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Recently, two young individuals, aged 15 and 21, were diagnosed with sporadic

Creutzfeldt-Jakob disease (sCJD) in Canada and the United States, respectively (D’Arcy

et al., 2019; Ahn et al., 2024). Considering that the mean age of onset for sCJD is 67

years, these early onset cases are exceedingly rare. Both patients were methionine/valine

heterozygous at codon 129 of the prion protein gene (PRNP) and were classified as the

MV1 subtype of sCJD. Both individuals exhibited an atypical clinical presentation and

unusual profile of PrPSc, notably lacking the diglycosylated glycoform. Following clinical

onset, disease progression was remarkably slow in both cases, with disease durations of 119

and 39 months in the 15- and 21-year-old individuals, respectively.

Although sCJD in adolescents is very rare, such cases are not unprecedented. Two

adolescent cases, in which patients succumbed to the disease at ages 16 and 20, were

previously reported in the United Kingdom (Murray et al., 2008). In one of these cases,

the diagnosis of sCJD was confirmed based on neuropathological findings, PrPSc subtype

analysis, and transmission in mice. Additionally, a 19-year-old patient was identified in

Germany among a cohort of 52 sCJD patients aged 50 or younger at symptom onset

during 1993–2003 (Boesenberg et al., 2005). The clinical manifestations in younger sCJD

patients differ from those in older individuals in terms of clinical signs, disease duration,

and neuropathological lesion profiles (Pocchiari et al., 2004; Boesenberg et al., 2005), with

a younger age at onset correlating with prolonged survival (Pocchiari et al., 2004). In a

cohort of 2,304 sCJD cases identified in Western Europe between 1993 and 2000, two

cases with onset between 11 and 20 years exhibited disease durations of 54 and 58 months,

respectively (Pocchiari et al., 2004). Valine homozygosity at codon 129 was more frequent

in the “young” cohort (patients younger than 50 at symptom onset) compared to the “old”

cohort (patients older than 50; Boesenberg et al., 2005). The ratio of type 1 to type 2

PrPSc subtypes, determined based on glycoform ratios and the electrophoretic mobility

of proteinase K-resistant core, did not differ between the two groups (Boesenberg et al.,

2005).

In the case of the 21-year-old patient identified in the United States (Ahn et al.,

2024), the absence of the diglycosylated isoform and the higher molecular weight of the

mono- and unglycosylated isoforms, relative to those typically observed in type 1 or
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type 2 PrPSc subtypes, raise questions about whether the disease

phenotype aligns with any known sCJD subtype. The possibility

of CJD transmission was ruled out, as the patient had never

undergone any medical procedures associated with a risk of

prion transmission nor traveled to countries affected by bovine

spongiform encephalopathy (BSE; Ahn et al., 2024). Nevertheless,

although such an early age of onset is rare for sCJD, it is

characteristic of variant CJD (vCJD), which has a median onset age

of 28 years.

Unlike sCJD, vCJD is acquired through the consumption of

beef or beef products contaminated with BSE, also known as

mad cow disease—a fatal prion disorder in cattle (Prusiner, 1997).

While prion diseases primarily affect the brain, the lymphoreticular

system playing a crucial role in transmission of BSE to humans

(Hilton et al., 2004b; Aguzzi et al., 2013). Shortly after exposure,

lymphotropic prion strains, including BSE, colonize secondary

lymphoid organs (SLOs), where they exploit follicular dendritic

cells to replicate and accumulate before spreading to the central

nervous system (CNS; Hilton et al., 1998; Brown et al., 1999;

McCulloch et al., 2011; Mabbott, 2012; Aguzzi et al., 2013). Similar

to BSE, chronic wasting disease (CWD), a prion disease affecting

cervids, also exhibits strong lymphotropism (Sigurdson et al.,

1999).

CWD, which affects deer, elk, and moose, has been rapidly

expanding across Canada and the U.S. As of early 2025, CWD

has been detected in 36U.S. states (USGS, 2025). The disease is

highly contagious and primarily transmitted horizontally among

cervids. CWD prions are shed in bodily fluids such as urine, saliva,

and feces, contributing to persistent environmental contamination,

particularly in soil (Tamgüney et al., 2009; Bartelt-Hunt and Bartz,

2013; Henderson et al., 2015, 2017; Davenport et al., 2018; Denkers

et al., 2020; Tennant et al., 2020; Hwang et al., 2021; Denkers

et al., 2024; Kuznetsova et al., 2024). Prions can be taken up by

plants from contaminated soil and accumulate at levels sufficient

for transmission to animals (Pritzkow et al., 2015; Carlson et al.,

2023). Additionally, ticks have been shown to carry lethal doses of

CWD infectivity (Inzalaco et al., 2023). While a substantial portion

of the U.S. and Canadian populations is exposed to CWD through

environmental contamination, the risk of transmission to humans

is considered very low due to a significant species barrier.

