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Striatal function scrutinized 
through the PAN-TAN-FSI 
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Understanding the information encoded by distinct components of the neuronal 
circuitry in the striatum represents an avenue for elucidating the role of this 
subcortical region in adaptive behavior and its dysfunction in pathological 
conditions. In behaving animals, conventional single neuron recordings generally 
differentiated between three main electrophysiologically identified neuron subtypes 
in the striatum, referred to as phasically active neurons (PANs), tonically active 
neurons (TANs), and fast-spiking interneurons (FSIs), assumed to correspond to 
GABAergic spiny projection neurons, cholinergic interneurons, and parvalbumin-
containing GABAergic interneurons, respectively. Considerable research has 
been devoted to exploring the behavior-related activities of neurons classified 
electrophysiologically into PANs, TANs, and FSIs in animals engaged in task 
performance, mostly monkeys. Although precise neuron identification remains 
a major challenge, such electrophysiological studies have provided insights into 
the functional properties of presumed distinct striatal neuronal populations. In 
this review, we will focus on current ideas about the functions subserved by these 
neuron subtypes, emphasizing their link to specific aspects of behaviors. We will 
also underline the issues that are yet to be resolved regarding the classification 
of striatal neurons into distinct subgroups which emphasize the importance of 
considering the potential overlap among electrophysiological characteristics and 
the molecular diversity of neuron types in the striatum.
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Introduction

The striatum has been implicated in different behavioral control mechanisms, particularly 
those related to action selection and reward-guided learning. Efforts aimed at elucidating the 
role of this subcortical structure in motivated behaviors are mostly based on an examination 
of the coding properties of the components of the striatal circuitry in animals engaged in task 
performance. Considerable research has been done during the last five decades in exploring 
the behavior-related activity of electrophysiologically identified subtypes of neurons in the 
striatum of both rodents and monkeys trained to perform a variety of tasks. The single-neuron 
recording method has been used to study the correlation of neuronal activity with behavior, 
in an attempt to electrophysiologically identify neuronal populations whose properties are 
thought to reflect a specific function during behavior. There is broad acceptance that striatal 
neurons can be divided into three main categories based on electrophysiological features and 
much progress has been made in understanding their properties reflecting specific function 
during behavior. Through a better evaluation of their behavioral relationships, it is hoped that 
we will gain insights into the role of distinct neuronal populations in regulating the information 
processing within the striatal circuitry. In this review, we summarize the main ideas about the 
functions of the distinct types of striatal neurons recorded extracellularly in behaving animals, 
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mostly monkeys. We conclude on the newest experimental approaches 
that allow for a better targeting of specific neuronal populations in 
combination with monitoring of their activity to disentangle the 
specific behavioral contribution of identified striatal neurons.

Functional classification of neuronal 
types in the striatum

In the early 1980s, electrophysiological studies in behaving 
monkeys began to differentiate between two main types of neurons 
within the striatum, termed phasically active neurons (PANs) and 
tonically active neurons (TANs), presumed to be  GABAergic 
projection neurons and cholinergic interneurons, respectively 
(Kimura et  al., 1984; Alexander and DeLong, 1985). More recent 
analyses of spiking features in the monkey striatum have allowed to 
distinguish a third class of neurons known as fast-spiking interneurons 
or FSIs (Adler et al., 2013; Yamada et al., 2016; Marche and Apicella, 
2017; Banaie Boroujeni et  al., 2020) thought to correspond to 
parvalbumin-containing GABAergic interneurons which have first 

been studied more thoroughly in rodents (Berke, 2011). Figure  1 
illustrates the three electrophysiologically defined categories of 
neurons recorded in the striatum of the macaque monkey during task 
performance. Although the large majority of electrophysiological 
studies, particularly in monkeys, differentiated between three different 
neuron types within the striatum, an inability to classify neurons into 
distinct classes by using spontaneous firing rate combined with spike 
waveforms has been reported in very rare instances (Costa et  al., 
2019). This is, in actual fact, an unexpected result, given that PANs 
and TANs are the most frequently recorded and easily differentiable 
neurons in the monkey striatum. The reasons for the lack of separation 
into distinct neuron types have yet to be clarified.

