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Mitochondria play a critical role in brain energy metabolism, cellular

signaling, and homeostasis, making their dysfunction a key driver of

secondary injury progression in traumatic brain injury (TBI). This review

explores the relationship between mitochondrial bioenergetics, metabolism,

oxidative stress, and neuroinflammation in the post-TBI brain. Mitochondrial

dysfunction disrupts adenosine triphosphate (ATP) production, exacerbates

calcium dysregulation, and generates reactive oxygen species, triggering a

cascade of neuronal damage and neurodegenerative processes. Moreover,

damaged mitochondria release damage-associated molecular patterns (DAMPs)

such as mitochondrial DNA (mtDNA), Cytochrome C, and ATP, triggering

inflammatory pathways that amplify tissue injury. We discuss the metabolic shifts

that occur post-TBI, including the transition from oxidative phosphorylation to

glycolysis and the consequences of metabolic inflexibility. Potential therapeutic

interventions targeting mitochondrial dynamics, bioenergetic support, and

inflammation modulation are explored, highlighting emerging strategies such

as mitochondrial-targeted antioxidants, metabolic substrate supplementation,

and pharmacological regulators of mitochondrial permeability transition pores.

Understanding these mechanisms is crucial for developing novel therapeutic

approaches to mitigate neurodegeneration and enhance recovery following

brain trauma.
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1 Mitochondria structure and function

The adult human brain accounts for about 2% of total body weight but consumes
approximately 20% of the body’s energy supply to sustain its high metabolic activity. The
energy demand is even higher in young and developing brains; a newborn consumes
about 60% of the body’s daily energy, while a 10 years-old child’s brain uses around
50% of the body’s total basal metabolic rate (Goyal et al., 2014; Steiner, 2019). Neurons
account for 75%–80% of the brain’s energy consumption (Belenguer et al., 2019;
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Chakrabarty and Chandel, 2021; Chen W. et al., 2023; Collier et al.,
2023) and rely heavily on mitochondria, the primary producers of
cellular energy, generating up to 95% of a eukaryotic cell’s ATP to
support essential functions such as action potential generation, ion
homeostasis, neurotransmitter cycling, and synaptic remodeling
for learning and memory.

Over the last decade, it has become appreciated that
mitochondria are better understood as “cell processors” rather
than simply energy-generating “powerhouses” (Picard and Shirihai,
2022). Numerous studies have demonstrated mitochondria as
dynamic organelles that transform energy, synthesize biomolecules,
and act as critical signaling hubs to transduce and integrate
biological information (Bader and Winklhofer, 2020; Lamade et al.,
2020; Norat et al., 2020; Picard and Shirihai, 2022). In this role, in
coordination with the nucleus and other organelles, mitochondria
form the mitochondrial information processing system (Picard and
Shirihai, 2022). This system is composed of three steps (Figure 1):
mitochondria (1) sense internal and environmental stimuli through
changes in morphology and function; (2) integrate information
via dynamic, network-based physical interactions and diffusion
mechanisms; and (3) regulate the functions of other organelles
and systemically modulate physiology. This complex multistep
system enables mitochondria to transduce metabolic, biochemical,
neuroendocrine, and other local or systemic signals that enhance
the organism’s adaptability. As a result, mitochondria have been
recognized as critical regulators of ATP production, inflammation,
death progression, metabolism, and epigenetic state.

Mitochondria are double membrane organelles, with each
membrane playing distinct and crucial roles (Giorgi et al., 2015).
The outer membrane (OMM) is a “bodyguard,” containing porins
that regulate the ions, nutrients, and small molecules (up to about
5 kDa) flowing into the intermembrane space. This permeability
is essential for exchanging metabolites and ions between the
mitochondria and the cytosol. Additionally, the OMM plays a
significant role in host defense and regulation of apoptosis. It
houses proteins such as B-cell lymphoma 2 (Bcl-2) family members
that control Cytochrome C release from the intermembrane space
into the cytosol, triggering the intrinsic apoptosis pathway [for a
detailed review, see Desagher and Martinou (2000)]. Furthermore,
the OMM engages in lipid synthesis and the import of lipids
from the endoplasmic reticulum, facilitating lipid exchange with
other organelles (Crompton, 1999; Giorgi et al., 2015; Giacomello
et al., 2020). Finally, the OMM initiates, regulates, and executes
mitochondrial fission, fusion, and mitophagy, critical components
of mitochondrial homeostasis (Liesa and Shirihai, 2013; Di Pietro
et al., 2017; Herst et al., 2017; Misgeld and Schwarz, 2017;
Giacomello et al., 2020; Chen W. et al., 2023).

The inner mitochondrial membrane (IMM), tightly packed
into the membrane cristae, is the site of oxidative phosphorylation
(OXPHOS), the primary ATP production machinery. The IMM
contains the electron transport chain (ETC) and ATP synthase
protein complexes, which conduct this process (see chapter “2.1
Brain bioenergetics” for more details) (Kühlbrandt, 2015; Audano
et al., 2020; Giacomello et al., 2020). Unlike the OMM, the
IMM is impermeable to most ions and molecules, a feature
critical for maintaining the proton gradient established by the
ETC. This proton gradient drives ATP synthesis through ATP
synthase (Paumard et al., 2002). Additionally, the IMM is equipped
with numerous transport systems that regulate the movement of

metabolites across the membrane, ensuring the efficient production
and distribution of energy within the cell (Picard and Shirihai,
2022).

2 Mitochondria dysfunction as
primary damage post-traumatic
brain injury

Mitochondrial dysfunction refers to mitochondria failing
to perform one of their critical functions: sensing, integration,
or signaling (Picard and Shirihai, 2022). When mitochondrial
function is compromised, altered bioenergetic and metabolic
processes can lead to increased oxidative stress, inflammation
and/or cell death. Mitochondrial dysfunction has many
potential causes, including genetic mutations, oxidative stress,
environmental toxins, aging, or trauma. Mitochondrial dysfunction
and defective mitochondrial dynamics are proposed as key
mechanisms with functional importance in the early stages of
Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral
sclerosis, and other neurodegenerative diseases, as well as after TBI
(Lin and Beal, 2006; Nunnari and Suomalainen, 2012; Nicolson,
2014; Hiebert et al., 2015; McGovern and Barreto, 2021; Picard and
Shirihai, 2022; Strope et al., 2022; Schmitt et al., 2023). Specifically,
TBI (Bader and Winklhofer, 2020) disrupts key processes such as
energy production, metabolic regulation, calcium homeostasis, and
oxidative stress management. Damage to the electron transport
chain (ETC) impairs oxidative phosphorylation (OXPHOS),
leading to ATP depletion and bioenergetic failure (Hiebert
et al., 2015; Kilbaugh et al., 2015; Herst et al., 2017; Hubbard
et al., 2018; Leipnitz et al., 2018; Lyons et al., 2018; Belenguer
et al., 2019; Hubbard et al., 2019; Ahluwalia et al., 2021; Pandya
et al., 2021; Bhatti et al., 2022; Cheng et al., 2022; Strope et al.,
2022; Hubbard et al., 2023), while disruptions in mitochondrial
dynamics hinder neuronal repair and survival (Yonutas et al.,
2016; Lyons et al., 2018; Hubbard et al., 2019; Lazzarino et al.,
2019; Ahluwalia et al., 2021). Excessive oxidative stress (Tavazzi
et al., 2005; Shi and Gibson, 2007; Hiebert et al., 2015; Hubbard
et al., 2018), excitotoxicity, and metabolic dysregulation (Arun
et al., 2013; Yonutas et al., 2016; Hubbard et al., 2018; Lyons et al.,
2018; Hubbard et al., 2019) further exacerbate neuronal damage,
contributing to neurodegeneration and prolonged functional
deficits (Choi et al., 2004; Clark et al., 2006; Lin and Beal, 2006; Shi
and Gibson, 2007; Trushina and McMurray, 2007; Keating, 2008;
Bhat et al., 2015; Bhatti et al., 2017; Rana et al., 2020; Ahluwalia
et al., 2021; Fesharaki-Zadeh, 2022). In the next two chapters, we
will explore these mitochondrial impairments in the context of
brain trauma, highlighting their impact on neuronal survival and
potential therapeutic targets.

2.1 Brain bioenergetics

Brain cells generate energy through four main mechanisms:
glycolysis, the tricarboxylic acid (TCA) cycle, OXPHOS, and fatty
acid oxidation (Belenguer et al., 2019; Benaroya, 2020). Neuronal
cells rely on OXPHOS, and proliferating glial cells predominantly
utilize glycolysis for ATP production.
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FIGURE 1

Mitochondrial signal transduction in traumatic brain injury (TBI). This figure illustrates the sequential role of mitochondria in TBI across three critical
phases: Sensing, Integration, and Signaling. In the Sensing phase (1A–1C), the initial trauma triggers glutamate release and activation of membrane
ion channels, initiating the early cellular responses. During the Integration phase (2A–2E), mitochondria interpret injury signals through calcium
influx, reactive oxygen species (ROS) production, and mitochondria permeability pore (mPTP) opening while also interacting with other cellular
components. The Signaling phase (3A–3E) demonstrates how these integrated responses lead to mitochondria membrane rupture, necrosis, and
inflammatory propagation to surrounding tissues. Overall, this figure depicts the central role of mitochondria as information processors that detect
initial injury signals, integrate biochemical responses, and ultimately determine cellular fate in the progressive pathophysiology of TBI. Figure created
in Biorender.com.

Glycolysis - is a fundamental metabolic pathway crucial in
cellular energy production (Figure 2A). It involves the breakdown
of glucose, a six-carbon sugar, into two pyruvate molecules, each
containing three carbons (Goyal et al., 2014; Carpenter et al.,
2015; Steiner, 2019; Devanney et al., 2020; Xu et al., 2021; Wei
et al., 2023). This cytoplasmic process is the first step in both
aerobic and anaerobic respiration. The glycolytic pathway begins
with the phosphorylation of glucose to form glucose-6-phosphate, a
reaction catalyzed by the enzyme hexokinase (Liu et al., 2023). This
initial step requires ATP, which invests energy to activate glucose
for further breakdown. The pathway proceeds through a series
of enzymatic steps, ultimately splitting the six-carbon molecule
into two three-carbon molecules of glyceraldehyde-3-phosphate.
Each glyceraldehyde-3-phosphate molecule then undergoes further
transformations, resulting in the production of pyruvate.

