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Alzheimer’s disease (AD) is a complex neurodegenerative condition characterized 
by a multifaceted interplay of genetic, environmental, and pathological factors. 
Traditional diagnostic and research methods, including neuropsychological 
assessments, imaging, and cerebrospinal fluid (CSF) biomarkers, have advanced 
our understanding but remain limited by late-stage detection and challenges in 
modeling disease progression. The emergence of three-dimensional (3D) brain 
organoids (BOs) offers a transformative platform for bridging these gaps. BOs 
derived from patient-specific induced pluripotent stem cells (iPSCs) mimic the 
structural and functional complexities of the human brain. This advancement offers 
an alternative or complementary approach for studying AD pathology, including 
β-amyloid and tau protein aggregation, neuroinflammation, and aging processes. 
By integrating biological complexity with cutting-edge technological tools such 
as organ-on-a-chip systems, microelectrode arrays, and artificial intelligence-
driven digital twins (DTs), it is hoped that BOs will facilitate real-time modeling 
of AD progression and response to interventions. These models capture central 
nervous system biomarkers and establish correlations with peripheral markers, 
fostering a holistic understanding of disease mechanisms. Furthermore, BOs 
provide a scalable and ethically sound alternative to animal models, advancing drug 
discovery and personalized therapeutic strategies. The convergence of BOs and 
DTs potentially represents a significant shift in AD research, enhancing predictive 
and preventive capacities through precise in vitro simulations of individual disease 
trajectories. This approach underscores the potential for personalized medicine, 
reducing the reliance on invasive diagnostics while promoting early intervention. 
As research progresses, integrating sporadic and familial AD models within this 
framework promises to refine our understanding of disease heterogeneity and 
drive innovations in treatment and care.
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1 Introduction

The diagnosis of Alzheimer’s disease (AD) integrates medical 
history, neuropsychological assessments, imaging, and cerebrospinal 
fluid (CSF) analysis. A detailed clinical history examines cognitive and 
behavioral symptoms, progression, and risk factors (age, family 
history, and any comorbidities). Differential diagnoses help out in 
predicting pseudodementia, frontotemporal dementia, Lewy body 
dementia, and vascular dementia (Thangwaritorn et  al., 2024). 
Neuropsychological assessments, such as the Mini-Mental State 
Examination (MMSE) (Arevalo-Rodriguez et al., 2021) and Montreal 
Cognitive Assessment (MoCA) (Ciesielska et al., 2016), provide a 
global cognitive screening, whereas specific tests assess memory, 
executive functions, and language. Clinical scales including Activities 
of Daily Living (ADL), Instrumental Activity of Daily Living (IADL) 
(Teng et  al., 2023), and the Clinical Dementia Rating (CDR) 
(Cummings et al., 2023), evaluate functional autonomy and dementia 
severity. The CDR stages range from normal aging (CDR 0) to severe 
dementia (CDR 3), aiding in distinguishing Mild Cognitive 
Impairment (MCI) (CDR 0.5) from AD (Gkenios et al., 2022).

Imaging plays a pivotal role in diagnosis. Magnetic Resonance 
Imaging (MRI) allows to detect AD-related hippocampal and 
cortical atrophy, particularly in the temporo-parietal regions 
(Chandra et al., 2019). Positron emission tomography (PET) with 
fluorodeoxyglucose (FDG) reveals hypometabolism in medial 
temporal and parietal regions, while amyloid PET highlights 
β-amyloid deposition, a well-known hallmark of AD (Chételat et al., 
2020). All of them are extremely informative in early or atypical 
disease presentations.

CSF biomarkers such as reduced β-amyloid 42 (Aβ42), increased 
total tau (T-Tau), and phosphorylated tau (P-Tau), are crucial for 
biological AD confirmation. The Aβ42/Aβ40 ratio enhances diagnostic 
precision, while additional biomarkers address neuroinflammation 
and oxidative stress (Olsson et al., 2016; Ossenkoppele et al., 2022; 
Dubois et al., 2023: Pascoal et al., 2024).

