stages of
epilepsy progression such as initial brain damage from various
etiologies, latency period, seizure onset, chronic epilepsy, and drug-
resistant epilepsy holds significant translational relevance.

In epilepsy, astrogliosis is a well-studied disease hallmark (Patel
et al., 2019; Wetherington et al., 2008), however, the heterogeneity
in reactive astroglia and their beneficial versus detrimental function
in various disease stages and symptoms are unclear. Astrocytes
in mice models showed an increased expression of neurotrophic
A2 markers in the very early time points after induction of
status epilepticus; however, by 24 h there was an additional
increase in the expression of neurotoxic A1 markers (Maupu et al.,
2021). A study (Henrik Heiland et al., 2019) that has analyzed
preexisting data derived from epileptic human hippocampal
sclerosis tissue using bulk astrocyte sequencing (Zhang et al.,
2016) have revealed that astrocytes in epilepsy patients have a
transcriptional profile that is in between that of a typical beneficial
A2 and a detrimental A1 astrocyte (Henrik Heiland et al., 2019).
It is likely that these signatures arise from two functionally distinct
beneficial and detrimental astrocyte subgroups, or even a hybrid
astrocyte that is unique to epilepsy. A recent study using single
nucleus RNA sequencing analysis has identified and characterized
a subset of lipid accumulated reactive astrocytes that promote
neuronal hyperactivity in both mouse epilepsy model as well as
human TLE (Chen Z. P. et al., 2023). The study also identified
other astrocyte subsets that had transcriptional profiles closer
to beneficial astrocytes, however, this needs further functional
validation. Further, unraveling the temporal and spatial dynamics
of functionally beneficial and detrimental astrocyte subsets is
critical in determining ideal targets for early and chronic stages of
epilepsy. To achieve translational goal toward targeting astrocytes
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in curing human epilepsy we have to find ways to increase
its beneficial functions, reduce the detrimental functions and
ultimately reverse them back to physiological state. The neurotoxic
A1 phenotype of astrocytes after status epilepticus was pushed
toward neuroprotective A2 phenotype by silencing of circular RNA
circIgf1r which was associated with a concomitant reduction in
neuronal loss (Shao et al., 2021). Further studies are needed to
understand how this shift from A1 to A2 astrocyte alters neuronal
hyperactivity, seizures and epilepsy progression.

Timing of clinical intervention and cellular targets are also
aspects that need to be considered in great detail while designing
studies that are aimed at identifying drugs to reverse reactive
astrogliosis toward homeostatic function. As microglial cells induce
reactive astrogliosis they are considered an upstream therapeutic
target to reduce reactive astrogliosis in neurological disorders
with neuroinflammation (Benson et al., 2015; Henning et al.,
2023; Liddelow et al., 2017). However, recent research in epilepsy
has shown that targeting microglia might not have clinical
relevance once reactive astrogliosis occurs (Sano et al., 2021).
The researchers performed the study in pilocarpine model of
epilepsy and observed that reactive phenotype occurred first in
microglia and then was followed by astroglia which resulted in
higher astroglial Ca2+ signals and increased seizure susceptibility.
They further demonstrated that pharmacological inhibition of
microglial activation in the very early phases prevented reactive
astrogliosis and reduced seizure susceptibilities; however, in late
stages, blocking microglial activation was ineffective, indicating
that astroglia may need to be targeted more directly once they
acquire reactive status. In the context of post-traumatic epilepsies,
the timing of therapeutic interventions targeting astrocytes to
prevent epilepsy is another challenging area, as reactive astrocytes
in the early phases of injury also have neuroprotective functions
(Linnerbauer and Rothhammer, 2020). Ablating proliferating
reactive astrocytes after moderate injury increased neuronal
degeneration indicating that reactive astrocytes play essential roles
in preserving neural tissue and restricting inflammation after
moderate focal brain injury (Myer et al., 2006). A recent study
using temporal transcriptomic analysis after spinal cord injury
identified that local mature astrocytes dedifferentiate, proliferate,
and undergo persistent downregulation of molecules associated
with astrocyte-neuron interactions, while upregulating molecules
linked to wound healing, microbial defense, and interactions
with stromal and immune cells (O’Shea et al., 2024). A similar
process potentially facilitates the formation of neuroprotective
borders in traumatic brain injuries that eventually progresses to
epilepsy. Thus, in summary strategies for therapeutic modulation
of reactive astrogliosis in preventing and curing epilepsy, must
carefully evaluate the timing and targets of treatments to preserve
their neuroprotective benefits while mitigating the detrimental
contributions.