Throughout glycolysis, several key reactions generate
energy-rich molecules. Specifically, two molecules of NAD+

(nicotinamide adenine dinucleotide, oxidized) are reduced to
NADH, capturing high-energy electrons. Additionally, substrate-
level phosphorylation occurs twice, producing four ATP molecules.
Since two ATP molecules are consumed in the initial steps,
the net gain from glycolysis is two ATP molecules per glucose
molecule. This modest ATP yield is critical for cells, particularly
under anaerobic conditions where oxygen is absent and oxidative
phosphorylation cannot occur.

The fate of the pyruvate produced in glycolysis depends
on oxygen availability. Under aerobic conditions, pyruvate is
transported into the mitochondria, where it is converted into
acetyl-CoA by the enzyme pyruvate dehydrogenase. Acetyl-CoA
then enters the TCA cycle (Figure 2B), producing additional
reduced nicotinamide adenine dinucleotide (NADH) and (reduced

flavin adenine dinucleotide) (FADH2) molecules. These molecules
donate electrons to the electron transport chain, synthesizing
significant ATP through oxidative phosphorylation. This pathway
underscores the importance of glycolysis as a precursor to the
more efficient aerobic respiration process. In anaerobic conditions,
such as in muscle cells during intense exercise, pyruvate is instead
converted into lactate by the enzyme lactate dehydrogenase (Schurr
and Rigor, 1998). This conversion regenerates NAD+, allowing
glycolysis to continue and produce ATP without oxygen. This
anaerobic pathway, known as lactic acid fermentation, provides a
rapid but less efficient means of ATP production.

The mitochondrial tricarboxylic acid (TCA) cycle (also called
Krebs or citric acid cycle) is essential for energy production
in all organs, including the brain. This cycle oxidizes acetyl-
CoA into carbon dioxide and high-energy molecules, including
ATP, NADH, and FADH2. In the first step (Figure 2B), acetyl-
CoA combines with oxaloacetate to form citrate (Martínez-
Reyes and Chandel, 2020; Abdullah et al., 2022). Through a
series of enzyme-catalyzed reactions, citrate is converted back to
oxaloacetate, generating various crucial intermediate metabolites
(alpha-ketoglutarate, succinyl CoA, succinate, fumarate, malate)
and energy-rich molecules (NADH and FADH2) in the process. The
TCA cycle also produces intermediates used in other biosynthetic
pathways, highlighting its central role in cellular metabolism
(Nelson et al., 2018) (see section “2.2 Mitochondrial dysfunction
and cellular metabolism” for metabolic details).

Oxidative phosphorylation - The primary energy-producing
mechanism in neurons is oxidative phosphorylation (OXPHOS),
which occurs in the mitochondria (Harris et al., 2012; Rangaraju
et al., 2014; Magistretti and Allaman, 2015). During this process,
electrons from reduced cofactors, such as NADH and FADH2 -
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FIGURE 2

Metabolic pathways and bioenergetics. (A) Glycolysis, (B) The Tricarboxylic acid cycle (TCA) cycle and (C) Fatty Acid β-Oxidation are metabolically
interconnected, with key intermediates serving as inputs for downstream pathways. In glycolysis (A), glucose is converted into pyruvate through 10
enzymatically controlled steps, producing adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). Pyruvate
subsequently enters the TCA cycle (B) as acetyl-CoA, driving the production of NADH and FADH2 (reduced flavin adenine dinucleotide) for oxidative
phosphorylation. Fatty acid β-oxidation (C) degrades fatty acids into acetyl-CoA, further fueling the TCA cycle and linking lipid metabolism to energy
production. Together, these pathways sustain cellular bioenergetics by integrating carbohydrate and lipid metabolism. Figure created in
Biorender.com.

produced during glycolysis, the TCA cycle, and fatty acid oxidation
- are transferred through the electron transport chain (ETC). The
ETC comprises a series of protein complexes located in the inner
mitochondrial membrane that facilitate the transfer of electrons
from electron donors like NADH and FADH2 to oxygen, the final
electron acceptor. As electrons pass through Complexes I, II, III,
and IV, protons are pumped from the mitochondrial matrix to
the intermembrane space, creating a proton gradient. The proton
motive force drives the synthesis of ATP as protons flow back into
the matrix through ATP synthase. The ETC’s role in creating a
proton gradient is essential for ATP production through oxidative
phosphorylation, and its proper function is vital for cellular energy
homeostasis (Kühlbrandt, 2015; Neupane et al., 2019). OXPHOS is
highly efficient, yielding approximately 30–36 ATP molecules per

glucose molecule, compared to two ATP molecules generated by
glycolysis alone.

Fatty acid oxidation (FAO) – FAO within the mitochondria
is vital for maintaining mitochondrial bioenergetic capacity
(Figure 2C). Cytoplasmic fatty acids are processed to form
acyl-CoA molecules (Xiong, 2018; Rose et al., 2020). The
carnitine shuttle system transports the acyl-CoA molecules into
the mitochondria through the sequential action of carnitine
palmitoyltransferase I (CPT I) located on the outer mitochondrial
membrane and carnitine-acylcarnitine translocase on the inner
mitochondrial membrane. CPT I converts acyl-CoA to acyl-
carnitine, which is converted back to acyl-CoA by carnitine
palmitoyltransferase II (CPT II) inside the mitochondria. Within
the mitochondria, acyl-CoA undergoes β-oxidation, a cyclic
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process that sequentially removes two-carbon units to form acetyl-
CoA. Each cycle of β-oxidation generates acetyl-CoA, NADH,
and FADH2, which are crucial for cellular energy production.
The acetyl-CoA produced then enters the citric acid cycle. FAO
is critical to ensure a continuous supply of acetyl-CoA for the
TCA cycle and NADH/FADH2 for the electron transport chain,
particularly during increased energy demands such as exercise or
fasting. The complete oxidation of a 16-carbon fatty acid, such
as palmitate, results in the net production of 106 ATP molecules,
with three ATP generated per cycle of fatty acid oxidation, followed
by additional ATP production through NADH and FADH2 in the
electron transport chain and acetyl-CoA entering the TCA cycle.

To summarize, glycolysis converts one glucose molecule into
two pyruvate molecules, yielding a net gain of two ATP molecules.
It provides intermediates for downstream metabolic pathways
essential for cellular homeostasis and stress response. These
pyruvate molecules then fuel OXPHOS in the mitochondria,
where electron transfer coupled with ATP synthase activity in the
respiratory chain generates an additional 30–36 ATP molecules.
Its regulation ensures cells adapt to varying energy demands and
oxygen availability, maintaining energy homeostasis under diverse
physiological conditions (Harris et al., 2012; Carpenter et al., 2015;
Martínez-Reyes and Chandel, 2020; Santos, 2021; Lee et al., 2023;
Stovell et al., 2023).

Brain cells’ ability to switch their metabolism depending on
overall substrate availability and stress conditions underscores
the complexity of brain energy metabolism. Alterations of this
metabolism after TBI are integral to the brain’s response to trauma.
Understanding these responses can help tailor interventions that
support cellular energy production, mitigate damage, and promote
recovery following traumatic brain injury.

2.1.1 TBI-induced changes in brain bioenergetics
Many human and animal studies have shown that TBI leads

to an acute phase of hyper-glycolysis followed by a prolonged
phase of metabolic depression (Carpenter et al., 2015; Stovell et al.,
2017; Devanney et al., 2020; Xu et al., 2021). In adult patients,
this hyper-glycolytic phase lasts several hours to days, and the
subsequent hypometabolic phase can persist for weeks, correlating
with the severity of the injury and functional deficits (Kansakar
et al., 2025). In models of younger animals, the recovery from
these metabolic changes is faster than in adults, suggesting age-
related differences in the metabolic response to TBI. The acute
phase involves increased glucose utilization due to ionic fluxes and
neurotransmitter release, while the chronic phase is marked by
reduced glucose metabolism, which can be influenced by impaired
glycolytic flux and mitochondrial dysfunction (Carpenter et al.,
2015; Stovell et al., 2017; Li et al., 2020; Rabinowitz and Enerbäck,
2020; Rose et al., 2020; Xu et al., 2021).

A recent human study (Pinggera et al., 2021b) using
Phosphorus-31 Magnetic Resonance Spectroscopy (31P-MRS)
imaging in TBI patients highlighted significant alterations in ATP
resynthesis, reflected by changes in phosphocreatine (PCr) to
ATP ratios (PCr/ATP). Increased PCr/ATP ratios observed in
the subacute phase may indicate adaptive responses to energy
failure or altered glial activity. Furthermore, decreased inorganic
phosphate (Pi) to ATP ratios (Pi/ATP) suggest impaired ATP
turnover and hydrolysis, a direct consequence of mitochondrial
dysfunction (Pinggera et al., 2021b). However, the devastating

nature of brain injury is not restricted to the damaged area with
altered bioenergetics, but its spread to healthy surrounding tissue,
as shown in two other human studies (Pinggera et al., 2021a; Strope
et al., 2022).

While human studies are scarce due to the high expense
and lack of tools to perform such analysis, numerous in vivo
animal studies in both blunt and blast injuries reported devastating
alterations to OXPHOS post-injury. A study by Hubbard et al.
(2019) demonstrated a significant decrease in mitochondrial
respiration 48 h after a single or repetitive closed-head injury in
rats suggesting early mitochondrial dysfunction as a key factor
in cellular vulnerability to repeated head impacts. Additionally,
this group showed that a mitochondrial uncoupler drug, MP201
(Hubbard et al., 2018), significantly improved mitochondrial
function, histopathology, and cognitive outcomes (Hubbard et al.,
2023). These findings suggest that acute mitochondrial dysfunction
can be targeted to provide neuroprotection from reactive oxygen
species.

