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Olfactory sensory neurons (OSNs) detect odours at a wide range of intensities. In 
Drosophila, volatile compounds bind to specific odorant receptors (ORs), which tune 
the sensitivity of chemoreception. To test whether additional mechanisms underlie 
odour-specific neuronal processing, we analysed the spatial distribution of ORs in 
dendrites and investigated OSN synapses in the antennal lobe, the first relay station 
of the olfactory pathway. Here, we studied the molecular structure and plasticity of 
the presynaptic active zone (AZ), the specialized site of neurotransmitter release. 
We focused on a highly sensitive OSN type that expresses the receptor Or56a and 
is exclusively activated by geosmin, an odorant signalling ecologically harmful 
microorganisms. Our results uncover a differential arrangement of dendritic ORs 
and core AZ proteins in alarm odour-detecting Or56a compared to conventional 
food-odour detecting OSNs. Interestingly, the data also show that Or56a OSNs 
display a limited capacity for homeostatic plasticity in response to a genetic 
reduction of presynaptic release probability. We  hypothesise that this feature 
reflects the basal tuning of geosmin-sensing neurons towards maximum levels 
of performance.
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Introduction

An organism must make keen use of its senses to navigate complex environments 
effectively. For many airborne insects, olfaction is essential for locating food sources, finding 
mates, identifying suitable breeding substrates, and avoiding predators and other dangers 
(Hansson and Stensmyr, 2011). To tackle these challenges, insects have evolved a sophisticated 
olfactory system capable of detecting airborne odour plumes over considerable distances 
(Koehl, 2006; Missbach et al., 2014; Van Breugel and Dickinson, 2014; Wicher, 2018).

In Drosophila melanogaster, chemoreception occurs across various organs, but the primary 
olfactory organ is located in the third segment of the antenna. This segment, known as the 
funiculus, contains hair-like structures called sensilla which house approximately 50 different 
types of olfactory sensory neurons (OSNs), collectively forming the olfactory arsenal of 
Drosophila melanogaster (De Bruyne et al., 2001; Laissue and Vosshall, 2008; Grabe et al., 2016; 
Benton, 2022). The OSNs are categorized based on their expression of specific odorant 
receptors (ORs) or ionotropic receptors (IRs). Depending on the expressed receptor, they are 
activated by different compounds, but also differ in their sensitivity, cell morphology, electrical 
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activity and tuning abilities (Fishilevich and Vosshall, 2005; Hallem 
and Carlson, 2006; Mukunda et al., 2016; Gonzales et al., 2021; Jain 
et  al., 2021; Wiesel et  al., 2022; Halty-deLeon et al., 2024). In the 
following, we focus on ORs.

All OSN types consist of three segments. The outermost segment, 
the dendrite, is freely accessible and is surrounded by a sensillum 
lymph maintained by support cells (Seidl, 1992; Prelic et al., 2022). 
Here odour molecules can bind to ORs and initiate a neuronal 
response (Kaupp, 2010). The OR complex is composed of specific 
ligand-binding subunits (OrX) and the broadly-expressed co-receptor 
protein (Orco). Together they form non-selective cation channels 
passing Na+, K+, and Ca2+ (Larsson et  al., 2004; Sato et  al., 2008; 
Wicher et al., 2008). ORs need to be able to detect odours in a wide 
range of concentrations, from faint filaments at larger distance from 
the source to high concentrations and permanent presence near the 
source (Wicher, 2018). To achieve this, OSNs have developed 
mechanisms to tune their performance dynamically according to 
changing physiological requirements (Getahun et al., 2016). Sensory 
systems are challenged to optimize the degree of resolution (Młynarski 
and Hermundstad, 2018). They must manoeuvre between 
metabolically expensive highest resolution and less costly lower 
resolved representations of the environment, which may cause 
interpretational errors and lead to inappropriate behavioural 
responses. In addition to regulatory processes such as desensitization 
(Poudel et al., 2021), a unique property of OSNs detecting food odours 
is their capability to sensitize upon repeated stimulation with highly 
diluted odours below the detection threshold (Getahun et al., 2013). 
Mechanisms contributing to sensitization include Ca2+ influx into the 
sensory neurons, OR protein phosphorylation and calmodulin action 
on ORs (Sargsyan et al., 2011; Mukunda et al., 2014, 2016).

Following odour detection in the outer dendrite, information is 
carried as action potentials along axons to specific glomeruli of the 
antennal lobe [AL; (Vosshall and Stocker, 2007; Grabe et al., 2016)], 
where OSNs form cholinergic synapses with partner neurons. At 
chemical synapses, neurotransmitter substances are released from 
synaptic vesicles upon Ca2+ influx at the highly specialized presynaptic 
active zone (AZ). Here, complex protein interactions give rise to the 
speed and precision of neurotransmission (Südhof, 2012). Importantly, 
AZs display considerable heterogeneities at molecular, functional and 
ultrastructural levels, not only between different species and cell types, 
but also between individual AZs of the same neuron (Atwood and 
Karunanithi, 2002; Melom et al., 2013; Ehmann et al., 2014; Peled 
et al., 2014; Reddy-Alla et al., 2017). Moreover, AZ properties can 
be modified in an activity-dependent manner on timescales ranging 
from milliseconds to days (Regehr, 2012; Monday et al., 2018). The 
plasticity and diversity of AZs are important for information 
processing by the nervous system but the underlying cellular and 
molecular mechanisms are not well understood.