A potential AD diagnosis requires clinical symptoms and at least 
one positive biomarker, while a possible diagnosis applies to typical 
symptoms and inconclusive biomarkers. Definitive diagnosis is 
achieved post-mortem via neuropathological analysis. AD diagnosis 
remains challenging due to its overlap with mixed or vascular 
dementias, which necessitates a nuanced diagnostic approach (Zekry 
et al., 2002).

AD also embraces a spectrum of preclinical stages. Subjective 
Cognitive Impairment (SCI) and Mild Cognitive Impairment MCI 
represent prodromal conditions. SCI involves perceived cognitive 
deficits with neuroimaging evidence (Stewart, 2012; Wang et  al., 
2020), in contrast to MCI that denotes measurable cognitive decline 
with preserved function. MCI is a significant risk factor for AD, 
though not all cases progress to dementia (Jongsiriyanyong and 
Limpawattana, 2018).

Integrating clinical, neuropsychological, imaging, and biochemical 
biomarkers enhances diagnostic accuracy and informs targeted 
therapies. However, AD diagnosis often occurs late relative to 
underlying neurobiological changes, emphasizing the need for early 
identification and intervention.

Finally, we are now entering a pivotal era in which the evaluation 
of biomarkers in presymptomatic individuals will offer the biological 
foundation necessary to transition conventional plasma biomarkers 

into digital biomarkers (Cash et al., 2025; Aghdam et al., 2025; Jiao 
et al., 2025).

2 Exploring new frontiers in 
Alzheimer’s disease diagnosis: beyond 
the brain

Recommendation frameworks for diagnosing AD have been 
recently updated by the National Institute of Aging and the Alzheimer’s 
Association (NIA-AA) (Jack et  al., 2024), based on the latest 
advancements that refine the previous document (Jack et al., 2018). 
On this matter, AD definition can be declined as a biological process 
that begins with the emergence of Alzheimer’s disease neuropathologic 
change (ADNPC) while individuals are still asymptomatic. As the 
neuropathologic burden progresses, clinical symptoms eventually 
appear and worsen. Early-changing biomarkers, such as amyloid 
PET-highlighted changes, CSF biomarkers, and p-Tau 217 (core 1 
biomarker), indicate the presence of ADNPC. An abnormal result 
from a core 1 biomarker is sufficient for diagnosing AD and guiding 
clinical decisions. Later-changing core 2 biomarkers, including 
biofluids and tau PET, provide prognostic data that assist with 
confirming AD’s role in symptoms. The main goal is to establish 
objective criteria for diagnosing and staging AD thanks to the new 
advancements in biomarkers, to bridge the gap between research and 
clinical care settings. Currently, while the use of biomarkers enhances 
the in vivo diagnosis of AD, the approach has shifted from a syndromic 
model to a biological one, based on the [AT (N)] classification 
developed by the NIA-AA, that categorizes patients based on the 
presence of amyloid (A), tau protein (T), and neurodegeneration (N) 
(Jack et al., 2018). The ATN system is designed to be flexible, allowing 
for the addition of central and peripheral biomarkers as they become 
available. This is why some researchers advocate for including further 
molecular biomarkers, particularly those related to inflammation, in 
both the central nervous system (Xc) and the periphery (Xp) (Huang 
et  al., 2022). This shifting paradigm aims to identify novel or 
unconventional diagnostic and prognostic biomarkers (Klyucherev 
et al., 2022) beyond the brain, especially in blood (Hampel et al., 2023) 
and CSF, or other biological fluids (Carmona-Iragui et al., 2024) to 
strengthen predictive and preventive strategies for AD (Khoury and 
Ghossoub, 2019; Baldini et  al., 2022; Teunissen et  al., 2022). For 
instance, cholesterol and its derivatives have emerged as significant 
biomarkers, linked to an increased risk of dementia in initially healthy 
older adults (Hussain et al., 2024). Moreover, microRNAs (miRNAs), 
crucial regulators of gene expression, have garnered attention for their 
potential clinical significance (Wei et  al., 2020; Luo et  al., 2022). 
Distinct miRNA profiles in the blood are valuable candidates for 
drawing correlations with various stages of AD, positioning them as 
useful targets for future interventions (Zhou et al., 2020; Bhatnagar 
et al., 2023). In the context of circulating and measurable chemical 
signals, recruiting exosomes and extracellular vesicles (EVs) 
containing miRNAs in the bloodstream has reinforced their potential 
as biomarkers for AD (Soares Martins et al., 2022; Abidin et al., 2023). 
By exploring biomarkers outside the traditional realms, researchers 
are paving the way for more comprehensive and early detection 
methods for AD, its clear-cut staging, and its discrimination against 
non-AD type dementias, offering hope for more effective treatment 
and prevention tools. Within this context, it is widely acknowledged 
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that neuroinflammation plays a pivotal role in AD pathology. This 
pathway involves astrocytic and microglial activation, cytokine 
release, and alterations in the clearance of misfolded protein 
aggregates, all of which influence the onset and progression of AD. For 
instance, reactive astrogliosis (RA) exhibits a dual impact. While 
contributing to neurotoxicity and inflammation, it protects against 
neurotoxic agents and supports blood–brain barrier (BBB) repair 
(Singh, 2022). Moreover, systemic inflammasome activation (Rui 
et al., 2021) triggers a self-sustaining loop that leads the healthy brain 
to the Alzheimer’s manifestation through a cognitive impairment and 
finally to the Alzheimer’s manifestation, as recently confirmed by the 
role of the aberrant expression of Nucleotide-binding oligomerization 
domain (NOD), Leucine rich Repeat and Pyrin domain containing 
(NLRP) inflammasome activated caspase-1 (Beder et al., 2024). This 
statement intensifies the urgency of preclinical models, filling the gap 
between inconsistent preclinical AD animal models and the clinical 
appearance of the disease in humans.