Electrophysiological work with behaving rodents has also 
classified the neurons of the striatum into three main categories, 
sometimes with different labels (e.g., high-firing interneurons or 
HFNs, instead of FSIs), resembling the three recognized types of 
extracellularly recorded neuron found in the striatum of monkeys 
(Schmitzer-Torbert and Redish, 2008; Hernandez et al., 2013; Atallah 
et al., 2014; Thorn and Graybiel, 2014). The classification of striatal 
neurons based on electrophysiological features in behaving rodents 

FIGURE 1

Examples of behavior-related changes in activity of the three main categories of neurons recorded in the monkey striatum. Neuronal activity is 
represented as raster plots (bottom) and perievent time histograms (top) during the performance of a visuomotor task in which the monkey reacted 
to a visual signal (red marker) by releasing a resting bar (green marker) and reaching a target (blue marker) to obtain a liquid reward. Each dot 
corresponds to the time of a neuronal impulse or spike and each line of dots to one trial. Raster plots are aligned on the onset of the stimulus serving 
as a trigger for arm-reaching movements and trials were ordered off-line according to the latency of movement. Vertical calibration is in spikes/s for all 
histograms. Baseline firing rates (i.e., activity during the period immediately preceding stimulus onset) vary among the three neuronal populations. 
PANs are usually silent or have a baseline firing rate < 1 spike/s, and display transient or sustained increases in discharge rate occurring in distinctive 
forms during different periods of the task, reflecting different processes that participate in movement generation. TANs fire more regularly than PANs, 
with firing frequencies ranging from 3 to 12 spikes/s, and exhibit quite homogeneous task-related changes in activity consisting mostly of a short 
lasting pause in firing in response to the visual signal. FSIs are characterized by a high firing variability with complex task-related modulations that 
combined increases and decreases in firing rate. Unlike TANs, FSI activity did not exhibit coordinated changes at specific moments within the context 
of the task used here.

https://doi.org/10.3389/fncel.2025.1572657
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Apicella et al. 10.3389/fncel.2025.1572657

Frontiers in Cellular Neuroscience 03 frontiersin.org

has also allowed to distinguish a rare class of spontaneously active 
neuron forming a potential fourth class corresponding to 
low-threshold-spiking (LTS) interneurons (Berke et al., 2004; Gage 
et  al., 2010), presumably somatostatin-expressing GABAergic 
interneurons. Recently, it has been suggested that putative LTS 
interneurons could also be identified in the monkey (Banaie Boroujeni 
et al., 2020). These presumed interneurons have not been extensively 
studied so far with electrophysiological recordings in behaving 
animals, due to their low number and difficulty in distinguishing them 
clearly (but see Holly et al., 2019).

The organization of inputs to each of the three main neuronal 
populations identified electrophysiologically has attracted much 
attention in order to gain insights into their functional properties. 
Each neuronal type in the striatum is under the influence of a 
dopaminergic input from the midbrain. It is commonly believed that 
the activity of PANs is dependent on their location within the striatum, 
based on the topography of cortico-striatal projections which 
determines regions of distinct functional specializations, (i.e., 
sensorimotor, associative and limbic). The inputs from the thalamus 
(intralaminar nuclei) to cholinergic TANs are assumed to be more 
prevalent, compared to those from the cortex. Recently, rabies tracing 
studies in rodents have reported that cortical inputs to FSIs (presumed 
parvalbumin-containing GABAergic interneurons) originate 
predominantly from sensorimotor areas, with little afferents from 
thalamus, whereas cortical inputs to TANs preferentially come from 
medial prefrontal areas (Klug et al., 2018). The same study showed that 
TANs are also under an inhibitory influence of the external globus 
pallidus and an excitatory influence of the pedunculopontine nucleus.

In the following subsections, we provide a brief overview of the 
properties of the three “classic” striatal cell populations identified 
electrophysiologically in behaving animals. Due to space 
considerations, we rely mainly on single-neuron recording studies 
conducted on nonhuman primates.