The Or56a receptor is of great ecological importance for 
Drosophila melanogaster by exclusively detecting geosmin, an odour 
released by toxin-producing microbes (Stensmyr et al., 2012). The 
sensitivity of the OSNs expressing Or56a is extraordinarily high 
(Halty-deLeon et  al., 2024) and comparable to moth pheromone 
receptors that can detect single odorant molecules (Stengl, 2010). 
Or56a neurons target exclusively the DA2 glomerulus in the antennal 
lobe and activation of DA2 elicits aversive behaviour overriding input 
from other olfactory pathways (Stensmyr et al., 2012). When Or56a is 
heterologously expressed, repetitive stimulation with a near-threshold 

concentration of a synthetic OR agonist can lead to sensitization of the 
receptor (Mukunda et al., 2014). However, native Or56a-expressing 
OSNs do not exhibit sensitization (Halty-deLeon et  al., 2024) in 
contrast to the tuneable food odour-detecting OSNs expressing, e.g., 
Or22a. Unlike Or22a expressing OSNs, which display a moderate 
sensitivity to odours under resting conditions, the Or56a neurons 
seem to be set to their highest sensitivity by default.

In the present study we set out to investigate whether specific 
molecular and ultrastructural layouts of OSN sub-compartments 
correlate with neuronal performance features. By comparing the 
dendrites and presynaptic AZs of Or22a and Or56a OSNs, we identify 
a differential localization of proteins involved in signal reception and 
signal transmission and demonstrate that these two OSN subtypes 
have distinct properties of synaptic plasticity.

Materials and methods

Fly stocks

Flies were raised on standard cornmeal and molasses medium at 
25°C except for the RNAi experiments where all genotypes were 
raised at 29°C. The following fly strains were used: or22a-GAL4 
(BDSC 9951), or56a-GAL4 (BDSC 23896), 20XUAS-IVS-mCD8::GFP 
(BDSC 32194), UAS-cac-RNAi [VDRC GD 5551; (Dietzl et al., 2007; 
Rozenfeld et  al., 2023)], 10XUAS-myr::GFP, UAS-brp[D3]::mRFP/
TM6B, Tb (Fouquet et al., 2009), UAS-GCamp6f; or22a-GAL4 (Halty-
deLeon et  al., 2024), UAS-GCamp6f; or56a-GAL4/TM6B (Halty-
deLeon et al., 2024), UAS-N-GFP-orco; or22a-GAL4, orco1 (Jain et al., 
2023), UAS-N-GFP-orco; or56a-GAL4, orco1 (Jain et al., 2023).

Confocal microscopy

Female flies, 5–8 days of age (0 or 5 days for homeostasis 
experiments) were dissected on ice and brains were fixed in 4% 
paraformaldehyde (PFA) for 2 h (or 20 min in methanol for Unc13A) 
at room temperature. The samples were then washed 6 × 10 min with 
0.3% PBT (PBS with 0.3% Triton X-100, Sigma Aldrich) and blocked 
for 1 h or overnight with 5% normal goat serum (NGS) in 
PBT. Following incubation with primary antibodies for 24 h 
(homeostasis experiments) or 48 h the samples were washed 6 × 
10 min with 0.3% PBT and then incubated with secondary antibodies 
for 24 h. After final washing steps 6 × 10 min with 0.3% PBT and 1 × 
10 min with PBS the samples were mounted in Vectashield (Vector 
Laboratories) and stored at 4°C. The following antibodies were used: 
mouse-α-Brp [nc82, 1:10, DSHB, AB_2314866; (Wagh et al., 2006)], 
guinea pig-α-Unc13A [1:100; (Böhme et al., 2016)], rabbit-α-Unc13B 
[1:300; (Böhme et al., 2016)], rabbit-α-Syd-1 [1:250; (Owald et al., 
2010)], rabbit-α-GFP (1:400, Thermo Fisher Scientific, AB_2536526), 
mouse-α-GFP (1:500, Sigma-Aldrich, AB_2827519), rat-α-mCherry 
(1:1000, Thermo Fisher Scientific, AB_2536611), goat-α-mouse-
StarRed (1:200, Abberior, AB_3068620), goat-α-mouse-AF488 
(1:200, Thermo Fisher Scientific, AB_2534069), goat-α-rabbit-AF488 
(1:200, Thermo Fisher Scientific, AB_2576217), goat-α-rat-Cy3 
(1:250, Thermo Fisher Scientific, AB_2534031), goat-α-guinea 
pig-StarRed (1:200, Abberior, AB_306823). Image stacks of whole-
mount brains were acquired with an upright STED microscope in 
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confocal mode (Infinity Line, Abberior Instruments), 60x/1.42 NA 
oil immersion objective, 0.5 μm stack size (α-Brp, α-Unc13A, 
α-Unc13B, and α-Syd1) or with a Zeiss LSM 800 microscope (Carl 
Zeiss Microscopy), 63x/1.4 NA oil immersion objective, 1 μm stack 
size (Brpshort:mRFP). Identical laser settings were used for all 
genotypes in each imaging session. Image analysis was carried out 
with ImageJ (National Institutes of Health) on each image of the 
stack. The GFP signals were used to generate glomerulus-specific 
masks, which were overlaid with the Brp, Unc13A, Unc13B or Syd-1 
channels. Individual puncta were detected with the “Find Maxima” 
command and quantified via “Analyze Particles.” The results for Brp 
homeostasis at day 5 were replicated in an independent experiment 
(significantly more AZs following Cac knockdown in Or22a and no 
difference in Or56a OSNs).