3 The need for innovative 
experimental models: toward the 
modern age of 3D brain organoids

Despite their contributions to understanding AD mechanisms, 
both traditional animal models and transgenic ones fail to replicate 
the human brain’s intricate tissue structure, function, cellular diversity 
and pathology hallmarks as well as two-dimensional (2D) cell cultures 
merely contribute to the dissection of the involved molecular pathways 
(Hossain et  al., 2024). In the last few years, ethical concerns and 
technical challenges have limited the study of the interactions between 
the human brain and peripheral organs; it has prompted the 
exploration of new experimental tools that could eventually reflect the 
brain exposure to several molecules, especially during the 
deterioration of BBB responsible for conveying harmful components 
to the already damaged brain (Chen et al., 2021).

The emergence of three-dimensional (3D) brain organoids (BOs), 
lab-grown structures developed through tissue engineering, have 
disclosed a revolutionary alternative to traditional AD models 
(Gonzalez et al., 2018; Kim et al., 2024). These mini encephalic organs 
mimic the in vivo physiology of the human brain, providing a more 
accurate representation of its structure and function (Hong et al., 
2022; Jeong et al., 2023). Starting from blood or fibroblast samples and 
passing through the intermediate transformation into induced 
pluripotent stem cells (iPSCs) (Raja et al., 2016; Choe et al., 2024), 
various protocols for developing 3D BOs have flourished, differing in 
chemical composition, microenvironmental settings, and 
technological materials (Kwak et  al., 2024). Indeed, whole-brain 
organoids and more specifically BOs of different regions can be built 
(e.g., dorsal forebrain or cerebral organoids (COs), respectively) (Del 
Dosso et al., 2020). However, over the past decade, more than 2,255 
papers on “human brain organoids” have been published, 
underscoring the urgent need for a more unifying experimental 
methodology. These in vitro organs could really be leveraged for the 
advancement of basic and applied neuroscience only when 
comprehensive guidance and assertive advice on the design, execution, 
and sharing of experiments significantly will improve the 
reproducibility and utility of these models (Pașca et al., 2024). Recent 
findings have highlighted the importance of BOs in studying the 

fundamental mechanisms underlying AD. Notably, when these 
organoids are derived from AD patients, they retain biomarkers 
associated with the disease (Yan et al., 2018; Alić et al., 2021; Chen 
et al., 2021), even after undergoing a process of embryonic resetting 
through the use of iPSCs as intermediate cellular elements.