4.4 Astrocytes in inducing epileptiform
activity

Reactive astroglia also plays a key role in shifting the balance of
neuronal electrical activity leading to seizure initiation (Devinsky
et al., 2013). Molecular changes that occur to expression of

neurotransmitter receptors, ion channels and gap junction within
the astroglia impairs their efficiency in buffering K+ ions and
neurotransmitters in large spatial domains (Vezzani et al., 2022;
Wetherington et al., 2008). Altered expression of astroglial gap
junctions have been shown both in mouse and human epilepsy
(Mylvaganam et al., 2014), and are implicated as a promising
therapeutic target in human neocortical epilepsy (Dossi et al.,
2018b). Reactive astroglia induced by virus transduction reduced
inhibitory synaptic currents, due to failure in the astrocytic
glutamate-glutamine cycle and downregulation of glutamine
synthetase. This loss of inhibition led to hyperexcitability in
hippocampal circuits, suggesting that reactive astroglia alone
can cause local synaptic perturbations (Ortinski et al., 2010).
However, how all of these molecular changes lead to spontaneous
synchronous neuronal hyperactivity and sudden intermittent
manifestation of seizures is unclear.

With pathological cellular and molecular changes in the
epileptic brain, it’s an enigma that aberrant electrical activity and
seizure occurs only intermittently. Recent studies have suggested
that astrocytes might play a pivotal role in sudden seizure initiation.
These studies looked at the time point that leads to seizure onset
and observed surges in astroglial Ca2+ waves prior to seizure
activity both in mouse and zebrafish models (Diaz Verdugo et al.,
2019; Tian et al., 2005). Surges in Astrocytic Ca2+waves result
in glutamate release and thereby induced seizure activity (Tian
et al., 2005). In zebrafish models, the transition to generalized
seizures is characterized by heightened glial synchronization,
massive extracellular glutamate release, and abrupt increases in
neural activity and connectivity, suggesting a crucial role for glial
networks in seizure generation (Diaz Verdugo et al., 2019). In our
recent study in human MTLE (Ammothumkandy et al., 2022),
we observed a strong anti-correlation between immature astroglia
activity and circuit-level neuronal hyperactivity in the presence
of 4-Aminopyridine, a K+ channel blocker that is commonly
used to induce epileptiform activity. This striking anti-correlation
closer to all or none neuronal vs astrocytic synchronized activity
suggests a functional role for immature astroglia in human
epileptiform activity. We hypothesize that in seizure inducing
milieu immature astroglia is attempting hard to prevent excessive
excitatory neurotransmission and limit neuronal hyperactivity in
granule neurons; however, once calcium uptake and/or glutamate
uptake exceeds a certain threshold (Eid et al., 2008; Tian et al.,
2005) immature astroglia would fail at a massive scale resulting in a
sudden synchronized seizure response (Figure 3). Understanding
what are the key cellular and molecular events that occur in
astroglia during glial synchronization and abrupt seizure initiation
is therefore necessary to understand how a seizure is triggered.
Better understanding of astroglia’s role in inducing abrupt state
transitions during physiological functions (Buskila et al., 2019; Van
Horn et al., 2021) may provide insights into how similar abrupt
state transitions occur during seizure initiation. Similar to surges
in astroglial Ca2+ waves prior to seizure (Diaz Verdugo et al.,
2019; Tian et al., 2005), transient increase in Ca2+ waves are
observed prior to physiological neuronal oscillations which benefits
cognitive functions in awake mice (Lee et al., 2014). Accumulation
of Astrocytic Ca2+ signals are linked with transition from sleep
to wakefulness, (Bojarskaite et al., 2020), and sudden behavioral
changes during wakefulness (Mu et al., 2019). Similar mechanisms
might contribute to seizure initiation in epilepsy, where astroglia
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accumulate molecular signals reflecting a non-homeostatic state,
which, upon crossing a certain threshold, triggers seizure onset.
Whether the reactive astroglial state acts as a compensatory disease-
associated protective mechanism that raises this threshold or
represents a dysfunctional state with a lower threshold for seizure
initiation, needs to be understood (Figure 3).

