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Acetoacetate, a ketone body, 
attenuates neuronal bursts in 
acutely-induced epileptiform 
slices of the mouse hippocampus
Hao Wen , Nagisa Sada  and Tsuyoshi Inoue *

Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical 
Sciences, Okayama University, Okayama, Japan

The ketogenic diet increases ketone bodies (β-hydroxybutyrate and acetoacetate) in 
the brain, and ameliorates epileptic seizures in vivo. However, ketone bodies exert 
weak or no effects on electrical activity in rodent hippocampal slices. Especially, 
it remains unclear what kinds of conditions are required to strengthen the actions 
of ketone bodies in hippocampal slices. In the present study, we examined the 
effects of acetoacetate on hippocampal pyramidal cells in normal slices and 
epileptiform slices of mice. By using patch-clamp recordings from CA1 pyramidal 
cells, we first confirmed that acetoacetate did not change the membrane potentials 
and intrinsic properties of pyramidal cells in normal slices. However, we found 
that acetoacetate weakened spontaneous epileptiform bursts in pyramidal cells 
of epileptiform slices, which were acutely induced by applying convulsants to 
normal slices. Interestingly, acetoacetate did not change the frequency of the 
epileptiform bursts, but attenuated individual epileptiform bursts. We finally examined 
the effects of acetoacetate on excitatory synaptic barrages during epileptiform 
activity, and found that acetoacetate weakened epileptiform bursts by reducing 
synchronous synaptic inputs. These results show that acetoacetate attenuated 
neuronal bursts in epileptiform slices, but did not affect neuronal activity in normal 
slices, which leads to seizure-selective actions of ketone bodies.
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Introduction

Epilepsy is one of the most common neurological disorders in the world (Ngugi et al., 
2010), but currently-used antiepileptic drugs are not effective for approximately 30% of 
epileptic patients (Kwan and Brodie, 2000; Chen et  al., 2018). It is well known that the 
ketogenic diet is effective for the drug-resistant epilepsy (Neal et al., 2008, 2009). Epilepsy 
treatment using the ketogenic diet was originally developed in the 1920s (Wilder, 1921), and 
its modified version using a medium-chain triglyceride was developed in the 1970s 
(Huttenlocher et al., 1971). These ketogenic diets consist of high-fat and low-carbohydrate, 
which increase ketone bodies (β-hydroxybutyrate and acetoacetate) and mildly decrease 
glucose levels in epileptic patients (Huttenlocher, 1976). These two metabolic changes are 
presumed to suppress epileptic seizures (reviewed in Rho, 2017).

Previous studies have reported the molecules that electrically regulate the antiseizure 
actions of the ketogenic diet (reviewed in Sada and Inoue, 2018). Regarding decreases in 
glucose, the ketogenic diet suppresses seizures via adenosine A1 receptors (Masino et al., 2011), 
which is due to decreases in glucose (Kawamura et al., 2010). The ketogenic diet also decreases 
lactate levels in the brain, which consequently hyperpolarizes neurons and suppresses seizures 
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(Sada et  al., 2015). The inhibition of lactate dehydrogenase also 
decreases lactate levels and suppresses seizures (Sada et al., 2020). 
Regarding increases in ketone bodies, ketone bodies open 
ATP-sensitive K+ channels (KATP channels) and reduce the firing rate 
of neurons (Ma et al., 2007; Tanner et al., 2011). Acetoacetate inhibits 
vesicular glutamate transporters (VGLUTs) and reduces miniature 
excitatory postsynaptic currents (EPSCs) in hippocampal slices (Juge 
et  al., 2010). Acetoacetate also inhibits voltage-dependent Ca2+ 
channels (VDCCs) and reduces EPSCs in hippocampal slices 
(Kadowaki et al., 2017).