4 Patient-derived advanced BOs: 
combining biological and 
technological tools

The BOs exhibit certain features of human brain structure and 
AD-like pathology, serving as a tool to explore the connection 
between Alzheimer’s pathology and neural cell dysfunction that 
leads to cognitive decline. The morphological and biochemical 
analysis of BOs aligned with individual clinical histories creates a 
promising platform for modeling the patient-specific disease staging. 
Such experimental models offer the disease continuum from the 
incoming neurological deficits to AD diagnosis, which is still 
missing in the in vitro models despite the lack of vascularization and 
incomplete maturation. Meanwhile, at some point in the 
experimental study, BOs could express different recognized 
biomarkers, signaling the onset of the neurodegenerative process 
even when the clinical evidence is absent in the corresponding 
donor subjects and, thus, preventing in vivo invasive and expensive 
investigations. Furthermore, this innovative approach during the 
clinical follow-up will allow researchers to generate the clinically 
corresponding mini-brains to track clinical evolution. In contrast to 
clinical evaluations, the study of BOs and any biological fluids 
potentially analyzed for peripheral biomarkers can be carried out 
both prospectively and retrospectively, due to the possibility of 
storing them in certified biobanks.

A comprehensive understanding of AD through BOs hinges on 
merging cutting-edge biological and technological advancements 
(Boylin et al., 2024). We visually represent this in our proposed model 
of investigation (Figure 1). In the context of the biological field, these 
advancements aim to fulfill several critical objectives:

 1. Recreating architectural complexity: BOs will replicate the 
cellular heterogeneity of the central nervous system (CNS), 
encompassing neuronal and glial phenotypes, and 
incorporating vascular components like endothelial cells to 
preserve BBB integrity.

 2. Identifying CNS biomarkers: BOs will undergo molecular and 
morphological analyses to identify validated or potential AD 
biomarkers, previously detected in corresponding in  vivo 
anatomical structures, including toxic protein aggregates such 
as β-amyloid and tau proteins, which are crucial for comparing 
AD hallmarks in vivo.

 3. Correlating central and peripheral biomarkers: despite the lack 
of direct connections to other organs, BOs will reveal temporal 
patterns within the aging organoids and potential correlations 
between identified central biomarkers and peripheral ones 
found in blood samples of the same patients.

 4. Analyzing immune responses: recruitment and pathological 
transformation of resident immune cells (astrocytes and 
microglia) will be qualitatively and quantitatively assessed to 
understand their detrimental pro-inflammatory effects.
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 5. Modeling aging processes: induction of cellular senescence in 
BOs will simulate gene expression changes and epigenetic 
modifications during aging, a significant risk factor for 
neurodegenerative diseases.

To ensure reproducibility and increase predictive capabilities, the 
following technological tools will be employed:

 1. 3D microelectrode arrays, and high-resolution electrophysiology 
devices: they can record rhythmic activity with high spatio-temporal 
resolution and collectively synchronized electric signals.

 2. Organ-on-a-chip devices: these devices will simulate 
physiological environments to optimize BO growth and 
homeostasis maintenance or alteration (see BBB defects).

 3. Biocomputing simulations: utilizing computational models they 
can predict organoid behavior and response under 
varying conditions.

 4. Optimized algorithms: the development of algorithms tailored 
for in silico-BOs interaction modeling will deepen the 
understanding of AD progression.

 5. Creating Digital Twins (DTs) using artificial intelligence (AI).

The term “digital twin” (DT) was introduced by Grieves (2019) to 
describe a digital entity capable of replicating certain properties of a 

physical object. Unlike traditional computer simulations, which rely on 
static mathematical models, DTs are virtual replicas of physical entities 
continuously updated with real-time data. This capability enables real-
time monitoring, analysis, and intervention, making DTs more 
dynamic and interactive than conventional simulations. The 
development of these models relied heavily on imaging technologies 
and computational frameworks to mimic the structure and basic 
functions of organs. These early-stage DTs served as proof-of-concept 
demonstrations, showing how virtual models could enhance decision-
making in medical practice.