4.5 Astroglia a potential disruptor of
sleep oscillations that lead to epilepsy

Highly synchronized spontaneous neuronal activity oscillations
during physiological NREM sleep states, particularly the slow
wave sleep cycle and sleep spindles are proposed to be hijacked
during pathology to act as a substrate for generation of aberrant
epileptiform activity (Beenhakker and Huguenard, 2009; Mendes
et al., 2021). Epileptiform activity is detected more frequently
during sleep and is used in the clinic for reliable identification
of epileptogenic area (Frauscher and Gotman, 2019; Sammaritano
et al., 1991). As epilepsy disrupts the normal sleep cycles and the
associated neuronal oscillations, cognitive functions like memory
consolidation become compromised (Frauscher and Gotman, 2019;
Lambert et al., 2020). The disrupted sleep cycles lead to poor
sleep hygiene which further exacerbates epileptiform activity, and
seizures (Badawy et al., 2006; Malow, 2004), and this continues in
a vicious cycle (Krutoshinskaya et al., 2024). The role of astroglia
in disrupting and hijacking sleep waves in epilepsy is unknown.
During physiological sleep, astrocytic coverage of synapse reduces
(Bellesi et al., 2015), potentially facilitating glutamate spillover and
synchronized slow wave sleep cycle. Impairing astrocytic Ca2+

signaling pathway disrupts sleep linked brain rhythms resulting in
an increased frequency of slow wave sleep state transitions and sleep
spindles (Bojarskaite et al., 2020). Therefore, it’s likely that severely
dysfunctional astrocytes in epilepsy have a similar role in sleep
hijack which fuels epilepsy progression. Sleep disruption in epilepsy
patients is also proposed to feed into the positive feedback loop
of neuroinflammation and epilepsy progression (Bonilla-Jaime
et al., 2021). Astrocytic phagocytosis, particularly of presynaptic
components, increases with acute and chronic sleep loss, while
chronic sleep restriction also primes microglia for activation
(Bellesi et al., 2017). In response to external inflammatory signals
astrocyte adenosine signaling pathway increases sleep pressure
which is denoted by more of NREM sleep time involving highly
synchronized neuronal slow wave activity (Nadjar et al., 2013).
The neuroinflammatory milieu during various brain insults might
also potentially induce sleep pressure through similar astrocytic
signaling pathways, resulting in increased time spent in NREM
sleep. This prolonged and disrupted NREM sleep might further
facilitate the hijacking of synchronized neuronal oscillations,
potentially contributing to epileptogenesis (Figure 4).

4.6 Astroglia in epilepsy associated
cognitive decline

Biological research of cognitive psychology has throughout
history mainly focused on the role that neurons play in
cognitive output (van den Heuvel and Sporns, 2013). Research