Electrophysiology using hippocampal slices has been used in 
mechanistic studies at the synaptic and network levels. However, 
previous studies have reported that ketone bodies exert weak or no 
effects on hippocampal slices obtained from normal rodents, which 
cannot fully explain the antiseizure actions of the ketogenic diet 
in vivo (reviewed in Kawamura et al., 2016). For example, ketone 
bodies reduce the firing rate in neurons via KATP channels by only 10% 
(Ma et al., 2007). Acetoacetate reduces miniature EPSCs via VGLUTs 
by only 25% (Juge et al., 2010), and inhibits VDCCs by only 20% 
(Kadowaki et al., 2017). Furthermore, several studies have reported 
that ketone bodies have no effects on synaptic transmission and long-
term potentiation in hippocampal slices (Thio et al., 2000; Kimura 
et  al., 2012; Youssef, 2015), and chronic exposure to 10 mM 
β-hydroxybutyrate also have no effects on stimulus-induced discharges 
in organotypic hippocampal slices (Samoilova et al., 2010). Therefore, 
it is important to find what kinds of conditions are required for ketone 
bodies to suppress electrical activity in hippocampal slices, in order to 
fill the gap between brain slices in vitro and seizures in vivo.

Materials and methods

Animals and slice preparation

Experiments were performed using ICR mice (postnatal days 
17–35) for patch-clamp recordings in vitro from hippocampal slices. 
All experimental procedures were approved by the Animal Research 
Committee at Okayama University. Slice preparation and recordings 
were performed as previously described with minor modifications 
(Sada et al., 2015; Kadowaki et al., 2017). Mice were anesthetized with 
isoflurane and killed by decapitation, and the brain was removed and 
placed in an ice-cold dissecting solution (in mM): 234 sucrose, 2.5 
KCl, 1.25 NaH2PO4, 25 NaHCO3, 10 MgSO4, 12 glucose, and 0.5 
CaCl2. Transverse hippocampal slices (300 μm thick) were made using 
a vibratome by horizontal cutting of the ventral hippocampus. The 
slices were then incubated at 32°C for 30 min in artificial cerebrospinal 
fluid (ACSF) (in mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 1.2 MgSO4, 
25 NaHCO3, 12 glucose, and 2.5 CaCl2, bubbled with 95% O2 and 5% 
CO2. The slices were then placed at room temperature until 
before recordings.

Patch-clamp recording

Individual slices were transferred to a submerged recording 
chamber, and perfused with oxygenated ACSF at room temperature. To 
induce epileptiform activity in the hippocampus, the following reagents 
were included into ACSF: potassium channel blockers (10 mM TEA-Cl 

and 3 mM CsCl), a GABAA receptor blocker (100 μM picrotoxin), and 
a GABAB receptor blocker (1 μM CGP-55845). Pyramidal cells in the 
hippocampal CA1 region were visualized by using an infrared 
differential interference contrast microscope equipped with a camera. 
Membrane potentials (Figures 1, 2) and synaptic currents (Figure 3) in 
CA1 pyramidal cells were measured by whole-cell recordings using a 
patch-clamp amplifier. Series resistance was typically less than 20 
MΩ. Liquid junction potentials were not corrected. Electrical signals 
were low-pass filtered at 3 kHz and digitized at 10 kHz using an analog-
to-digital converter. After stable recordings were confirmed, 10 mM 
sodium acetoacetate were bath-applied for 20 min. Control recordings 
were performed using the same protocol without acetoacetate.

Membrane potentials in CA1 pyramidal cells (Figures 1, 2) were 
measured in whole-cell current-clamp recordings. Patch pipettes were 
filled with an intracellular solution (in mM): 130 K-methanesulfonate, 
6 KCl, 10 HEPES, 2 EGTA, 4 Mg-ATP, 0.3 Na3-GTP, and 5 
phosphocreatine-Na (pH 7.3 adjusted with KOH). Membrane potentials 
were adjusted to −70 mV in normal slices (Figure 1) and adjusted to 
−75 mV in epileptiform slices (Figure 2). These negative potentials were 
used to easily visualize epileptiform bursts by suppressing spontaneous 
action potentials. In normal slices (Figure  1), firing and intrinsic 
properties were examined by 500-ms current injections from holding 
potentials of −60 mV, before and after the application of acetoacetate. 
Input resistance and Ih sag were examined by injecting negative 
currents of −50 pA, and the number of spikes and afterhyperpolarization 
of the first spike were examined by injecting positive currents of +50 
pA. In epileptiform slices (Figure 2), the number of epileptiform bursts 
was evaluated by counting slow-depolarizing potentials with >8 mV in 
amplitude, and the number of spikes in each epileptiform burst was 
evaluated by counting action potentials in individual epileptiform 
bursts and averaging their numbers for 5 min. Cells were discarded if 
the rate of bursts including spikes at the baseline was less than 80%.