Phasically active neurons

Early investigations of the activity of PANs, the most common 
type of neurons recorded in the striatum of awake animals, have 
shown that these presumed projection neurons display a large variety 
of activity modulations following or anticipating a task event, either 
sensory or motor. It has been well documented that the task-related 
modulations of PAN activity are linked to various processes, such as 
the preparation, initiation, and execution of movements. Many PANs 
also display activations preceding or following rewards (Apicella et al., 
1991, 1992; Hikosaka et al., 1989; Schultz et al., 1992), with responses 
varying according to reward quality (Hassani et al., 2001; Cromwell 
and Schultz, 2003). Several PAN activations related to ongoing task 
performance may be influenced by the expectation of reward delivered 
at trial end, emphasizing their involvement in motivational aspects of 
task control (Hollerman et al., 1998; Kawagoe et al., 1998; Tremblay 
et al., 1998; Lauwereyns et al., 2002). In recent years, several studies 
have shown that PANs can be modulated by the values associated with 
stimuli and actions, emphasizing their role in reward-guided action 
selection and various forms of learning (Samejima et al., 2005; Lau 
and Glimcher, 2008; Ding and Gold, 2010; Cai et al., 2011; Kim and 
Hikosaka, 2013; Nonomura and Samejima, 2019). These studies have 
identified the striatum as a critical component in the brain circuitry 

underlying the ability to develop effective decision-making strategies 
based on expected value (Hikosaka et al., 2014). Some PANs were also 
selectively modulated by events or actions associated with outcome 
uncertainty (i.e., risk) (Yanike and Ferrera, 2014; White and Monosov, 
2016), the encoding of uncertainty being crucial for adjusting action 
choices and learning. It has also been documented that the neuronal 
representation of time is distributed across multiple brain structures, 
including the striatum, with PANs encoding temporal information 
that guides the appropriate selection of actions in animals performing 
timing tasks (Chiba et al., 2015; Wang et al., 2018; Rolando et al., 2024).

This brief overview of the PAN literature in monkeys indicates 
that several functional aspects involved in the expression of motivated 
behaviors may find expression in changes in activity of PANs. 
However, it is not always clear whether a variation of functional 
properties of PANs may be  related to the regional specializations 
within the striatum (i.e., sensorimotor, associative, and limbic 
territories), as a reflection of the topography of cortico-striatal 
connectivity. It is well established that PANs activated with body or 
orofacial movements are found in the dorsal part of the posterior 
putamen (Crutcher and DeLong, 1984; Kimura, 1990) whereas those 
linked to oculomotor behavior are in the head and body of the caudate 
nucleus (Hikosaka et al., 1989). On the other hand, reward-related 
changes in PAN activity are not localized exclusively in the ventral 
part of the anterior striatum (i.e., ventral striatum), commonly 
considered as a center for reward processing, but can be  found 
distributed across the dorsal and ventral striatum (Hikosaka et al., 
2006). In general, PANs showing a large variety of relationships to 
action valuation and action selection are intermixed in the dorsal 
striatum. Interestingly, PANs specialized in the detection and 
processing of stimuli associated with reward uncertainty have been 
reported to be found more often in regions of the anterior part of the 
dorsal striatum, close to the internal capsule (White and 
Monosov, 2016).

Tonically active neurons

We and others previously found that TANs, presumed cholinergic 
interneurons, are primarily concerned by detecting events of 
motivational salience (Aosaki et al., 1994; Apicella, 2002). Although 
there is broad consensus that TAN signaling is critical for learning 
values associated with stimuli and actions, there is now evidence that 
the role of these neurons applies to a wider range of functions than 
just detecting reward-related events. In particular, studies have found 
that TANs can also display modulations when primary aversive 
stimuli are presented (Ravel et al., 2003). In addition, in spite of a lack 
of clear relationships to movements, other studies have documented 
that TANs may also be sensitive to some aspects of motor performance 
(Lee et al., 2006; Ravel et al., 2006; Nougaret and Ravel, 2015).