on the direct functional role of astroglia in cognition is still
in its nascent stage (Adamsky et al., 2018; Doron et al., 2022;
Kol et al., 2020; Santello et al., 2019; Sardinha et al., 2017).
Astrocytic activation enhanced learning and memory by increasing
neuronal activity in a task-specific way, whereas directly increasing
neuronal activity resulted in external stimulus independent non-
selective neuronal activity that impaired memory (Adamsky
et al., 2018). Therefore, astroglia are key players in refining
neuronal activity in stimulus dependent way and thereby an
active player in cognition. Apart from modulating local neuronal
activity, inhibiting astrocyte gliotransmitter release can impair long
distance hippocampal-prefrontal theta wave synchronization and
its associated cognitive functions (Sardinha et al., 2017). Reducing
astrocytic vesicular release led to reduced gamma oscillations in
the brain and deficits in recognition memory, highlighting the
role of astrocytes in information processing and cognitive behavior
by modulating brain oscillations (Lee et al., 2014). Furthermore,
astrocytes themselves encode spatial information of rewards
locations which is reflected by their calcium activity in familiar
environments compared to new locations (Doron et al., 2022).
These accumulating evidence from recent research demonstrate
that astrocytes have a direct role in modulating cognition by fine-
tuning task-dependent neuronal activity, facilitating long-distance
synchronization of neuronal activity, and even encoding memories
akin to neurons.

Similar to how research on neurons has dominated the study of
physiological cognitive functions, cognitive decline in pathological
conditions is mostly attributed to non-homeostatic cellular
changes that drive neurodegeneration. However, these aberrant
cellular changes such as autophagy dysfunction, mitochondrial
dysfunction, cellular senescence, epigenetic changes, inflammation,
and lipid dysregulation, not only affect neurons directly, but
are also mediated indirectly by the similar changes that occur
in supportive glial cells (Gonzales et al., 2022). Apart from
augmenting cognitive decline by neurodegeneration, dysfunctional
astrocytes have also shown to affect cognition by directly
modulating neuronal networks (Habbas et al., 2015; Lee et al., 2014;
Licht-Murava et al., 2023; Orr et al., 2015; Santello et al., 2019). The
activation of neuroinflammatory cytokine tumor necrosis factor-α
receptor in astrocytes impaired contextual memory formation in
multiple sclerosis mouse models by triggering aberrant excitability
of hippocampal neurons (Habbas et al., 2015). Dysregulation of
astrocytic Transactivating response region DNA binding protein
43, a pathology prevalent in dementia causes progressive memory
loss by modulating antiviral pathways and promoting neuronal
hyperexcitability (Licht-Murava et al., 2023). Boosting astrocyte
Ca2+ signaling in the dysfunctional astrocytes in mouse models
of depression improved cognitive abilities, while it had negative
effects on cognition in control mice (González-Arias et al., 2023).
Thus, similar to neurons, fine-tuned levels of astrocyte activity
are essential for homeostatic brain function and optimal cognitive
performance. Dysfunctional astrocytes, therefore, are emerging
as crucial contributors to cognitive dysfunction in pathology by
directly altering neuronal activity and neural networks.

Human astroglia compared to mouse astroglia has enhanced
abilities toward promoting cognition. Human embryonic glial
progenitor cells, when transplanted in mice formed functional
mature astrocytes that improved the learning abilities of mice (Han
et al., 2013). Therefore, dysfunctional astrocytes in the human
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FIGURE 3

Model proposing astroglia’s role in inducing intermittent epileptiform activity. Similar to physiological contexts, in epilepsy patients, astroglia might
accumulate spatiotemporal Ca2+ signals, reflecting a non-homeostatic state. When these signals cross a certain threshold, they can trigger seizure
onset through the sudden release of Ca2+, causing neuronal hyperexcitability. Beneficial astroglia may raise this threshold, reducing seizure
susceptibility, while detrimental astroglia lowers the threshold, making seizure initiation more likely.