The barrages of synaptic currents (EPSC barrages) in CA1 
pyramidal cells (Figure 3) were measured in whole-cell voltage-clamp 
recordings. Patch pipettes were filled with an intracellular solution (in 
mM): 130 Cs-methanesulfonate, 5 NaCl, 10 HEPES, 2 Na4-BAPTA, 
4 Mg-ATP, 5 QX314-Cl, and 0.2 CaCl2 (pH 7.3 adjusted with CsOH). 
EPSCs were measured at holding potentials of −75 mV. Barrages of 
synaptic inputs with >50 pA in amplitude were evaluated as EPSC 
barrages, and the charges of averaged EPSC barrages for 5 min were 
compared before and after the application of acetoacetate. Cells were 
discarded if the EPSC barrages at the baseline were small in amplitude, 
typically less than 200 pA. In our recording condition, the peak 
amplitude of EPSC barrages was reduced even in the control group 
[302.8 ± 54.8 pA in the baseline and 156.8 ± 37.7 pA in ACSF 
(15–20 min after the baseline with no reagents)], whereas the charge 
of EPSC barrages was not changed in the control group (calculated by 
the area of EPSC barrages; 57.7 ± 16.6 pA × s in the baseline and 
50.4 ± 10.6 pA × s in ACSF) (n = 5, see Figure 3B), and therefore the 
charge of EPSC barrages was analyzed in Figure 3C.

Sodium acetoacetate was prepared by the hydrolysis of ethyl 
acetoacetate as previously described (Kadowaki et al., 2017), which 
was based on original studies (Krebs and Eggleston, 1945; Owen et al., 
1973). Ethyl acetoacetate (2.6 mL), 2 N NaOH (10.2 mL), and water 
(7.2 mL) were mixed and hydrolyzed by an incubation at 40°C for 
90 min. The solution was cooled to stop the reaction, neutralized to 
pH 7.0 with HCl, and then fully lyophilized by a freeze dryer. The 
sodium acetoacetate was stored at −25°C until before use.
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Data analysis

In this study, electrophysiological data were obtained from 32 
pyramidal cells in hippocampal slices prepared from 24 mice. Data 
analyses were performed using Igor Pro 6 (WaveMetrics), and the 
changes in electrical parameters from the baseline were compared 
between the control groups and acetoacetate-treated groups. 
Summarized data were represented as mean ± SEM. Statistical 
analyses were performed using SigmaPlot 12 (Systat Software), and 
the statistical significance was evaluated by non-parametric Mann–
Whitney test for two group comparisons.

Results

Previous studies have shown that ketone bodies exert weak or no 
effects on electrical activity in hippocampal slices (reviewed in 
Kawamura et al., 2016). To confirm this, we first examined the effects 
of acetoacetate (10 mM) on the membrane potentials of CA1 

pyramidal cells in hippocampal slices from normal mice (Figure 1). 
This concentration of acetoacetate was selected because the ketogenic 
diet increases plasma ketone bodies at ~8 mM in rodents in  vivo 
(Bough et al., 1999), and therefore, 2–10 mM ketone bodies have been 
used for in vitro electrophysiology of hippocampal slices (Thio et al., 
2000; Ma et al., 2007; Juge et al., 2010; Samoilova et al., 2010; Kimura 
et al., 2012; Youssef, 2015; Kadowaki et al., 2017). We found that the 
membrane potentials of pyramidal cells were not affected by the 
application of acetoacetate for 20 min (Figure 1A). The changes in 
membrane potentials in the control group (−4.0 ± 0.4 mV from 
baseline, n = 5) were not significantly different from those in the 
acetoacetate-treated group (−3.0 ± 2.3 mV from baseline, n = 5) 
(Figure 1C; p = 0.15, Mann–Whitney test). The intrinsic membrane 
properties of pyramidal cells were not also affected by the application 
of acetoacetate for 20 min (Figure 1B). The changes in input resistance 
(p = 0.84, Mann–Whitney test), Ih sag (p = 1.00, Mann–Whitney test), 
the number of spikes (p = 0.42, Mann–Whitney test), and 
afterhyperpolarization (p = 0.84, Mann–Whitney test) were not 
significantly different between in the control group (n = 5) and in 