Blast injury also alters mitochondrial function. After blast
injury in rats, decreased OXPHOS proteins and increased oxidative
stress markers were observed, indicating bioenergetic failure. These
findings suggest that targeting mitochondrial function could be a
viable therapeutic strategy for blast-induced TBI (Rana et al., 2020;
Priemer et al., 2022; Siedhoff et al., 2022; Guilhaume-Correa et al.,
2023; Hubbard et al., 2023; Schmitt et al., 2023).

In a rat severe TBI model (penetrating TBI - PTBI), there was
a differential response to injury in different brain regions (Pandya
et al., 2019; Pandya et al., 2021). Isolated mitochondria from the
frontal cortex and striatum rapidly responded, with significant
dysregulation detected within 30 min of injury. However, the
mitochondrial response resolved to baseline levels before a second,
more robust phase of bioenergetic dysregulation was found at 24 h
that persisted up to 14 days post-injury. In contrast, mitochondria
from the hippocampus, more distal to the lesion, only showed
dysfunction starting at 7 days and remaining evident up to 14 days
post-PTBI. The results indicated that PTBI-induced mitochondrial
dysfunction is time- and region-specific with this severe TBI model.
In a rat controlled cortical impact (CCI) model, there was decreased
respiration associated with increased oxidative damage to cortical
mitochondria. Synaptic mitochondria were more vulnerable than
non-synaptic organelles (Hill et al., 2018). Thus, there appear to
be significant changes in mitochondrial bioenergetic function after
many different types of traumatic brain injury in people and in
animal models.

2.1.2 Treatment for bioenergetics
This review focuses on potential bioenergetic biological

targets that have not yet been explored for TBI patients.
Treatments that are already in clinical trials or FDA-approved
are reviewed elsewhere (Ahluwalia et al., 2021). Addressing
bioenergetic dysfunction following TBI is a critical component
of potential treatments aimed at mitigating neuronal damage
and promoting recovery. Several therapeutic approaches target
restoring mitochondrial function and overall cellular energy
metabolism. The treatment options are summarized in Table 1.

One promising strategy involves the use of mitochondrial-
targeted antioxidants, such as MitoQ and SS-31 (Oyewole and
Birch-Machin, 2015; Fields et al., 2023; Du et al., 2024). These
compounds specifically accumulate in the mitochondria, where
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TABLE 1 Different potential treatments for mitochondrial dysfunction associated with traumatic brain injury (TBI).

Treatment Outcomes

Bioenergetics Antioxidants (MitoQ and SS-31) • Decrease ROS

• Preserve mitochondrial function and integrity

Resveratrol and nicotinamide riboside • Promote mitochondrial biogenesis

Ketone supplementation • Improve mitochondrial function
• Reduce oxidative stress

• Neuroprotective effects

Cyclosporine A • Preserve membrane potential
• Decrease calcium influx

• Prevent release of pro-apoptotic factors

Methylene blue • Preserve mitochondrial function
• Reduce neuronal apoptosis
• Decrease cerebral edema and lesion volume
• Decrease ROS

• Promote autophagy and inhibits microglial activation

Intermittent fasting with ketogenesis • Decrease calcium influx and lipid peroxidation
• Elevate antioxidant levels
• Improve mitochondrial respiratory complex activity

• Improves cognitive function

Photobiomodulation • Stimulate cytochrome C oxidase in ETC
• Enhance ATP production
• Improve membrane potential
• Neuroprotective effects

• Decrease neuroinflammation and promote neuroplasicity

Metabolism Glucose • Prevents hypoglycemia
• Improve metabolism

• Decrease axonal injury

Pyruvate • Increase ATP production

• Improve metabolism

Succinate • Improve TCA functionality

Omega-3 fatty acids • Inhibit neuroinflammation

• Decrease necroptosis

Ion homeostasis Ru360 and minocycline • Decrease calcium uptake

• Suppress production of ROS

Antioxidants (circumin, vitamin E, resveratrol) • Neutralize ROS
• Lower lipid peroxidation

•Modulate inflammatory pathways

Inflammation Hydrogen sulfide • Decrease ROS

• Reduce production of pro-inflammatory cytokines

Cytokine C • Improve lactose clearance
• Lower lipid peroxidation

• Increase antioxidant activity

A better understanding of the role of mitochondrial dysfunction in the underlying biological events associated with TBI will allow for the development of specific therapeutics for TBI.

they can effectively neutralize ROS and reduce oxidative stress.
They thereby preserve mitochondrial integrity and function
by mitigating oxidative damage, ultimately enhancing ATP
production and cellular energy balance (Smith and Murphy,
2010; Szeto, 2014). Another drug that targets mitochondria
is the mitochondrial uncoupler, MP201, a pro-drug of 2,4-
dintrophenol. In a rodent model of mild blast TBI, MP201
improved mitochondrial function and enhanced behavioral
recovery (Hubbard et al., 2023).

Another approach focuses on enhancing mitochondrial
biogenesis, the process of forming new mitochondria (Jia et al.,

2020; Simmons et al., 2020; Vekaria et al., 2020; Jamwal et al.,
2021). Agonists of the peroxisome proliferator activated receptor
gamma coactivator 1-alpha (PGC-1α) have shown promise in
preclinical studies. PGC-1α is a key regulator of mitochondrial
biogenesis and oxidative metabolism. Activating this pathway
can increase the number of functional mitochondria, thereby
improving bioenergetic capacity. Drugs such as resveratrol and
nicotinamide riboside have been explored for their potential to
activate PGC-1α and promote mitochondrial biogenesis, offering
a means to counteract the mitochondrial deficits induced by TBI
(Cerutti et al., 2014; Gordon et al., 2018).
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Ketogenic diets and ketone supplementation have also emerged
as potential therapies for bioenergetic dysfunction post-TBI (Eiden
et al., 2019; Bernini et al., 2020; Shaito et al., 2020; Har-
Even et al., 2021; Thau-Zuchman et al., 2021). These diets
are high in fats and low in carbohydrates, producing ketone
bodies such as β-hydroxybutyrate. Ketone bodies can serve as an
alternative energy substrate for the brain, bypassing the glycolytic
pathway and directly entering the citric acid cycle to produce
ATP. Preclinical animal studies indicate that ketone bodies may
improve mitochondrial function, reduce oxidative stress, and
enhance energy metabolism in the injured brain (Eiden et al.,
2019; Bernini et al., 2020; Shaito et al., 2020; Har-Even et al.,
2021; Thau-Zuchman et al., 2021). Early-phase clinical trials have
demonstrated that ketogenic interventions are safe, feasible, and
capable of inducing ketosis in patients with acute and subacute
TBI (Arora et al., 2022; Edwards et al., 2024). Although current
clinical evidence is primarily based on small-scale feasibility and
metabolic response studies, they provide preliminary support
for the neuroprotective potential observed in preclinical models.
Larger randomized controlled trials are needed to validate clinical
efficacy, optimize treatment protocols, and establish ketogenic
approaches as standard care for supporting the brain’s energy needs
during the critical post-injury period.

Intermittent fasting (IF) and calorie restriction represent
complementary approaches to ketogenic diets that may offer
synergistic benefits for restoring mitochondrial function post-TBI.
While animal studies demonstrate that IF enhances mitochondrial
biogenesis via cAMP response element-binding protein (CREB)
and PGC-1α activation, reduces oxidative stress through Nrf2
(nuclear factor erythroid - 2 related factor 2) pathways, and
improves circadian regulation (Anderson et al., 2008; Alirezaei
et al., 2010; Fernandez-Marcos and Auwerx, 2011; Moro et al.,
2016; Mattson et al., 2018; Sutton et al., 2018; Jamshed et al.,
2019; Lettieri-Barbato et al., 2020; Haupt et al., 2021), critical
translational gaps remain. While a single 24 h fast post-TBI shows
neuroprotection in male rodents, a 48 h fast did not demonstrate
a comparable result (Davis et al., 2008), suggesting a need
for validating duration-dependent effects in humans, particularly
regarding risks of energy deficits during acute recovery phases.
Notably, most evidence comes from pre-clinical models using pre-
injury IF regimens with limited clinical applicability for accidental
TBI (Gudden et al., 2021; Cao et al., 2022; Xu et al., 2022).
Studies indicate that active-phase fasting demonstrates superior
neuroprotection in animals, though human circadian variations
need characterization (Froy et al., 2009; Longo and Panda, 2016;
Jeong et al., 2024). While IF improves adenosine monophosphate-
activated protein kinase (AMPK)-mediated autophagy and stress
resistance, contraindications exist for patients with metabolic
disorders or specific nutritional requirements (Bujak et al., 2015;
Vasim et al., 2022; Shabkhizan et al., 2023; Eliopoulos et al.,
2025). These findings suggest that combining ketogenic diets
with circadian-aligned IF protocols may present a mechanistically
promising strategy for mitochondrial recovery but requires
personalized assessment of an individual’s metabolic status,
injury severity, and temporal implementation windows to ensure
treatment efficacy and safety.

Methylene blue (MB) represents a promising therapeutic agent
for mitochondrial bioenergetic dysfunction post-TBI. MB [3,7-
bis (dimethylamino)-phenothiazin-5-ium chloride] is an FDA-
approved medication with established safety profiles for treating
conditions such as cyanide poisoning and methemoglobinemia
(Schirmer et al., 2011). Studies have shown that intravenous
administration provides optimal delivery, allowing MB to readily
cross the blood-brain barrier and accumulate in brain tissue
at concentrations 10–20 times higher than in circulation (Peter
et al., 2000). Upon reaching the brain, MB preferentially
localizes to neuronal mitochondria, where it serves as a
catalytic redox cycler, shuttling electrons directly from NADH to
Cytochrome C oxidase (Complex IV) in the ETC. This mechanism
effectively bypasses dysfunctional complexes I and III that
are commonly impaired post-TBI, thereby potentially restoring
electron flow, mitochondrial respiration, and energy metabolism
in injured neurons (Rojas et al., 2012). Preclinical studies in TBI
models demonstrate that low-dose MB treatments (0.5–5 mg/kg)
significantly reduce cerebral edema, attenuate lesion volume,
increase neuronal survival, and improve behavioral outcomes with
no adverse effects (Talley Watts et al., 2014). In an oxygen-
glucose deprivation injury model mimicking TBI conditions,
MB treatment inhibited excessive neuronal ROS production,
maintained mPTP potential, and increased ATP generation (Lee
et al., 2002). Although human clinical trials examining MB for TBI
are limited, its established safety profile and promising results in
preclinical models warrant further investigation into optimizing
treatment timing, delivery methods, and dosing regimens for
utmost neuroprotection after TBI injury.