AI-driven DTs have been applied in various medical and healthcare 
fields, including stroke progression (Allen et al., 2021), tissue culture 
(Möller and Pörtner, 2021), neurosurgery (Chumnanvej et al., 2024), and 
personalized dementia care (Wickramasinghe et  al., 2022). Initially 
focused on simulating specific organs to address clinical challenges, DT 
technology has evolved to support personalized medicine by predicting 
patient-specific treatment responses. Early applications involved creating 
digital replicas of organs, such as the heart and lungs to enhance surgical 
procedures and drug effectiveness before real-world implementation 
(Vallée, 2023; El-Warrak and de Farias, 2024).

A major leap in DT technology came with the incorporation of 
molecular and genetic data, particularly transcriptomics which enables 
the analysis of gene expression patterns underpinning cellular and organ 
functions (Hansen et al., 2024). By integrating such data, DTs moved 

FIGURE 1

Brain organoids work-flow from patients to brain organoids and digital twins. Clinical staff: patient evaluation and classification through standard clinical 
tools and brain imaging. Blood: blood sampling, peripheral blood mononuclear cell extraction, and obtaining pluripotent stem cells to generate brain 
organoids. Technological mini-brain organoids: development and application of biotechnologies to achieve the structural complexity and cellular diversity 
of brain organoids. Analysis: diachronic execution of morphological analyses, omics analyses, and functional tests aimed at identifying AD biomarkers in 
brain organoids and blood of the organoid donor patients. Digital twin: creation of a mathematical model of the brain organoid that parallels its growth and 
degeneration. Data collection: collection of biological samples in a dedicated biobank and synthetic data, big data, in an open-access platform.
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beyond anatomical simulations to model the intricate biological processes 
within organs clarifying disease mechanisms. Moreover, the development 
of validation models is enhanced by advanced predictive features. For 
instance, heart digital twins can predict arrhythmias, enabling 
personalized interventions (Thangaraj et al., 2024). Liver models provide 
valuable insights into disease progression, which helps optimize 
treatments and improve patient outcomes (Subramanian, 2020). Similarly, 
brain digital twins simulate neurological conditions, assisting in the 
planning of accurate and safe surgeries (Fekonja et al., 2024). Finally, the 
convergence of organoid technology and DT frameworks is one of the 
most exciting advancements in this field, pushing the boundaries for 
studying disease pathology, drug responses, and developmental biology 
(Heydari et al., 2021).

When combined with DT technology, organoids might offer an 
unparalleled platform for modeling complex biological systems and 
could provide unique insights into how certain genetic mutations or 
environmental factors influence developmental pathways and 
gain functions.

Nevertheless, DT technology and its application to organoids face 
several challenges. One major limitation is the computational complexity 
involved in creating accurate and scalable models. Simulating the 
intricate interplay of genetic, molecular, and physiological processes 
within an organoid requires significant computational power and 
advanced algorithms making the integration of diverse data types—such 
as transcriptomics, proteomics, and metabolomics—into a unified DT a 
concrete technical hurdle. However, the high computational demands of 
these advanced models can be effectively mitigated through the power 
of quantum computing, particularly with technologies such as the 
Majorana I  processor, which offers unprecedented capabilities in 
handling such complexity (Nanda et al., 2024).

Another challenge is the need for standardized protocols and 
frameworks to ensure the reproducibility and reliability of DT models. 
Establishing regulatory guidelines and ethical standards will be critical 
as these technologies move closer to clinical application.

By improving and leveraging AI-driven analytics, researchers can 
automate the integration and interpretation of complex datasets, 
thereby enhancing the scalability and accuracy of DTs. Additionally, 
the development of more sophisticated organoid cultures—such as 
vascularized or multi-organ systems—will further expand the 
capabilities of DTs in simulating human biology.