compared to mice might have a greater role toward increasing
the vulnerability to cognitive decline. Human astrocytes undergo
molecular changes with neurological disorders (Dossi et al., 2018a;
Liddelow et al., 2017), however, their contribution to initiation
and progression of cognitive decline is unclear and is a slowly
evolving field of research with correlational evidence emerging
with respect to astroglial reactivity. Quantification of astroglial
reactivity marker Glial fibrillary acidic protein (GFAP) using
Enzyme-linked immunosorbent assay in postmortem brain tissue
of dementia patients showed a negative correlation with cognitive
function (Kashon et al., 2004). In healthy older individuals and
adults with symptomatic Alzheimer’s disease higher serum levels
of GFAP associated with worse memory performance (Bettcher
et al., 2021). A study in cognitively unimpaired Amyloid beta
positive individuals has shown that serum levels of GFAP, can
predict development of Tau pathology, which has the likelihood
of progressing into Alzheimer’s disease with cognitive impairment
(Bellaver et al., 2023). In light of recent evidence for a direct

astroglial role in physiological cognitive functions (Santello et al.,
2019), and the molecular changes astrocytes are known to
undergo during epileptogenesis (Vezzani et al., 2022), a direct
link between astrocyte dysfunction and cognitive decline in
epilepsy is highly suggested. However, further studies are needed
to establish this connection and to understand epilepsy-specific
cognitive modulation by astrocytes, which is critical for developing
therapeutic strategies to slow, prevent, or potentially reverse
cognitive decline in epilepsy patients.

4.7 Astroglia in epilepsy associated
mental health comorbidities

Evidence for the direct cellular role of astroglia in modulating
mental health is limited and has started to emerge from rodent
studies with selective astroglial targeting. Experimental depletion
of GFAP+ astroglia in the prefrontal cortex of rodents induces
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FIGURE 4

Astroglia a potential disruptor of sleep oscillations that lead to epilepsy. Astrocyte dysfunction disrupts sleep-linked brain rhythms, resulting in an
increased frequency of slow-wave sleep state transitions and sleep spindles during NREM sleep. This prolonged and disrupted non - rapid eye
movement (NREM) sleep compromises memory consolidation and potentially facilitates the hijacking of circuits of synchronized neuronal
oscillations into epileptiform circuits, leading to seizures and epilepsy. Epilepsy further perpetuates the vicious cycle of neuroinflammation, astrocyte
dysfunction, and sleep disruption, worsening the epilepsy progression.

anhedonia-like behaviors, while enhancing their activity reverses
these behaviors, highlighting the critical role of cortical astroglia in
depression (Codeluppi et al., 2023). In a transgenic mouse model
with [disrupted-in-schizophrenia 1 (DISC1)-N] mutation, that
induces impaired risk assessment response, researchers activated
astrocytes in the basolateral amygdala and consequently restored
normal behavior (Zhou et al., 2024). The aberrant astroglial changes
in human mental health disorders and their therapeutic targeting is
an even more challenging area of investigation due to the complex
categorization of these disorders and their frequent co-occurrence
with other neurological conditions. Mental health conditions
can generally be categorized into affective disorders (e.g., major
depressive disorder MDD), anxiety disorders (generalized anxiety
disorder GAD) psychotic disorders (i.e., schizophrenia, bipolar
disorder type I, schizoaffective) and stress-related disorders (post-
traumatic stress disorder, PTSD) (Atwoli et al., 2015; Karagianis
et al., 2009; Steel et al., 2014; Vollebergh et al., 2001). Studies
in post-mortem human tissue of patients with MDD have
demonstrated lower expression of astrocyte markers GFAP and
vimentin as well as decreased astrocyte density notably amongst
the prefrontal cortex and hippocampus (Cobb et al., 2016; Liu
J. et al., 2022; O’Leary and Mechawar, 2021; Qi et al., 2019). In
human post-mortem schizophrenia brains, there is heterogeneity
in astrocyte morphology and levels depending on the regions of

the brain (Zhang et al., 2021). Taking into consideration the critical
role of astrocytes in synthesizing and secreting key neurotrophic
factors, which regulate the neurogenic microenvironment, it
is hypothesized that stress or trauma-induced impairment of
astrocytic function may contribute to the pathophysiology of PTSD
(Li et al., 2022). In a rat model of PTSD, the hippocampus showed
significant decline in GFAP positive astrocyte densities (Saur et al.,
2016). Although, in another study utilizing a foot shock rat model
of PTSD, there was an increase in reactive astrogliosis evidenced by
histologically higher levels of S100β, and then a decline in s100β

upon administration of anti-depressant ketamine (Valenza et al.,
2024). These studies collectively demonstrate a huge variability
in astrocyte alterations in mental health conditions and a need
to identify the specific changes associated with each neurological
disorder.