FIGURE 1

Acetoacetate does not change electrical properties in hippocampal pyramidal cells of normal slices. (A) Membrane potentials in pyramidal cells, 
changed by a 20-min recording with no reagents for the control (Control) or by a 20-min application of 10 mM sodium acetoacetate (Acetoacetate, 
abbreviated as AA). Membrane potentials were set to −70 mV at the baseline, and reagents were then applied. (B) Membrane intrinsic properties in 
pyramidal cells, changed by a 20-min recording with no reagents for the control (Control) or by a 20-min application of 10 mM sodium acetoacetate 
(Acetoacetate). Intrinsic properties were measured by a 500-ms injection of ±50 pA from −60 mV. (C) Summary data from (A), showing the changes in 
membrane potentials from the baseline in the control group (n = 5) and acetoacetate-treated group (n = 5). (D) Summary data from (B), showing the 
changes in membrane intrinsic properties (input resistance and Ih sag measured by a −50 pA injection, and the number of spikes and 
afterhyperpolarization measured by a +50 pA injection) from the baseline in the control group (n = 5) and acetoacetate-treated group (n = 5). NS, not 
significant (Mann–Whitney test).
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acetoacetate-treated group (n = 5) (Figure 1D). These results show 
that, consistent with previous studies, pyramidal cells in normal 
hippocampal slices were not electrically changed by even a high 
concentration of acetoacetate.

We then explored what kinds of conditions are required for 
acetoacetate to change the membrane potentials of CA1 pyramidal 
cells (Figure 2). To address this issue, we hypothesized that, although 
acetoacetate exerted no effects in normal hippocampal slices 
(Figure 1), it could change the membrane potentials of pyramidal cells 
in acutely-induced epileptiform slices. This hypothesis was inspired 
from the following two previous studies; one study shows that a long-
term 2-week exposure to ketone bodies reduces spontaneous 
epileptiform activity in the organotypic hippocampal slices of Kcna1-
knockout seizure mice (Kim et al., 2015). The other study shows that 
a short-term exposure to acetoacetate hardly affects EPSCs in normal 
hippocampal slices, but remarkably reduces EPSCs in acutely-induced 
epileptiform slices (Kadowaki et al., 2017). We therefore examined the 
effects of acetoacetate on electrical activity in epileptiform slices, 
which were acutely induced by applying convulsant blocker cocktails 
to normal hippocampal slices.

In current-clamp recordings, pyramidal cells were silent in 
hippocampal slices from normal mice (Normal slice in Figure 2A), but 
exhibited spontaneous epileptiform bursts when hippocampal slices 
were treated for >20 min with potassium channel blockers (10 mM 

TEA-Cl and 3 mM CsCl), a GABAA receptor blocker (100 μM 
picrotoxin), and a GABAB receptor blocker (1 μM CGP-55845) 
(Epileptiform slice in Figure 2A). We found that the epileptiform bursts 
were markedly weakened by the application of 10 mM acetoacetate for 
20 min (Figure 2B). Further analyses revealed that the number of 
epileptiform bursts for 5 min was not significantly changed (−6.5 ± 6.7 
from the baseline in the control group, n = 6; 20.0 ± 11.2 from the 
baseline in the acetoacetate-treated group, n = 6; p = 0.13, Mann–
Whitney test), whereas the number of spikes in each epileptiform 
burst was significantly decreased (1.13 ± 0.41 from the baseline in the 
control group, n = 6; −2.48 ± 0.83 from the baseline in the 
acetoacetate-treated group, n = 6; p = 0.004, Mann–Whitney test) 
(Figure 2C). These results show that pyramidal cells in epileptiform 
hippocampal slices were electrically changed by the short exposure to 
acetoacetate, and also that acetoacetate weakened individual 
epileptiform bursts, but did not change the frequency of 
epileptiform bursts.