Photobiomodulation therapy (PBMT), using red, near-infrared
light, and short-wave infrared light (600–1,870 nm), has emerged as
a promising non-invasive therapeutic approach for mitochondrial
bioenergetic dysfunction post-TBI, with potential for deeper tissue
penetration and enhanced therapeutic outcomes (Golovynskyi
et al., 2018; Dos Santos Cardoso et al., 2021; Dos Santos Cardoso
et al., 2022; Nairuz et al., 2024). PBMT primarily stimulates
Cytochrome C oxidase (Complex IV) in the ETC with specific
absorption peaks between 660 and 870 nm wavelengths, facilitating
nitric oxide (NO) dissociation and enhancing electron transfer
efficiency, oxygen utilization, mitochondrial membrane potential,
and ATP production (Wong-Riley et al., 2005; Naeser et al.,
2011; Thunshelle and Hamblin, 2016; Hipskind et al., 2018; Gong
et al., 2021; Nonarath et al., 2021). When PBMT is applied
at appropriate wavelengths, even brief exposures of 60–240 s
can boost antioxidant enzyme activity, reducing ROS production
and inflammatory processes (Zhang et al., 2014; Silva Macedo
et al., 2016; Hamblin, 2017; Heo et al., 2019; Jahani Sherafat
et al., 2020). PBMT also modulates mitochondrial dynamics by
suppressing fission-related proteins (dynamin-related protein 1,
fission 1) while promoting fusion-related proteins (mitofusin 1
and 2), preserving mitochondrial integrity crucial for energy
production (Gopalakrishnan et al., 2020; Jeong et al., 2021;
Li et al., 2023). Additionally, PBMT activates neuroprotective
mitogen-activated protein kinase/extracellular signal-regulated
kinase (MAPK/ERK) and phosphatidylinositol 3-kinase/protein
kinase B (PI3K/Akt) pathways, which contribute to its anti-
inflammatory and anti-apoptotic effects (Bathini et al., 2022; Li
and Wang, 2022; Shamloo et al., 2023). Preclinical studies have
shown efficacy in TBI models, including reduced edema, improved
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motor recovery, and lifespan extension in Drosophila (Begum
et al., 2015). Clinically, near-infrared wavelengths can penetrate
human skull tissues sufficiently to stimulate cortical neurons
non-invasively; however, achieving optimal therapeutic efficacy
remains challenging due to variability in treatment parameters
like wavelength selection, dosing regimens, timing post-injury,
pulse frequency modulation, and delivery methods (Barrett and
Gonzalez-Lima, 2013; Hamblin, 2016; Henderson, 2024; Lim,
2024). Future directions should include artificial intelligence
(AI)-driven protocols and nanoparticle-enhanced delivery (e.g.,
intracranial/implantable LEDs) to overcome penetration barriers.

Pharmacological agents that modulate the mitochondrial
permeability transition pore (mPTP) have also shown potential in
treating bioenergetic dysfunction post-TBI (Skemiene et al., 2020;
Huang et al., 2021; Kent et al., 2021; Yang et al., 2022; Pandya et al.,
2023). The mPTP is a key player in mitochondrial dysfunction,
and its prolonged opening can lead to cell death. Cyclosporine A
and other mPTP inhibitors can prevent the opening of this pore,
thereby preserving mitochondrial membrane potential, reducing
calcium overload, and preventing the release of pro-apoptotic
factors. This approach aims to stabilize mitochondrial function and
enhance cell survival following TBI (Xiong et al., 1997; Crompton,
1999).

In conclusion, treatments targeting bioenergetic dysfunction
post-TBI focus on reducing oxidative stress, promoting
mitochondrial biogenesis, providing alternative energy substrates,
and stabilizing mitochondrial membrane integrity. These strategies
hold promise in preserving mitochondrial function, enhancing
energy production, and improving neurological outcomes in
individuals with traumatic brain injury. Continued research and
clinical trials are necessary to further validate these approaches and
integrate them into comprehensive TBI treatment protocols.

2.2 Mitochondrial dysfunction and
cellular metabolism

In addition to energy production mitochondria are critical for
other cellular homeostasis functions. The ATP generating pathways
also produce molecules that are important as building blocks
for biomolecule synthesis, as regulators of genomic DNA and as
modifiers of post translational modifications. Mitochondria play a
central role in cellular metabolism and energy production, making
them key mediators in signal propagation for different cellular
outcomes (Figure 3A). Mitochondrial dysfunction in metabolism
occurs when oxygen and amino acids are available for normal
cellular processes, but the mitochondria cannot utilize them
effectively due to external trauma (Figure 3B; Amorini et al., 2017;
Bhatti et al., 2017). The TCA cycle, glycolysis, and fatty acid
oxidation play crucial roles in the biosynthesis of macromolecules
and cellular bioenergetics (Figures 2A–C). While most focus on the
bioenergetic value of OXPHOS, fatty acid oxidation, or glycolysis
pathways, it is vital to explore further the underlying mechanisms
of these processes and their link to mitochondrial dysfunction
(Figures 3A, B).

Glycolysis and Mitochondrial Dysfunction - An overall
decrease in energy production is observed during mitochondrial
dysfunction (Rabinowitz and Enerbäck, 2020; Garone et al., 2024).

This is due to reduced OXPHOS, ETC malfunction, and increased
glycolysis (Figure 3B). Cells will rely on glycolysis for energy
production to maintain energy levels during oxidative stress and
mitochondria malfunction. While glycolysis is a much faster
method of producing energy, it is less efficient and only produces
two ATP per glucose molecule. The reliance on glycolysis leads
to a high lactate/pyruvate ratio (LPR) due to the reduction of
pyruvate into the waste product lactate, which is associated with
hypoxia. Continued glycolysis forces the cells to be inflexible
in their metabolic processes, leading to continued dysfunction
(Carpenter et al., 2015; Jalloh et al., 2017). This hypermetabolism of
glucose can lead to hypometabolism in chronic stages, perpetuating
mitochondrial dysfunction.

In both mild and severe TBI, two phases occur:
hypermetabolism followed by hypometabolism. The initial
hypermetabolism state is a response to the influx of glutamate into
the synaptic cleft, increasing the amount of ATP needed to activate
ion channels. In this state of hypermetabolism, the increased
oxygen and glucose demand become too great, and they become
depleted (Jalloh et al., 2017; Pandya et al., 2019; Sowers et al., 2021).
Once these resources are depleted, the brain switches to anaerobic
metabolism, specifically glycolysis, to meet energy demands.
This explains why hypoxia is generally associated with increased
glycolysis and mitochondria dysfunction in TBI. During this
glycolytic state, there is an observed increase in the LPR, leading to
acidosis and the breaking down of the cellular membrane, further
perpetuating the damaging cycle (Carpenter et al., 2015). Also, a
high LPR is associated with poor clinical outcomes in the chronic
stages post-injury. Lactate levels are elevated in blast TBI as well
(Kumari et al., 2023). High lactate levels also damage the metabolic
connection between neurons and glia. Generally, neurons take up
astrocytic lactate, which is then converted into pyruvate for the
TCA cycle. Increased lactate will accumulate in the extracellular
space if this connection is damaged. During chronic stages after
TBI, the brain enters a state of hypometabolism and glycolytic
depression. In this state, glucose cannot be converted into pyruvate,
reducing the amount of acetyl-CoA available for the TCA cycle and
leading to depletion of ATP and activation of death pathways.

Fatty Acid Oxidation and Mitochondrial Dysfunction - Fatty
acid oxidation (FAO) is a key component of the molecular
and metabolic machinery of the brain. FAO is important when
glucose levels are low and glycolysis cannot be performed (Szrok-
Jurga et al., 2023). Mitochondrial dysfunction affects β-oxidation
due to the impairment of the ETC, decreased activity of β-
oxidation enzymes, altered metabolite levels, increased reliance on
glycolysis, and decreased ATP production (Figure 3B). The NADH
and FADH2 produced by β-oxidation can accumulate under
impaired electron transport chain activity conditions, leading to
feedback inhibition of β-oxidation and a significant slowing of
the TCA cycle due to high levels of NADH (Martínez-Reyes and
Chandel, 2020; Picard and Shirihai, 2022). Along with this, there
is an increase in ROS due to the leaking of electrons from the
faulty ETC, leading to mitochondrial DNA (mtDNA) damage,
inflammation, activation of apoptotic pathways, and further
mitochondrial impairment (see section “3 Brain injury-induced
secondary mitochondrial dysfunction” for detailed explanation).
During mitochondrial dysfunction, there are deficiencies in β-
oxidation enzymes like acyl-CoA dehydrogenase, reducing the
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FIGURE 3

Comparison of metabolism and bioenergetics pre- and post-injury. (A) Pre-injury: Under normal conditions, cellular metabolism is well-regulated,
with neurons relying on oxidative phosphorylation (OXPHOS) for adenosine triphosphate (ATP) production, while glial cells (microglia and
astrocytes) preferentially utilize glycolysis. Key metabolic pathways - including glycolysis, the tricarboxylic acid (TCA) cycle, and OXPHOS – operate
efficiently to maintain cellular homeostasis and energy balance. (B) Post-injury: Following injury, metabolic activity shifts toward glycolysis as the
dominant energy source, enabling rapid ATP production under stress conditions. This metabolic reprogramming results in glucose depletion,
intracellular acidosis, increased reactive oxygen species (ROS) and nitric oxide synthase levels, and overall hypo-metabolism. Green and red arrows
indicate upregulation or downregulation of specific pathways following injury. Figure created in Biorender.com.

efficiency of fatty acid oxidation and disrupting metabolic signaling,
exacerbating metabolic dysfunction.