5 Discussion

Preclinical studies currently rely on in  vivo animal models, 
including transgenic and aged specimens, with 8,624,692 animals 
sacrificed for scientific purposes in the EU and Norway in 2020 
(Commission Staff Working Document, 2023). BO-based research 
aims to reduce the use of these models, facilitating faster and easier 
scaling of therapeutic interventions for AD. We propose an alternative 
methodology using a virtual environment to test drug candidates 
before clinical trials, which lowers costs, minimizes ethical concerns 
of animal testing, and allows for individualized treatment strategies. 
Individual-derived BOs serve as valuable ex vivo targets for monitoring 
pharmacological interventions during disease progression, offering 
insights that may lead to personalized therapies.

In clinical applications related to AD and MCI, bridging the gap 
between genetic predispositions and sporadic factors remains 

essential. Understanding these complexities is crucial for developing 
effective interventions aimed at preserving mental acuity and 
mitigating AD progression. Modeling AD with BOs has primarily 
focused on familial AD cases. However, there is a growing need to 
include sporadic cases to enhance representativeness and accurately 
recapitulate the pathology (Selkoe and Hardy, 2016). Recently, some 
authors have outlined the minimal and ideal recommended standards 
for the quantitative analysis of organoids, focusing on ensuring rigor 
and reproducibility in human BOs research (Sandoval et al., 2024). 
While we refrain from replicating issues already exposed in a recent 
exhaustive paper (Cerneckis et al., 2023), we wish to warn the scientific 
community about some caveats and potential troubleshooting issues 
when translating findings to AD-affected patients.

One notable contradiction involves the aging process, a 
fundamental and widely recognized risk factor for neurodegenerative 
diseases. COs from AD patients are formed through the differentiation 
of embryonic stem cells (ESCs) or iPSCs, which, in turn, are derived 
from AD fibroblasts or blood cells via genetic reprogramming 
(Kunitomi et al., 2022). However, due to reasons that are both time-
consuming and costly, studies based on organoid technology for AD 
research often rely on a limited number of iPSC cell lines, in stark 
contrast to the significantly larger number of patients enrolled in 
clinical studies. This raises the critical question about the robustness of 
the observed differences genuinely associated with AD-related 
pathological symptoms. An incomplete but promising solution would 
be to invest in research programs that use iPSCs derived from patients 
with sporadic AD. This approach could help create a more solid and 
reliable experimental design, aiming to minimize biochemical and 
morphological differences between various batches of cells.

For example, in a recent study by Lee et al. (2022), while certain 
features such as Aβ deposits aligned with histopathological findings, 
the expression levels of AD-related genes Microtubule-Associated 
Protein Tau (MAPT) and Amyloid Precursor Protein (APP) were 
similar when comparing iPSCs derived from normal and familial AD 
patients. Moreover, neuronal excitation tested by electrophysiological 
recording was downregulated in the AD group, in stark contrast to 
previous reports (Lin et al., 2018; Ghatak et al., 2019). This suggests that 
a 3-month culture period may be insufficient to fully capture AD’s 
histopathological hallmarks, but longer in vitro timelines are strongly 
dependent on sophisticated and reliable microfluidic systems to ensure 
the same vitality degree to the overall aged BOs. Research on the aging 
process has already been conducted, as the in vitro timeline does not 
match the in vivo aging pathway (Gordon et al., 2021; Hossain et al., 
2024; Park et  al., 2025). In addition, even though there is a close 
overlapping between the transcriptome/epigenome of BOs and human 
primary fetal tissues (Amiri et al., 2018), more detailed studies are 
needed for a faithful comparison between BOs and the aging brain, 
both in normal and pathological conditions. Thus, while human brain 
organoids as research tools provide advantages for studying AD, they 
also present numerous controversies and weaknesses that must 
be addressed (Sainz et al., 2025). Finally, the evolution of DT technology 
from simple anatomical models to complex simulations of BOs acts as 
a transformative shift in healthcare and biomedical research. The 
standpoint of this review is that DTs of BOs could be part of a fruitful 
strategy designed to a better comprehension and interpretation of 
biological phenomena underpinning AD appearance and progression. 
By integrating molecular data and leveraging organoid platforms, DTs 
would offer unprecedented opportunities for studying AD and possible 
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in silico therapeutic personalized intervention prior, in alternative, or 
in parallel with human clinical trials.
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