The species barrier of CWD transmission to humans has

been extensively studied using mouse models expressing human

prion protein (PrPC; Kong et al., 2005; Sandberg et al., 2010;

Wilson et al., 2012; Race et al., 2019; Hannaoui et al., 2022;

Race et al., 2022; Wadsworth et al., 2022). In nearly all studies,

humanized mice inoculated with CWD prions showed no clinical

or subclinical disease and no detectable prion infectivity, with one

notable exception (Hannaoui et al., 2022). In that study, infected

humanized mice exhibited atypical clinical signs, prion seeding

activity, and transmissible prion infectivity (Hannaoui et al., 2022).

In all previous studies assessing this risk, the intracranial

(ic) route was used to administer CWD prions to humanized

mice (Kong et al., 2005; Sandberg et al., 2010; Wilson et al.,

2012; Race et al., 2019; Hannaoui et al., 2022; Race et al., 2022;

Wadsworth et al., 2022). Ic inoculation is the most effective

method for transmitting prions both within and across species

(Race et al., 2009). However, successful cross-species transmission

of lymphotropic prion strains appears to depend on SLOs for

adaptation to a new host. Among the aforementioned studies,

only one examined PrPSc accumulation in the spleen following

CWD transmission to humanized mice (Wilson et al., 2012).

When prions, such as BSE and CWD, cross species barriers, SLOs

consistently exhibit greater permissiveness to prion replication

than the brain (Béringue et al., 2012). Moreover, even after ic

inoculation, lymphoreticular tissues exhibit a higher capacity than

the brain to sustain and replicate lymphotropic prion strains,

particularly at low-dose exposure (Halliez et al., 2014). This

may be attributed to differences in glycosylation and sialylation

between prions residing in the lymphoreticular system and those

in the brain (Srivastava et al., 2015; Wagner et al., 2022). In

spleens and lymph nodes, prions exhibit increased sialylation,

potentially enhancing their resistance to clearance by innate

immune system (Srivastava et al., 2015, 2017). Consequently, SLOs

may provide amore favorable environment than the brain for prion

adaptation to a new species. Furthermore, prion isolates, including

CWD, have been shown to produce divergent disease phenotypes

when introduced via ic versus peripheral routes, suggesting that

brain and lymphoreticular tissues preferentially support different

variants of PrPSc present in natural prion isolates (Béringue

et al., 2012; DeFranco et al., 2024). Whether peripheral exposure

facilitates more efficient cross-species adaptation of CWD prions

remains unclear. Nonetheless, assessing PrPSc accumulation in

SLOs following ic inoculation of humanized mice could provide a

more sensitive approach for evaluating the potential risk of CWD

transmission across species.

Additionally, with one exception (Wilson et al., 2012), all

previous studies assessing the zoonotic potential of CWD have

employed humanized mice homozygous for either 129MM or

129VV PrP (Kong et al., 2005; Sandberg et al., 2010; Race et al.,

2019; Hannaoui et al., 2022; Race et al., 2022; Wadsworth et al.,

2022). In the study that employed heterozygous 129MV humanized

mice, the risk of transmission was assessed using only one CWD

isolate (Wilson et al., 2012). In 129MV hosts, PrPSc structures must

accommodate both 129M and 129V PrP molecules, likely resulting

in an alternating incorporation of these isoforms. The presence

of both 129M and 129V PrPC substrates is expected to boost the

conformational diversity of PrPSc variants. Whether the structure

of 129MV PrPSc is more compatible with CWD strains than that

of 129MM or 129VV PrPSc, and whether the 129MV genotype is

more susceptible to CWD prions, remains to be investigated.

With the continuous geographical expansion of CWD into

highly populated areas and its increasing prevalence, human

exposure—including that of children—to high doses of CWD

prions via the environment may become unavoidable. The

decomposition of carcasses from free-ranging deer infected with

CWD could create environmental hotspots containing high

concentrations of prions, posing long-term risks to ecosystems.