Polyunsaturated fatty acids are abundant in brain
phospholipids with highly oxidizable structures, making them
a target for lipid peroxidation, which is increased due to TBI.
However, there is little information on the exact products
of lipid peroxidation, their location, or their possible effects.
Research shows that both neurotoxic and neuroprotective
effects are associated with lipid peroxidation in TBI, so it is
critical to understand and identify specific therapeutic targets
to develop treatment. After TBI, the accumulation of products
from lipid peroxidation contributes to poor clinical outcomes
(Anthonymuthu et al., 2017). Also, increases in medium-
chain fatty acids, specifically decanoic and octanoic acids, have
been associated with poor patient outcomes (Orešič et al., 2016).
Decanoic and octanoic acids are also associated with mitochondrial
dysfunction by uncoupling metabolic inhibitors of OXPHOS and
inducing lipid and protein oxidative damage. Modulations in
fatty acid metabolism and astrocytic function occur in blast TBI,
as astrocytes attempt to save neurons from oxidative stress by
providing non-glucose fuel (Bernini et al., 2020).

Tricarboxylic acid Cycle and ETC - The TCA cycle is the
central cellular metabolism and bioenergetics hub (Figure 3A). It
is a tightly coordinated series of reactions that drives metabolism
within cells (Jalloh et al., 2017; Vakifahmetoglu-Norberg et al.,
2017; Martínez-Reyes and Chandel, 2020; Picard and Shirihai, 2022;
Garone et al., 2024) (please see the pathway details in see section
“2.1 Brain bioenergetics”). Mitochondrial dysfunction significantly
impacts the functionality of the TCA cycle (Figure 3B). Damaged
mitochondria increase the production of ROS and show metabolite
imbalances with altered metabolic flux. Increased levels of ROS
damage TCA cycle enzymes and further impair mitochondrial
function. Impairment of the ETC results in a backlog of NADH
and FADH2 produced by the TCA cycle, hampering the progression
of the TCA cycle due to the cycle’s reliance on the generation
of NAD+ and FAD created by the ETC. Alterations in the

levels of TCA intermediates result in numerous other sequelae as
these intermediates have key functions associated with chromatin
modifications, DNA methylation, hypoxic response, and cellular
immunity. Metabolism is also shifted from the TCA cycle to
glycolysis to meet bioenergetic demands during stress (Martínez-
Reyes and Chandel, 2020).

TBI-induced changes in the TCA cycle are not fully understood.
Alterations in indicators such as the ATP: ADP and NADH:
NAD+ ratios after TBI are thought to be related to mitochondrial
dysfunction. However, there is little research on the more in-depth
details associated with each step of the TCA cycle. Generally post-
injury, many have found that Complex I and Complex III of the
ETC are damaged, leading to increased ROS and cellular damage
(Kansakar et al., 2025). ETC malfunction results in an abundance
of NADH from β-oxidation and the formation of α-ketoglutarate
(α-KG) shutting down the TCA cycle (Vakifahmetoglu-Norberg
et al., 2017; Picard and Shirihai, 2022). This halts the neurons’
main form of energy production. In the hypermetabolic state
previously discussed, excess succinyl CoA and acetyl CoA may lead
to decreased enzyme function, associated with decreased electron
flux. Increased succinate has also been reported in blast TBI,
which indicates hypoxia, decreased enzyme activity, and lower ETC
functionality (Tretter et al., 2016; Rana et al., 2020).

Glutamate excitotoxicity - Glutamate plays a crucial role in
mitochondrial dysfunction in TBI (Figures 3–5). Under normal
conditions, astrocytes play a central role in regulating glutamate
levels in the brain, facilitating neuronal-astrocyte communication
to maintain metabolic homeostasis (Figure 4). Glutamate is
primarily converted to glutamine by astrocytes and subsequently
released into the extracellular space for neuronal uptake and
metabolism. Additionally, astrocytes contribute to the TCA cycle
by converting glutamate into α-KG, a process essential for
energy balance, as it compensates for the ATP expenditure
required to maintain sodium and potassium gradients during
glutamate uptake (Figure 4A; Sowers et al., 2021). However,
TBI disrupts this tightly regulated system, leading to excessive
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FIGURE 4

Glutamate-glutamine cycle and its disruption following acute traumatic brain injury (TBI). (A) Pre-TBI: Under normal physiological conditions,
glutamate released from presynaptic neurons is efficiently taken up by astrocytes via Excitatory Amino Acids Transporters (EAATs). Within astrocytes,
glutamate is either converted to glutamine – subsequently shuttled back to neurons for reuse - or metabolized into α-ketoglutarate (α-KG), which
enters the tricarboxylic acid (TCA) cycle to support astrocytic energy metabolism and maintain cellular homeostasis. (B) Post-TBI: Following TBI,
mechanical forces trigger excessive glutamate release and impair astrocytic uptake via EAATs. This dysregulation leads to extracellular glutamate
accumulation, resulting in excitotoxicity, mitochondrial dysfunction, and progressive neuronal injury. Figure created in Biorender.com.

extracellular glutamate accumulation, observed in both mild and
severe TBI (Amorini et al., 2017). This dysregulation results in
excitotoxicity and metabolic failure, as neurons require increased
ATP-dependent ion pump activity to restore ionic equilibrium. The
increased mitochondrial demand exacerbates dysfunction, leading
to ETC impairments, ROS overproduction, apoptotic signaling,
and inflammatory pathway activation (Sowers et al., 2021). In blast-
induced TBI, glutamate levels decrease, further compromising
metabolism, bioenergetics, and neurotransmission (Rana et al.,
2020; Kumari et al., 2023).

2.2.1 Metabolic regulation as treatment post-TBI
Due to the innate complexity of the metabolic machinery and

lack of understanding of the biological mechanisms associated
with TBI, finding treatments or therapies based on metabolic
dysfunction is difficult. However, there have been some promising
possible targets that can mitigate the damage associated with
secondary injury progression and mitochondrial dysfunction.
Some of these treatments are associated with metabolism, including
glucose, pyruvate, TCA components (specifically succinate), and
�-3 fatty acids. Each of these compounds target different sections
of metabolism with varying results. The treatment options are
summarized in Table 1.

Glucose supplementation has been a controversial topic
as there is no clear understanding of glucose metabolism in
traumatized brains. Additionally, both hyper and hypoglycemia
have a negative effect on the brain post-TBI. In a study where

glucose was supplemented to the brain post-TBI, it was found that
patients were limited in their ability to metabolize glucose, even
when directly delivered into the brain (Stovell et al., 2023). On the
other hand, it is important to note that the glucose was delivered
into the brain’s extracellular fluid rather than the brain’s natural
circulatory system route of obtaining glucose.

Pyruvate has also been suggested as a possible therapeutic
for TBI due to its crucial role in metabolism and bioenergetics.
Supplementing with pyruvate should push the TCA cycle forward
and increase ATP production and metabolism in the hypometabolic
state post-injury. Unfortunately, pyruvate supplementation has had
mixed results. There were improvements in mitochondrial complex
I enzyme but no improvement in motor and sensory performance
(Ariyannur et al., 2021).

Succinate’s role in metabolism and ATP production cannot
be understated, making it a potential treatment for mitochondrial
dysfunction. Direct TCA supplementation of succinate improved
metabolism post-TBI in in vitro cultures and in humans, thus
making it a potential therapeutic for mitochondrial dysfunction in
TBI (Giorgi-Coll et al., 2017; Jalloh et al., 2017).

Lastly, supplementation with �-3 fatty acids has the
potential to kick-start the metabolic machinery due to their
importance in producing acetyl-CoA for the TCA cycle. Fatty acid
supplementation has been found to inhibit neuroinflammation
and necroptosis in TBI (Wu et al., 2023) and alleviate neurological
impairment, specifically in mice (Zhang et al., 2020). While these
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FIGURE 5

Cellular and mitochondrial ionic dysregulation in response to acute brain injury. (A) Pre-traumatic brain injury (TBI): Under normal physiological
conditions, ionic homeostasis is maintained at the synapse. Glutamate is released from the presynaptic neuron and binds to N-methyl-D-Aspartate
receptor (NMDA) and α- Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on the post-synaptic membrane, facilitating the
controlled influx of calcium (Ca2+) and Sodium (Na+). Mitochondria play a key role in maintaining ionic balance and supporting neuronal function
through efficient energy production. (B) Post-TBI: TBI disrupts this homeostatic balance, causing excessive glutamate release and overactivation of
NMDA and AMPA receptors. This results in uncontrolled Na+ influx, pathological Ca2+ accumulation, mitochondrial dysfunction, ROS production,
and initiation of apoptotic signaling pathways. These disturbances contribute to excitotoxicity, oxidative stress, and progressive neuronal injury.
Figure created in Biorender.com.

are promising results, it is important to remember that successful
treatment in mice might not be replicated in people.