Epilepsy patients disproportionately experience mental illness
comorbidities (Berg et al., 2017; Tsigebrhan et al., 2023; Uepping
et al., 2021). Mood and anxiety disorders are amongst the most
common mental illness comorbidities affecting roughly between
25% and 35% of epilepsy patients (Lu et al., 2021). The reported
prevalence for PTSD comorbidities in epilepsy patients is 14.2%
and for psychosis/schizophrenia it is about 7.4%. There are limited
studies that have addressed astrocyte changes in association with
mental health co-morbidities in epilepsy patients. In patients with
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MTLE, there was an increase in GFAP within the hippocampus
among those with a history of interictal psychosis compared to
those with no psychiatric history or a history of major depression
(Kandratavicius et al., 2015). Additionally, an investigation into
astrogliosis in three MTLE patient groups – (1) without mental
disorders (2) with mental disorders (3) with depression specifically,
revealed that those with mental disorders or depression exhibited
greater neuronal loss and astrogliosis. Interestingly, the expression
of astrogliosis markers presented a more complex pattern with
GFAP and aquaporin-4 (AQP4) levels being lower in MTLE
patients with mental disorders and depression specifically, whereas
Metallothioneins I/II (MT-I/II) levels being higher (Lu et al.,
2019). It is unclear whether these changes are mediated by mental
health co-morbidity or the associated therapeutic treatment. Drugs
that are used to treat mental health conditions have shown to
alter astrocyte functions, potentially mediating the therapeutic
benefits (Koyama, 2015). An in-depth investigation of these clinical
variabilities and their role in epilepsy progression is warranted to
identify more targeted molecular modulations of astrocytes among
patients with and without mental illness comorbidities.

5 Discussion/concluding remarks

In this review we connect the literature on spontaneous
synchronized neuronal circuits, their physiological roles and their
aberrant forms in epilepsy to understand how knowledge of cellular
players in physiological functions can enhance our understanding
of how they get hijacked during disease leading to seizures and
cognitive decline. The nervous system functions by stimulus
evoked, fine-tuned, spatially restricted neuronal activity. However,
spontaneous non-stimulus dependent neuronal hyperactivity
occurs in few physiological states such as neurodevelopment,
memory consolidation during NREM sleep cycle and free
memory recall during wakefulness. In pathological conditions,
aberrant spontaneous synchronized neuronal hyperactivity called
epileptiform activity results in debilitating seizures. In addition
to seizures, epilepsy patients also undergo progressive cognitive
decline. Therefore, there is an urgent need to identify mechanisms
and therapies that modulate aberrant neuronal hyperactivity in
the human brain. Despite the development of approximately
30 approved anti-seizure medications, achieving seizure freedom
has shown limited improvement. This warrants identification
of new cellular targets for epilepsy treatment. With the focus
of anti-epileptic drug development expanding beyond neurons,
astroglial cells become particularly significant due to their integral
physiological role in fine tuning neuronal activity at the tripartite
synapse, recently emerged role in large scale physiological
neuronal circuits, modulation of behavior, as well as their role
in neuroinflammatory pathways and epileptogenesis. We discuss
astroglia’s (1) transition from a physiological to pathological state
during epilepsy, (2) beneficial vs detrimental role in epilepsy (3)
role in disrupting physiological circuits to form epilepsy circuits
(4) role in integration of non-homeostatic signals leading to
intermittent seizure initiation (5) role in cognitive and mental

health co-morbidities by modifying neural circuits and facilitating
neurodegeneration. Understanding how astroglia integrate signals
to create spontaneous neuronal activity in physiological functions
and how it evolves with disease could provide novel therapeutic
targets for epilepsy as well as other pathological conditions with
aberrant neuronal circuits.
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