Seizures are characterized by hypersynchronous electrical activity. 
However, it remains unclear whether the weakening of epileptiform 
bursts by acetoacetate (Figure  2) is derived from the changes in 
synchronous synaptic inputs or the changes in intrinsic neuronal 
activity. To address this issue, we examined the effects of acetoacetate 
on synchronous synaptic inputs during epileptiform activity 
(Figure 3). In voltage-clamp recordings, the barrages of EPSCs were 

FIGURE 2

Acetoacetate attenuates individual epileptiform bursts in hippocampal pyramidal cells of epileptiform slices. (A) Silent membrane potentials in normal 
slices (upper) and spontaneous bursts in epileptiform slices (lower), measured by current-clamp recordings from CA1 pyramidal cells. Spontaneous 
epileptiform bursts were induced by the bath-application of the following blocker cocktails, the K+ channel blockers TEA-Cl and CsCl, the GABAA 
receptor blocker picrotoxin, and the GABAB receptor blocker CGP-55845. (B) Epileptiform bursts in pyramidal cells, changed by a 20-min recording 
with no reagents for the control (Control) or by a 20-min application of 10 mM sodium acetoacetate (Acetoacetate). Epileptiform bursts were 
measured at a membrane potential of −75 mV. (C) Summary data from (B), showing the changes in the number of epileptiform bursts for 5 min (upper) 
and the number of spikes in each epileptiform burst (lower) from the baseline in the control group (n = 6) and acetoacetate-treated group (n = 6). 
Epileptiform bursts were evaluated from 5-min recordings at the baseline and 15–20 min after the application of acetoacetate. **p < 0.01; NS, not 
significant (Mann–Whitney test).
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observed in the pyramidal cells of epileptiform slices (Figure 3A). The 
EPSC barrages are synchronous synaptic inputs that elicit epileptiform 
bursts. We found that the epileptiform EPSC barrages were reduced 
by the application of 10 mM acetoacetate for 20 min (Figure 3B). 
Quantitative analyses revealed that the charges of epileptiform EPSC 
barrages were significantly decreased by acetoacetate (−7.3 ± 12.9 
pA × s from the baseline in the control group, n = 5; −48.7 ± 12.3 
pA × s from the baseline in the acetoacetate-treated group, n = 5; 
p = 0.016, Mann–Whitney test) (Figure 3C). These results show that 
acetoacetate weakened epileptiform bursts by reducing synchronous 
synaptic inputs.

Discussion

In the present study, we found that a short exposure to acetoacetate 
did not affect intrinsic electrical properties in the pyramidal cells of 
normal hippocampal slices (Figure 1), but weakened epileptiform 
bursts in the pyramidal cells of acutely-induced epileptiform slices 
(Figures 2, 3). Further analyses revealed that acetoacetate did not 
change the frequency of epileptiform bursts, but weakened individual 
epileptiform bursts by reducing synchronous synaptic inputs. Taken 
together, these results show that acetoacetate preferentially acts on 
epileptiform slices, which strongly reinforce previous studies (Kim 
et al., 2015; Kadowaki et al., 2017).

Ketone bodies, β-hydroxybutyrate and acetoacetate, are a hallmark 
of metabolic changes induced by the ketogenic diet, which suppresses 
epileptic seizures (reviewed in Rho, 2017). However, previous studies 
have shown that ketone bodies exert weak or no effects on normal 
hippocampal slices. Several studies have shown that ketone bodies 
have no effects on EPSCs in normal slices (Thio et al., 2000; Kimura 
et al., 2012; Youssef, 2015). Although acetoacetate is a strong inhibitor 
of VGLUTs (IC50 = 200 μM), even a high concentration of 10 mM 
acetoacetate reduced miniature EPSCs by only 25% in hippocampal 
slices (Juge et al., 2010). This discrepancy between in vivo seizure 
models and in vitro normal slices is presumably because normal slices 
do not reflect in vivo conditions (reviewed in Kawamura et al., 2016). 
In fact, previous studies have shown that no electrical changes are 
observed in hippocampal slices obtained from normal rodents fed the 
ketogenic diet, whereas EPSCs and epileptiform activity are reduced 
in hippocampal slices obtained from seizure models fed the ketogenic 
diet (kainate-induced seizure model in Stafstrom et al., 1999; Kv1.1α-
knockout seizure model in Simeone et  al., 2014). These studies 
indicate that the ketogenic diet has no actions on hippocampal slices 
from normal mice, but changes electrical parameters in those from 
seizure models.