3 Brain injury-induced secondary
mitochondrial dysfunction

Mitochondrial bioenergetic and metabolic dysfunction play
critical roles in TBI’s primary and secondary pathophysiology
(Figures 5A, B). The disruption of OXPHOS and ATP production
within the mitochondria leads to a cascade of detrimental effects,
including ionic imbalances, progression of neuroinflammation,
and cellular death. Compromised mitochondria fail to produce
sufficient ATP to maintain cellular ion gradients, impairing
ion pumps like the sodium (Na+)/potassium (K+)-ATPase,
leading to an accumulation of intracellular calcium (Ca2+)

and Na+ ions (Hubbard et al., 2019; Wu et al., 2022). The
ionic imbalance caused by mitochondrial dysfunction further
exacerbates neuronal damage through Ca2+ overload, which
disrupts the mitochondrial membrane potential and boosts the
production of ROS. The increased ROS levels contribute to
oxidative stress, damaging mitochondrial DNA (mtDNA), proteins,
and lipids, thus perpetuating mitochondrial dysfunction and
cellular injury (Wu et al., 2022). ROS and damaged mtDNA
released from dysfunctional mitochondria serve as damage-
associated molecular patterns (DAMPs), triggering the activation
of microglia and astrocytes, the primary immune cells in
the brain. This activation releases pro-inflammatory cytokines
and chemokines, propagating a neuroinflammatory response
(Peng et al., 2022). At last, damaged mitochondria-released
Cytochrome C triggers apoptotic processes by activating caspases
(Desagher and Martinou, 2000; Garrido et al., 2006). Apoptotic
signaling, oxidative stress, and mtDNA damage collectively
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exacerbate neuroinflammation and neurodegeneration (Bader and
Winklhofer, 2020; McGovern and Barreto, 2021) propagation in
the long term (De Gaetano et al., 2021; Hu et al., 2022). The
resulting inflammatory environment perpetuates a vicious cycle
of mitochondrial dysfunction, oxidative damage, inflammation,
and neurodegeneration (Trushina and McMurray, 2007; Fesharaki-
Zadeh, 2022; Liaudanskaya et al., 2023; Zhang et al., 2024). The
interplay between mitochondrial dysfunction, ionic imbalance,
and neuroinflammation highlights secondary injury mechanisms’
complex and interconnected nature following TBI (Hubbard et al.,
2019; Peng et al., 2022). The following section will further review
the cycle of secondary mitochondrial dysfunction following TBI
(Hubbard et al., 2019; Bernini et al., 2020; Wu et al., 2022).

3.1 Ionic disbalance as a consequence of
bioenergetic failure

The pathophysiological mechanisms underpinning the
neuronal damage caused by the interplay between glutamate
and ion flux post-traumatic brain injury and mitochondrial
bioenergetic and metabolic dysfunction are still poorly understood.
Studies suggest that post-TBI, excessive release of glutamate
(see section “2.2 Mitochondrial dysfunction and cellular
metabolism”), an excitatory neurotransmitter, overstimulates
glutamate receptors, such as voltage-gated calcium channels
(VGCC) and N-methyl-D-aspartate (NMDA), a-amino-3-
hydroxy-5-methyl-isoxazolepropionic acid (AMPA), and Kainate
receptors, leading to an influx of Ca2+ and Na+ ions into neurons
(Stanika et al., 2012; Weber, 2012; Luo et al., 2019; Hoffe and
Holahan, 2022). The resultant ionic imbalance and increased
intracellular calcium concentration further alter mitochondrial
function, creating a vicious cycle of metabolic dysfunction
and excitotoxicity, where mitochondrial impairment not only
exacerbates glutamate excitotoxicity but is also initially driven by
ion flux and glutamate release following TBI (Jeffs et al., 2007;
Stanika et al., 2012; Stovell et al., 2017; Granzotto et al., 2020).

A potential mechanism that drives ionic imbalance involves the
ionotropic glutamate receptors, specifically the NMDA receptors.
After the injury, these receptors cause a massive influx of Ca2+

and Na+ ions into neurons, setting off a series of events leading
to mitochondrial dysfunction and neuronal death (Luo et al., 2019;
Figure 5B). The cytosolic Ca2+ levels ([Ca2+]c) rise quickly and
persistently due to an excessive Ca2+ influx via NDMA receptors
and VGCC. The mitochondrial calcium uniporter (MCU) absorbs
this increased [Ca2+]c, ultimately resulting in mitochondrial Ca2+

overload (Cheng et al., 2013).
The elevated levels of mitochondrial Ca2+ ([Ca2+]m)

disrupt mitochondrial function through several mechanisms.
Mitochondrial permeability transition pore - elevated [Ca2+]m
can cause the inner mitochondrial membrane’s non-selective
channel, the mitochondrial permeability transition pore (mPTP),
to open. This allows pro-apoptotic molecules, like Cytochrome C,
to be released from the mitochondrial intermembrane space into
the cytosol, initiating the intrinsic apoptotic pathway (Springer
et al., 2018). Oxidative stress - enhancing the electron transport
chain’s activity and decoupling oxidative phosphorylation may
encourage the generation of ROS. ROS are produced mainly

by the mitochondrial respiratory chain, particularly complexes
I and III (Cheng et al., 2010). Superoxide anions are created
when these complexes experience increased electron leakage. This
anion can then be further transformed into hydroxyl radicals and
hydrogen peroxide (Pandya et al., 2023). The resultant oxidative
stress intensifies mitochondrial dysfunction and brain damage by
destroying mitochondrial proteins, lipids, and DNA. Mitochondrial
dynamics - excessive mitochondrial fission and fragmentation
can result from the influx and overload of [Ca2+]m, which
can contribute to the disturbance of mitochondrial dynamics.
Mitochondria are dynamic organelles that constantly fuse and
divide to preserve function and homeostasis and adjust to the
cell’s energy requirements. However, in the case of TBI, the
equilibrium between fusion and fission is disrupted, which causes
the mitochondria to fragment (Cheng et al., 2012; Guilhaume-
Correa et al., 2023; Liaudanskaya et al., 2023; Zhang et al., 2024).
This fragmentation impairs the production of ATP and facilitates
the release of pro-apoptotic factors, further contributing to
neuronal dysfunction and death (Figure 5B).

Among these mechanisms, the glutamate/Ca2+/ROS axis is
a detrimental cycle that prolongs and sustains neuronal injury
(Granzotto et al., 2020; Mira et al., 2023). The ROS generated
by mitochondria could further induce Ca2+ release from the
endoplasmic reticulum, partly by modulating the activity of stromal
interaction molecule (STIM) proteins. The ROS can oxidize STIM
1 and STIM 2, which act as Ca2+ sensors in the endoplasmic
reticulum, potentially modifying their ability to regulate store-
operated calcium entry (SOCE) (Nelson et al., 2018). STIM
oxidation may increase Ca2+ influx through the Orai channels,
further amplifying the excitotoxic cascade. Additionally, ROS
can elevate phospholipase C activity, which produces inositol
triphosphate (IP3), triggering more Ca2+ release from the
endoplasmic reticulum. This process may involve STIM2, which
is more sensitive to small changes in the endoplasmic reticulum
Ca2+ levels than STIM1 (Rao et al., 2015). The positive feedback
loop between Ca2+ and ROS exacerbates the excitotoxic cascade
and mitochondrial dysfunction (Rana et al., 2019; Fesharaki-Zadeh,
2022). ROS can also directly damage cellular membranes, proteins,
and DNA, further compromising neuronal viability (Maher et al.,
2018). Downregulation of STIM2 has been shown to reduce
calcium overload, decrease mitochondrial fragmentation, lower
ROS levels, prevent mitochondrial membrane potential loss, and
improve ATP synthesis impairment. STIM2 is, therefore, a crucial
regulator of SOCE in cortical neurons, and targeting STIM2 could
be a viable therapeutic strategy for reducing calcium dysregulation
and subsequent mitochondrial dysfunction after TBI (Rao et al.,
2015).

3.1.1 Targeting the mitochondrial ion
homeostasis post-TBI

Calcium Uniporter: Given the central role [Ca2+]m overload
plays in TBI-induced neuronal injury, targeting the MCU has
emerged as a promising treatment strategy. Pharmacological
inhibition of the MCU using compounds such as Ru360 and
minocycline has shown neuroprotective effects in several human
and animal TBI models and models of neurodegenerative diseases
(Cheng et al., 2012; Chitturi et al., 2021; Koulaeinejad et al., 2019;
Celorrio et al., 2022). These inhibitors lower [Ca2+]m uptake,
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suppress the production of ROS, and prevent the mPTP from
opening, thereby mitigating neuronal death. Genetic deletion of the
MCU can confer neuroprotection in animal models of TBI (Nichols
et al., 2018). However, the potential impact of inhibiting MCU on
physiological [Ca2+]m signaling and energy production must be
carefully evaluated. Selective inhibition of the MCU only during
the acute phase of TBI may provide a therapeutic window for
intervention without compromising long-term neuronal function.

Mitochondrial Fission and Fusion: Mitochondrial dynamics
encompass fusion and fission processes, which are pertinent in
maintaining mitochondrial function and adapting to cellular
energy demands. The excessive fission of the mitochondria and
fragmentation have been observed to contribute to neuronal
dysfunction and death in TBI (Fischer et al., 2016; Di Pietro et al.,
2017; Omelchenko et al., 2019; Guilhaume-Correa et al., 2023;
Liaudanskaya et al., 2023). Targeting proteins such as dynamin-
related protein 1, known to be involved in mitochondrial dynamics,
may represent a novel therapeutic approach for mitigating TBI-
induced neuronal injury (Qi et al., 2013; Fischer et al., 2016).
Mitophagy and other mitochondrial quality control systems are
critical in further maintaining cellular homeostasis and eliminating
damaged mitochondria. Impaired mitophagy has been implicated
in the pathogenesis of many neurodegenerative disorders,
including TBI (Zhu et al., 2022; Luan et al., 2023). Therefore,
enhancing mitophagy through genetic or pharmacological
interventions may promote the elimination of dysfunctional or
damaged mitochondria and attenuate neuronal damage in TBI.

Oxidative Stress: Oxidative stress, resulting from the imbalance
between ROS production and antioxidant defenses, is another key
contributor to TBI-induced neuronal injury. Antioxidant strategies
aimed at scavenging ROS and bolstering endogenous antioxidant
systems have shown promise in mitigating the deleterious
effects of TBI (Fesharaki-Zadeh, 2022). Natural antioxidants
such as curcumin, vitamin E, and resveratrol have demonstrated
neuroprotective effects in animal models of TBI (Dong et al., 2018;
Chen B. et al., 2023). These compounds benefit by neutralizing
ROS, attenuating lipid peroxidation, and modulating inflammatory
pathways. Also, developing targeted antioxidants, such as the
mitochondria-targeted compound MitoQ, has gained significant
attention (Zhou et al., 2018). These compounds accumulate
specifically within mitochondria and offer improved defense
against oxidative damage. In addition to exogenous antioxidants,
strategies aimed at enhancing endogenous antioxidant defenses
have also shown promise. For instance, the activation of nuclear
factor erythroid 2-related factor 2, a master regulator of antioxidant
gene expression, can confer neuroprotection in TBI models (Dong
et al., 2018). Pharmacological activators of nuclear factor erythroid
2-related factor 2, such as sulforaphane and dimethyl fumarate, may
represent novel therapeutic approaches to combat oxidative stress
in TBI.