The uptake of prions by plants raises the possibility of

contamination in the food chain, including dairy products.

Evidence from prion research suggests that prions can be

present in the mammary glands and milk of sheep incubating

scrapie, the prion disease of sheep (Ligios et al., 2005; Lacroux

et al., 2008; Maddison et al., 2009). If CWD prions can be

adsorbed by the digestive system of cattle without causing
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clinical disease, they may still be excreted into milk, thereby

introducing an unrecognized route of human exposure. The

potential formilk contamination in dairy cattle that are not infected

but are persistently exposed to CWD prions in contaminated

environments warrants investigation.

A number of species, including goats, sheep, swine, rodents,

mink, ferrets, raccoons, and possibly wild pigs and cattle are

susceptible to CWD (Hamir et al., 2005, 2006; Raymond Gregory

et al., 2007; Sigurdson et al., 2008; Heisey et al., 2010; Greenlee et al.,

2012; Kurt and Sigurdson, 2016; Moore et al., 2017, 2019, 2022;

Soto et al., 2025). Prions are subject to evolution and adaptation

(Li et al., 2010; Baskakov, 2014). Upon transmission to new hosts,

prion replication in a novel molecular environment enhances the

conformational diversity of PrPSc variants, accelerating evolution

and generating new strains with altered transmission characteristics

(Gonzalez-Montalban et al., 2013; Makarava and Baskakov, 2013;

Katorcha et al., 2018). As such, interspecies passage of CWD

through different hosts may serve as a breeding ground for novel

prion strains to emerge.

To date, more than 10 distinct CWD strains have been

identified in deer, elk, moose, and reindeer (Otero et al., 2023;

Sun et al., 2023). Assessing the transmissibility of diverse CWD

strains is crucial for evaluating the potential risk of transmission to

humans. Due to prion protein gene polymorphisms, cross-species

transmission of CWD strains among different cervid species can

alter strain properties, potentially leading to the emergence of novel

variants with modified transmission characteristics (Bian et al.,

2019, 2021; Otero et al., 2023). Such adaptations could expand the

range of hosts susceptible to CWD.

Given the scale of potential CWD exposure, rare instances

of transmission to humans might be expected beyond those

directly linked to hunting. Since the clinical presentation of

CWD in humans has not been defined, it is challenging to

determine whether individuals diagnosed with sporadic sCJD

at young ages, such as 15 and 21 years old, may have been

infected with CWD. Autopsy of SLOs, including the spleen, lymph

nodes, and tonsils, could help differentiate between sporadic and

acquired forms of CJD. In sCJD patients, prions are detected

in SLOs at a low prevalence (Glatzel et al., 2003), whereas in

vCJD cases, linked to consumption of BSE-contaminated products,

prions have been found in lymphoreticular tissues at a 100%

rate (Hill et al., 1999; Ironside et al., 2002). Similarly, if CWD

were transmissible to humans, it is expected that prions would

accumulate in SLOs. Therefore, histopathological examination and

biochemical analysis of PrPSc in SLOs should be conducted for all

young individuals succumbed to CJD, as well as older individuals

presenting with atypical clinical or neuropathological features.

Additionally, transmission studies in animal models could provide

further insights into distinguishing between sCJD and zoonotic

forms of CJD.

Lymphotropic prion strains, such as BSE, acquired through

cross-species transmission, can persist stably and silently in SLOs

for extended periods without neuroinvasion (Peden et al., 2010;

Bishop et al., 2013). In fact, SLOs serve as silent reservoirs

of prion infection, where prions may remain undetected while

posing a potential risk of transmission (Hilton et al., 2004a; Peden

et al., 2004; Wroe et al., 2006; Peden et al., 2010; Bishop et al.,

2013; Gill et al., 2013). Screening human lymphoreticular tissues

in regions with a long history of CWD could provide valuable

insights into whether CWD prions are silently harbored within the

human population.

In conclusion, the expanding scale of human exposure to

the growing CWD epidemic necessitates urgent discussions on

safeguarding public health. The implementation of lymphoid tissue

autopsies could aid in differentiating between sCJD from CJD

acquired via transmission. Furthermore, improved risk assessment

for CWD transmission to humans could be achieved by analyzing

PrPSc accumulation in both the spleen and brain following ic

inoculation of humanized mice along with the use of humanized

mouse models with the 129MV genotype.
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