Numerous studies, using a variety of behavioral tasks in monkeys, 
have shown that task-related changes in TAN activity are dependent 
on the context of performance (Shimo and Hikosaka, 2001; Yamada 
et al., 2004; Lee et al., 2006; Ravel et al., 2006; Martel and Apicella, 
2024). Therefore, increasing attention has been paid to the role of 
TANs in the integration of contextual information within the striatal 
circuitry (Apicella, 2007). Growing evidence suggests that TANs may 
provide signals potentially suitable for the switching of behavior based 
on changing conditions and contribute to the representation of 
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contextual features of the environment in which learning and actions 
occur (Bradfield et  al., 2013), emphasizing their implication in 
mediating the flexibility of behavior. Recordings from rodents have 
provided support to the hypothesis that TANs emit signals potentially 
suitable for the recognition of a context for learning and action 
selection (Stalnaker et al., 2016). However, further investigations are 
needed in behaving animals, including monkeys, to validate the 
hypothesis that the TAN system may keep track of context.

Although behavior-related modulations of TAN activity are 
generally described as homogeneous throughout the striatum, region-
specific properties of TAN activity have been reported in behaving rats 
(Thorn and Graybiel, 2014; Stalnaker et  al., 2016) and monkeys 
(Yamada et al., 2004; Marche et al., 2017). A variation of functional 
properties of TANs depending on the regional specializations of the 
striatum is still an open question.

Fast-spiking interneurons

Much of our knowledge about the functional properties of FSIs 
has been derived from rodent work. Several studies have provided 
evidence in support of a role of these presumed GABAergic 
interneurons in action selection and movement execution (Schmitzer-
Torbert and Redish, 2008; Gage et al., 2010; Stalnaker et al., 2012; Kim 
et al., 2014; Bakhurin et al., 2016; Kulik et al., 2017). Other data have 
suggested that FSIs in the ventral striatum (i.e., nucleus accumbens) 
may provide signals related to expectation and receipt of rewards 
(Lansink et al., 2010; Atallah et al., 2014), indicating that changes in 
FSIs activity may be variable depending on striatal regions. It was also 
reported that FSI activity modulation changed over reward-guided 
learning, with the dynamics of these changes being specific of the 
striatal region (Thorn and Graybiel, 2014).

Until now, limited data are available regarding the behavioral 
contributions of FSIs in monkeys because they appear to be  less 
frequently recorded compared to PANs and TANs. Early studies in 
behaving monkeys have suggested a possible role of FSIs in the 
encoding of action and outcome (Adler et al., 2013; Yamada et al., 
2016). When studying FSI activity during performance of a 
visuomotor task, we  have found that these neurons may display 
changes in activity before and during the movement, with complex 
time courses combining increases and decreases in firing rate 
(Marche and Apicella, 2017). Our work further suggested that the 
modulation of FSI activity around movement onset could 
be dependent on the mode of movement selection (i.e., internally or 
externally-instructed movements), suggesting that these neurons are 
influenced by the context of motor performance (Marche and 
Apicella, 2021). Recent work has pointed to changes in FSI activity in 
the most posterior part of the striatum (i.e., striatum tail) related to 
contextual factors (Kunimatsu et  al., 2021), suggesting that these 
neurons contribute to adjusting choice behavior when the context is 
modified. Another recent study in monkeys has demonstrated that 
FSIs recorded in the anterior striatum, including the caudate nucleus 
and ventral striatum, play a role in attention and learning processes 
(Banaie Boroujeni et al., 2020). This latter study revealed two subtypes 
of FSIs whose activity was differentially modulated during and after 
learning the value of stimuli, with some FSIs being preferentially 
activated during the acquisition phase of training, while other FSIs 
became inactive later when the reward association of the attention 

cue is learned (Banaie Boroujeni et al., 2020). At the moment, it is still 
difficult to get a clear picture of the relationship between FSI activity 
and behavioral variables, the precise nature of the information 
conveyed by FSIs and its relevance to striatal functions being a matter 
of debate. Additional research is clearly required to further 
characterize the properties of FSI signals to gain more detailed 
insights into the way in which these neurons work within the 
striatal circuitry.

We will now discuss the limitations in current approaches to the 
identification that can be  made from extracellular recordings, 
particularly in primates, and the difficulty to specifically target striatal 
neuron types for physiological investigations in animals engaged in 
task performance.