Integrative Approach: The complexity of the excitotoxic
cascade and the multifaceted nature of mitochondrial dysfunction
in TBI pose significant drawbacks for developing robust and
effective therapies. Targeting a single ion channel or pathway may
not be sufficient in stopping the progression of neuronal damage.
Rather, an integrative and robust approach that combines the
modulation of multiple targets, such as NMDA receptors, MCU,
voltage-gated calcium channels, and antioxidant systems, may be
necessary to achieve optimal neuroprotection. Also, the timing of

the intervention is very critical in the context of TBI. While early
intervention may be essential to prevent initial excitotoxic damage,
sustained treatment may be necessary to tackle or address the
progressive and chronic nature of the condition.

3.2 Mitochondria dysfunction-induced
neuroinflammation

Neuroinflammation occurs after TBI and in neurodegenerative
disease. Multiple molecular pathways lead to acute and chronic
inflammation in almost all diseases; thus, inflammation has been
a pharmacological target for decades. However, TBI clinical trials
that completely inhibited inflammation demonstrated detrimental
outcomes, indicating that inflammation can benefit the brain’s
ability to recover post-trauma (Ramlackhansingh et al., 2011;
Mannix and Whalen, 2012; Gyoneva and Ransohoff, 2015; Chiu
et al., 2016; Jassam et al., 2017; Clark et al., 2019; Johnson et al.,
2023). Thus, understanding the context-dependent mechanisms
of inflammation and their effect on brain degeneration or
regeneration is crucial for targeted therapy in TBI patients. We will
focus here on mitochondrial-induced inflammation in the brain.

Mitochondrial-induced neuroinflammation post-TBI is a
critical aspect of the pathological response, characterized by the
release of mtDNA, Cytochrome C, and ATP into the cytosol and
extracellular space (Figure 6). These molecules act as DAMPs
that activate immune responses, including the STING (stimulator
of interferon genes) pathway in microglia, promoting an acute
inflammatory phenotype and the release of pro-inflammatory
cytokines such as TNF-α and IL-1β. This inflammatory cascade
exacerbates neuronal damage and contributes to the chronic phase
of TBI pathology.

ATP dysregulation: The central nervous system (CNS) is a
key site for purinergic signaling as all brain cell types express
purinergic P2 receptors that sense ATP. Extracellular ATP
(eATP) maintains CNS homeostasis by modulating microglia,
astrocyte, and oligodendrocyte responses. Astrocytic ATP can
modulate neuronal excitability, synaptic transmission, and CNS
plasticity through exocytotic (vesicular) and non-exocytotic
(channels/transporters) mechanisms (Davalos et al., 2005; Cekic
and Linden, 2016; Illes et al., 2019). Astrocyte-derived ATP can
activate purinergic P2X and P2Y receptors on neurons and other
glial cells, depolarizing neurons, increasing neuronal firing, and
modulating neurotransmitter release. These effects can be transient
or long-lasting, allowing for immediate and sustained modulation
of neuronal circuits (Mei et al., 2010; Zarrinmayeh and Territo,
2020). The precise regulation of astrocytic ATP signaling ensures its
involvement in physiological processes like neurovascular coupling
and synaptic plasticity, as well as pathological conditions such as
epilepsy and neuroinflammation (Illes et al., 2019). Microglia, the
brain’s resident immune cells, respond rapidly to injury through
processes modulated by ATP. The presence of eATP stimulates
microglial production of pro-inflammatory cytokines such as TNF-
α and IL-1β (Figure 6). Additionally, ATP release can affect
astrocytic signaling, influencing neuroinflammatory responses and
neuronal survival (Cekic and Linden, 2016; Cao et al., 2018).

During TBI, there is a significant release of ATP, which acts
as a danger signal. This release occurs immediately after injury,
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FIGURE 6

Inflammatory cascade following traumatic brain injury (TBI). Following TBI, damaged neurons release mitochondrial damage-associated molecular
patterns (DAMPs) – including adenosine triphosphate (ATP), Cytochrome C, and mitochondrial DNA (mtDNA) - into the extracellular space. These
DAMPs activate surrounding glial cells (both microglia and astrocytes) through distinct signaling pathways. ATP binds to purinergic receptors (e.g.,
P2X7) on microglia, promoting NLRP3 inflammasome formation and cytokine release. Cytochrome C activates TLR4, triggering apoptosome
assembly and caspase activation, leading to apoptosis and neuroinflammation. mtDNA stimulates the cGAS-STING pathway in microglia, resulting in
IRF3 phosphorylation and IFN-1 production. Additionally, mtDNA engages TLR9 receptors in endosomes, activating nuclear factor kappa B (NF-κB)
pathway in both microglia and astrocytes, driving pro-inflammatory cytokine release (IL-1β, IL-6, TNF-α). Together, these processes amplify
neuroinflammation through a positive feedback loop, perpetuating mitochondrial dysfunction and sustaining the inflammatory response in injured
brain tissue. cGAMP, cyclic guanosine monophosphate–adenosine monophosphate; cGAS, cyclic GMP-AMP synthase; IFN-1, type I interferons; IL,
interleukin; IRF3, interferon regulatory factor 3; LPS, lipopolysaccharide; MYD88, myeloid differentiation primary response 88; NLRP3,
nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3; P2x7, purinoreceptor 7; ROS, reactive oxygen species;
STING, stimulator of interferon genes; TBK1, TANK-binding kinase 1; TLR, toll-like receptor; TNF-α, tumor necrosis factor alpha; TRAF6, TNF
receptor-associated factor 6. Figure created in Biorender.com.

contributing to the inflammatory response (Moro et al., 2021).
For instance, in a controlled cortical impact (CCI) model, a large
release of ATP was observed in the cortex and hippocampus,
along with increases in glutamate and lactate and decreases in
glucose. Blockade of P2Y1 receptors or store-operated calcium
channels significantly reduced ATP and glutamate levels post-CCI,
indicating the role of these pathways in regulating extracellular ATP
(Moro et al., 2021). Overall, ATP plays a dual role in the CNS,
participating in both physiological and pathological processes.
Its regulation is crucial for maintaining cellular energy balance,
modulating inflammation, and ensuring proper neuronal function.
Therapeutic strategies targeting ATP signaling pathways hold
promise for treating neuroinflammation and other CNS disorders
(Davalos et al., 2005; Fiebich et al., 2014; Meyrat and von Ballmoos,
2019; Neupane et al., 2019; Giuliani et al., 2021).

Cytochrome C as a trigger of neuroinflammation: Cytochrome
C is an essential protein of the ETC, functioning as an electron
shuttle between complex III and complex IV. Under normal
conditions, Cytochrome C is in the mitochondrial intermembrane
space, playing a vital role in cellular energy production and
differentiation. However, during stressed conditions, Cytochrome

C can be released into the cytosol, where it activates apoptosis by
interacting with apoptosis-protease activating factor 1 and caspases
that dismantle the cell (Bertini et al., 2006; Garrido et al., 2006;
Wenzel et al., 2019; Figure 6).

Extracellular Cytochrome C (eCytC) significantly affects
inflammation and oxidative stress. When released into the
extracellular space by damaged astrocytic and microglial cells,
Cytochrome C acts as a DAMP, activating immune responses.
For instance, eCytC can induce the production of reactive oxygen
and nitrogen species by mononuclear phagocytes, enhancing
the secretion of cytotoxins. This process is mediated at least
partially by toll-like receptor 4 (TLR4) and the JNK signaling
pathway, which are crucial for modulating microglial functions
(Gouveia et al., 2017; Wenzel et al., 2019; Figure 6). In
neuroinflammation, Cytochrome C released from cells undergoing
apoptosis can interact with astrocytes, inducing the production
of pro-inflammatory cytokines such as IL-1β and IL-8 (Figure 6).
Blocking TLR4 with specific antibodies or using TAK 242 can
mitigate these effects, highlighting the role of TLR4 in CytC-
induced inflammation (Wenzel et al., 2019).
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Interestingly, studies have shown that the administration of
Cytochrome C can have protective effects in certain conditions. In
a model of hemorrhagic shock and reperfusion injury, Cytochrome
C administration improved lactate clearance, indicating reduced
acidosis. It also decreased hepatic lipid peroxidation, a marker
of oxidative stress, and increased the activity of the antioxidant
enzyme glutathione peroxidase (Powell et al., 2017). Furthermore,
Cytochrome C restored pulmonary levels of the inflammatory
cytokine TNF-α to non-injured levels and enhanced the activity
of mitochondrial complex I in the liver. These findings suggest
that Cytochrome C can limit oxidative stress and inflammation,
providing a potential therapeutic approach for oxidative damage
and mitochondrial dysfunction (Powell et al., 2017). Moreover,
elevated levels of plasma Cytochrome C upon hospital admission in
patients with blunt trauma have been correlated with injury severity
and survival probability, suggesting its utility as a biomarker
for assessing trauma severity and predicting outcomes. Higher
plasma Cytochrome C levels were observed in patients with
more severe injuries, indicating its potential role in clinical
diagnostics and patient management (Eleftheriadis et al., 2016).
In summary, Cytochrome C plays a dual role in cellular function
and stress response. While it is crucial for electron transport and
apoptosis under normal and stressed conditions, its extracellular
presence can significantly modulate immune responses and
inflammation. Understanding these mechanisms opens up new
avenues for therapeutic interventions in diseases characterized by
mitochondrial dysfunction and oxidative stress.

mtDNA as a devastating trigger: Mitochondrial dysfunction,
often resulting from acute or chronic events such as mutated
mtDNA, oxidative stress, drug exposure, compromised
mitochondrial dynamics, and aging, plays a significant role
in neuroinflammation (Bhat et al., 2015; Bhatti et al., 2017;
Fesharaki-Zadeh, 2022; Zong et al., 2024). Cytosolic mtDNA,
which refers to the presence of mtDNA in the cytosol, is a
major contributor to this inflammatory response. Under normal
conditions, DNase prevents an accumulation of cytosolic mtDNA
through digestion. However, various mechanisms allow mtDNA
to escape into the cytosol or extracellular matrix, including the
mPTP, BAX/BAK macropores, and exosome-mediated release,
among others (Nicolson, 2014). The opening of the mPTP under
stress conditions allows the free movement of small molecules
and metabolites into the cytoplasm, including mtDNA, leading
to calcium overload, reduced ATP production, and cell death
(Elustondo et al., 2016). Similarly, BAX/BAK macropores can form
in the mitochondrial membrane, facilitating the release of mtDNA
into the cytosol. These events contribute to the neuroinflammatory
milieu by activating various immune pathways, including the
STING pathway (Decout et al., 2021; Ding et al., 2022; Hu et al.,
2022; Kong et al., 2022). Upon detection of cytosolic mtDNA by
cGAS (cyclic GMP-AMP synthase), ATP and GTP are converted
to cGAMP, which activates the STING pathway, leading to an
inflammatory response (McArthur et al., 2018; De Gaetano et al.,
2021; Hu et al., 2022; Figure 6).