Other studies have shown that ketone bodies themselves directly 
regulate electrical activity in epileptiform slices. One study has shown 
that a long-term exposure (2 weeks) to ketone bodies (5 mM 
β-hydroxybutyrate and 1 mM acetoacetate) reduces spontaneous 

FIGURE 3

Acetoacetate reduces EPSC barrages in hippocampal pyramidal cells of epileptiform slices. (A) The barrages of EPSCs in epileptiform slices, measured 
by voltage-clamp recordings from CA1 pyramidal cells. Arrows indicate distinguishable EPSC inputs. (B) Epileptiform EPSC barrages in pyramidal cells, 
changed by a 20-min recording with no reagents for the control (Control) or by a 20-min application of 10 mM sodium acetoacetate (Acetoacetate). 
EPSC barrages were measured at a holding potential of −75 mV. Individual EPSC barrages for 5-min recordings were superimposed (thin lines) and 
averaged (thick lines). (C) Summary data from (B), showing the changes in the charges of averaged EPSC barrages from the baseline in the control 
group (n = 5) and acetoacetate-treated group (n = 5). The charges were calculated as the area of the averaged EPSC barrages. The EPSC barrages 
were evaluated from 5-min recordings at the baseline and 15–20 min after the application of acetoacetate. *p < 0.05 (Mann–Whitney test).
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epileptiform activity in hippocampal slices from Kcna1-knockout 
seizure models (Kim et al., 2015). Another study has provided more 
direct evidence, showing that a short exposure (15 min) to 10 mM 
acetoacetate reduces EPSCs in acutely-induced epileptiform slices 
made by applying convulsant blockers to normal slices, but does not 
change EPSCs in normal slices themselves (Kadowaki et al., 2017). The 
present study further reinforced this previous study; the same short 
exposure to acetoacetate weakened network-driven neuronal bursts 
in acutely-induced epileptiform slices (Figures 2, 3). Our patch-clamp 
recordings from single cells also revealed that acetoacetate attenuated 
individual epileptiform bursts, but did not affect the burst frequency 
(Figure 2). In addition, these in vitro effects of the short exposure to 
acetoacetate in epileptiform slices (Figures 2, 3) were consistent with 
previous studies showing the acute effects of acetoacetate on seizures 
in vivo, in which a single intraperitoneal injection of acetoacetate 
in vivo protects convulsion in audiogenic seizure-susceptible mice 
(Rho et al., 2002) and also reduces hippocampal seizures in a chronic 
model of temporal lobe epilepsy (Kadowaki et al., 2017).

There are some issues to remain unresolved in the present study. 
First, acetoacetate slightly increased the frequency of epileptiform 
bursts (see upper panel in Figure  2C). Although the underlying 
mechanisms remain unclear, a potential exploration is that 
acetoacetate attenuates epileptiform bursts, reduces voltage-dependent 
Ca2+ entry, and then weakens Ca2+-dependent afterhyperpolarization, 
which consequently shortens the repolarization phase and increases 
the burst frequency. If the individual bursts are weakened and 
asynchronized, seizure frequency in vivo might be decreased. Second, 
acetoacetate attenuated individual epileptiform bursts (Figure 2), but 
its molecular mechanisms remain unclear. Although KATP channels 
(Ma et al., 2007; Tanner et al., 2011), VGLUTs (Juge et al., 2010), and 
VDCCs (Kadowaki et al., 2017) are known to be the molecular targets 
of ketone bodies as electrical modulators, the most likely explanation 
at present is that acetoacetate reduces presynaptic glutamate release 
and decreases EPSC amplitude (Kadowaki et  al., 2017), which 
consequently attenuates EPSC barrages (Figure 3). This is because 
acetoacetate increases paired-pulse ratio of EPSCs only in acutely-
induced epileptiform slices, but not in normal slices (Kadowaki et al., 
2017), which is closely similar with the present study. Although 
further studies will be required to clarify these unresolved issues, the 
present study provides strong evidence showing that ketone bodies 
preferentially act on hippocampal neurons under seizure conditions.
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