Challenging issues in the classification 
of striatal neurons into distinct 
categories

Electrophysiological criteria for distinguishing PANs, TANs, and 
FSIs have become accepted as indirect markers of neuronal identity 
and are currently used in most rodent and monkey studies to 
investigate the contributions of specific cell populations in the 
striatum to different aspects of behavior. Nevertheless, the relevance 
of this categorization is debated with regards to the variety of striatal 
neurons which have been characterized, particularly at the level of 
local GABAergic microcircuits (Tepper et al., 2010; Silberberg and 
Bolam, 2015), and the difficulty in accurately distinguishing striatal 
cell types using electrophysiological criteria. Although PANs, TANs, 
and FSIs are usually considered as single functionally-homogenous 
populations, each of these categories may actually exhibit greater 
diversity than currently recognized. It therefore becomes important to 
take into account heterogeneity within the different populations of 
striatal neurons identified electrophysiologically in awake animals. 
Challenges in targeting specific neuronal subtypes can be overcome 
by using complementary methods for the identification of 
extracellularly recorded neurons, such as optogenetic tagging which 
has proven to be  effective in confirming neuron identity in the 
striatum of genetically engineered rodents engaged in task 
performance (Atallah et  al., 2014; Duhne et  al., 2024). However, 
experimental approaches combining electrophysiological recordings 
and genetic tools to label and target specific neurons for extracellular 
recording are still difficult to implement in primates.

Recently, studies in both rodents and primates have employed 
powerful methods (i.e., transcriptomics analysis) for the identification 
of neuron subtypes according to their gene expression patterns. 
Based on these findings, it is now possible to classify and characterize 
striatal neurons into molecularly distinct subgroups in both rodents 
and primates (Gokce et  al., 2016; Munoz-Manchado et  al., 2018; 
Martin et al., 2019; Krienen et al., 2020; Stanley et al., 2020; He et al., 
2021). Studies using molecular identification methods combined 
with photometry recordings of neuronal activity (i.e., calcium 
imaging) have been used in behaving rodents to examine neuronal 
signals from the so-called striosome and matrix compartments of the 
dorsal striatum that have long been remained indistinguishable for 
recording studies during behavioral performance (Friedman et al., 
2020). Systematic studies of genetically tagged striatal neurons in 
behaving animals combined with electrophysiology or calcium 
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imaging of identified neuron subtypes represent a major advance in 
investigating the role of the various components of the 
striatal circuitry.

Conclusion

We have reviewed briefly single-neuron recording studies 
examining the neuronal bases of behavior at the level of three main 
classes of neurons that have traditionally be recognized in the striatum 
of behaving animals. Although the exact identity of extracellularly 
recorded neurons remains questionable, this approach has provided 
insights into the functional properties of presumed distinct neuronal 
populations in the striatum. Recently, the use of neuron-type-specific 
analyses has revolutionized physiological investigations of striatal 
function making their continued use essential for future experiments. 
However, there are technical difficulties in reliably identifying neuron 
subtypes during behavior, and one can expect further advances in this 
direction in coming years. Notably, experiments with non-human 
primates currently lag behind rodents studies in their ability to 
precisely target specific neuron types in the striatum.

A more detailed classification of striatal neurons in rodents and 
monkeys is relevant to address the issue of possible differences 
between species. In some instances, the data gathered in rodents are 
not fully in agreement with those collected in monkeys, raising 
questions about neuron-type homologies between rodents and 
primates. In primates, the proportion of striatal GABAergic 
interneurons has been reported to be greater than in rodents (Wu and 
Parent, 2000). Phylogenetic variation in the organization of the striatal 
circuitry could have implications for information processing and more 
caution may be required when translating findings between rodents 
and primates. In addition, greater consideration of the heterogeneity 
of striatal neurons can help refine theoretical models of striatal 
function by incorporating diverse components of the striatal circuitry. 
This approach will enhance our understanding of the neuronal 
mechanisms underlying reward-based learning and action selection 
in the striatum.

Finally, methods for investigating and analyzing the function of 
the different components of striatal circuitry are important for 
unraveling the mechanisms mediating normal behavior and its 
disruption in pathological conditions. Future studies focusing on 
circuits specified by functional cell type composition may have 
implications for understanding behavioral disturbances in patients 

with neurological and psychiatric disorders, such as Parkinson’s 
disease or compulsive behaviors. These findings could lead to the 
potential development of targeted pharmacological treatments of 
these striatal-based disorders.
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