Traumatic brain injury induces significant mitochondrial
dysfunction not only in the brain but also systemically. Raised
levels of mtDNA in blood and cerebrospinal fluid after brain injury
can be used as biomarkers to determine the severity of injury
and the inflammatory cytokine response. Studies have shown that

mtDNA can be detected in blood and cerebrospinal fluid post-
TBI, providing a means to monitor injury severity and systemic
inflammatory responses (Kayhanian et al., 2022). Research using a
middle cerebral artery occlusion (MCAO) model in mice showed
that the mtDNA-STING axis directs microglial polarization toward
a pro-inflammatory phenotype. Inhibition of STING reduced
this pro-inflammatory polarization, suggesting that targeting the
mtDNA-STING axis could shift microglial polarization toward
an anti-inflammatory phenotype, offering potential therapeutic
benefits for ischemic stroke and TBI (Kong et al., 2022).

Astrocytes contribute to the inflammatory response post-
TBI by releasing mtDNA exosomes. These astrocyte-derived
exosomes have been shown to alleviate TBI-induced neuronal
defects by reducing oxidative stress and neuronal apoptosis via
the activation of Nrf2/HO-1 (heme oxygenase (1) signaling. This
mechanism highlights the protective role of astrocyte-derived
exosomes in mitigating the effects of TBI (Zhang et al., 2021).
Additionally, extracellular vesicles (EVs) containing mtDNA and
specific proteins can serve as biomarkers for detecting TBI. A study
identified serum amyloid A (SAA) and mtDNA in EVs as novel
markers for TBI. Profiling EV content and dynamics through
liquid biopsies could revolutionize TBI diagnostics, offering a
non-invasive method to assess injury severity and progression
(Kumar et al., 2017; Tang et al., 2024). In conclusion, mitochondrial
dysfunction and the release of mtDNA play pivotal roles in
the neuroinflammatory response following TBI. Understanding
the mechanisms of mtDNA release and its impact on immune
cell activation opens new avenues for therapeutic interventions
and diagnostic tools in managing TBI and related neurological
disorders.

3.2.1 Targeting mitochondria-induced
neuroinflammation

Anti-inflammatory Strategies: Neuroinflammation plays a
significant role in the pathology of TBI and neurodegenerative
diseases. However, complete inhibition of inflammation can
have adverse effects, as controlled inflammation is necessary
for recovery. One promising approach is the use of hydrogen
sulfide (H2S) donors. H2S has been shown to reduce the
production of ROS and pro-inflammatory cytokines such as TNF-
α and IL-1β in microglia, demonstrating its potential to mitigate
neuroinflammation and provide neuroprotection (Kshirsagar et al.,
2021; Lin et al., 2024).

Targeting ATP Signaling: Drugs that modulate eATP
concentrations in the CNS are emerging as potential therapies for
neuroinflammation, given eATP’s roles in synaptic transmission,
mood disorders, cortical spreading depression, and microbiota-
gut-brain axis signaling (Davalos et al., 2005; Fiebich et al., 2014;
Giuliani et al., 2021). eATP is crucial in neuroinflammation and
neuronal function. Targeting purinergic receptors (P2X and P2Y),
which mediate ATP signaling, can help modulate inflammation
and protect neurons. For instance, blocking P2Y1 receptors
significantly reduces ATP and glutamate levels, decreasing
excitotoxicity and inflammation post-TBI (Engel et al., 2021;
Lin et al., 2024). These therapeutic strategies aim to restore
ATP homeostasis, reducing neuroinflammatory responses and
promoting neuronal recovery.

Modulating Cytochrome C: Cytochrome C release from
mitochondria can trigger apoptosis and inflammation. Blocking
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Toll-like receptor 4 (TLR4) with specific antibodies or using
inhibitors like TAK-242 can reduce Cytochrome C-induced
inflammation. Additionally, strategies enhancing mitochondrial
function and preventing Cytochrome C release, such as
antioxidants and mitochondrial stabilizers, can protect against
neuroinflammation. These interventions target the pathways
activated by eCytC, which acts as a DAMP (Eleftheriadis et al.,
2016; Kshirsagar et al., 2021).

Inhibiting the mtDNA-STING Pathway: mtDNA released
into the cytosol acts as a danger signal, activating the STING
pathway and promoting inflammation. Targeting this pathway
offers a therapeutic approach to reduce inflammation. STING
inhibitors can reduce pro-inflammatory microglial polarization,
as demonstrated in models of ischemic stroke and TBI. This
approach can shift the inflammatory response toward a more anti-
inflammatory phenotype, potentially improving outcomes (Liao
et al., 2020; Decout et al., 2021; Ding et al., 2022; Hu et al., 2022;
Ma et al., 2023).

Utilizing Astrocyte-Derived Exosomes: Astrocytes release
exosomes containing mtDNA, which can modulate the
inflammatory response. These exosomes have been shown
to alleviate neuronal defects post-TBI by reducing oxidative
stress and apoptosis by activating the Nrf2/HO-1 signaling
pathway. Harnessing the protective effects of astrocyte-derived
exosomes represents a novel therapeutic strategy to mitigate
neuroinflammation and promote neuronal survival (Gharbi et al.,
2020; Zhang et al., 2021; Wan et al., 2022; Zong et al., 2024).

Addressing the pathways involved in mitochondrial
dysfunction and neuroinflammation post-TBI is crucial for
developing effective treatments. By targeting inflammation, ATP
signaling, Cytochrome C, and the mtDNA-STING pathway, as well
as leveraging astrocyte-derived exosomes, researchers can create
combinatorial therapies that reduce neuronal damage and enhance
recovery. Continued research into these mechanisms is essential
for advancing therapeutic strategies and improving outcomes for
patients with TBI and neurodegenerative disorders (Zong et al.,
2024).

4 Future directions

Addressing mitochondrial dysfunction post-traumatic brain
injury requires continued research into several key areas to
develop effective treatments and improve patient outcomes. Future
research should focus on detailed mechanistic studies to investigate
the precise molecular pathways involved in mitochondrial
bioenergetic and metabolic dysfunction and their relationship with
neuroinflammation and oxidative stress, including the role of
mitochondrial permeability transition pores and their inhibitors in
mitigating mitochondrial damage and apoptosis. Elucidating the
specific contributions of different mitochondrial components such
as mtDNA, Cytochrome C, and ATP in triggering and sustaining
neuroinflammation is essential.

Targeting mitochondrial mechanisms to develop therapeutics
will be critical. Specifically, targeting mitochondrial bioenergetics
with PGC-1α agonists, mitochondrial-targeted antioxidants like
MitoQ and SS-31, and modulators of mitochondrial biogenesis
should yield effective therapies (Table 1). The efficacy of ketone

bodies and ketogenic diets in enhancing mitochondrial function
and reducing oxidative stress in the injured brain warrants further
investigation. The potential of hydrogen sulfide (H2S) donors,
purinergic receptor blockers, and STING pathway inhibitors in
reducing neuroinflammation and promoting neuronal recovery
should be explored.

Understanding cell-specific responses is important for
comprehending how different cell types (neurons, astrocytes,
microglia, oligodendrocytes) respond to mitochondrial
dysfunction and contribute to the overall pathology of
TBI. It is crucial to analyze the impact of mitochondrial
dysfunction on astrocyte-derived exosomes and their role
in modulating neuroinflammatory responses and neuronal
survival. Characterizing the temporal dynamics of mitochondrial
dysfunction across different brain regions and cell types following
TBI, including studying the biphasic response in mitochondrial
bioenergetics dysfunction in regions like the frontal cortex and
striatum compared to the delayed dysfunction in the hippocampus,
is vital for understanding long-term effects on neuronal plasticity,
cognitive deficits, and neurodegeneration.

Developing biomarkers reflecting mitochondrial status
is another promising area for TBI research. EV-containing
biomarkers such as mtDNA, Cytochrome C, and serum amyloid
A may effectively diagnose and monitor TBI’s severity early.
Utilizing advanced imaging and molecular techniques to profile
mitochondrial and metabolic changes in vivo and correlate them
with clinical outcomes is essential for advancing our understanding
of mitochondrial dysfunction in TBI. By addressing these future
directions and unresolved mechanisms, researchers can develop
targeted therapies to mitigate the effects of mitochondrial
dysfunction, ultimately improving TBI patients’ recovery and
quality of life.

5 Conclusion

Mitochondrial dysfunction is a pivotal factor in the
pathogenesis of TBI, driving neuroinflammation, oxidative
stress, and metabolic disturbances. The release of mitochondrial
components such as mtDNA, Cytochrome C, and ATP into the
cytosol and extracellular space activates inflammatory pathways,
exacerbating neuronal damage and contributing to chronic TBI
pathology. Addressing mitochondrial dysfunction is crucial for
mitigating secondary brain injury and improving outcomes for
TBI patients. Continued research into the underlying mechanisms
and therapeutic approaches is essential for advancing clinical
treatments for TBI and neurodegenerative diseases.
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