STED microscopy

Dissected fly antennae were mounted in OCT compound (VWR 
Chemicals) and frozen for 20 min. A cryostat was used to cut 12 μm 
sections collected on SuperFrost Plus microscope slides (Epredia). 
Immediately after sectioning, the samples were fixed for 10 min in 2% 
PFA and washed 2 × 10 min in PBS. The slides were then transferred to 
a humidified chamber and blocked for 30 min with 2% NGS in PBS. The 
samples were incubated with the primary antibody in blocking solution 
at 4°C overnight. The following day, the sections were washed 4 × 
10 min in PBS and blocked for 30 min before incubating with the 
secondary antibody for 2 h at 25°C. After final washing steps 4 × 5 min 
in PBS and 1 × 5 min in distilled water, the sections were mounted in 
Vectashield (Vector Laboratories) and stored at 4°C. The following 
antibodies were used: mouse-α-GFP (1:200, Thermo Fisher Scientific, 
A-11120) and goat-α-mouse-StarRed (1:100, Abberior, STRED-1001-
500UG). Images were acquired with an upright STED microscope 
(Infinity Line, Abberior Instruments), equipped with an 60x/1.42 NA 
oil immersion objective, and identical laser settings for all experiments. 
The area occupied by OrcoGFP was measured manually in ImageJ 
(National Institutes of Health).

Electron microscopy data

Codex (FlyWire Brain Dataset FAFB v783; http://dx.doi.
org/10.13140/RG.2.2.35928.67844) and FlyWire Neuroglancer were 
used to identify the OSNs (Zheng et al., 2018; Dorkenwald et al., 2022, 
2024; Schlegel et  al., 2024). OSN AZs within the DA2 and DM2 
glomeruli of the right antennal lobe were counted manually using 
FlyWire Neuroglancer. AZs were identified by electron dense 
membranes, vesicle clusters, and adjacent dendritic arborizations. 
Each T-bar-like filamentous structure was counted as one AZ, even 
when multiple T-bars shared one electron dense 
presynaptic membrane.

Statistics

Data were analysed with Prism 9 (GraphPad). Group means were 
compared with an unpaired t-test, unless the assumption of normal 
sample distribution was violated according to the Shapiro–Wilk test. 
In this case, a non-parametric Mann–Whitney test was employed.

Results

Given the different sensitivities of food odour-detecting and alarm 
odour-detecting OSNs, we first asked how the receptors are distributed 
within the outer segments of the dendrites. To this end, we used the 
high spatial resolution of Stimulated Emission Depletion Microscopy 
[STED; (Hell, 2007)] to measure the arrangement of the Orco 
co-receptor tagged with GFP and expressed in the orco null mutant 
background (Jain et al., 2023) in Or22a and Or56a expressing neurons. 
Interestingly, ORs occupied a smaller area in Or56a OSNs (Figure 1), 
which is in line with their smaller dendritic size compared to Or22a-
expressing OSNs (Gonzales et al., 2021; Halty-deLeon et al., 2024). 
Thus, regarding receptor arrangement, we  observed no obvious 
features that would explain the different sensitivities of the 
respective OSNs.

FIGURE 1

Dendritic arrangement of ORs. (A) Schematic depiction of an OSN (not to scale), # outer dendrite in the periphery, * presynapses in the AL. (B) Example 
STED images of GFP-tagged Orco in cryosections of outer dendrites of food odour (or22a-GAL4 > UAS-orcoGFP) and alarm odour (or56a-GAL4 > UAS-
orcoGFP) detecting OSNs. (C) Orco is distributed over a smaller area in Or56a OSNs (Or22a: 10.3 ± 0.9 μm2, n = 25; Or56a: 7.3 ± 0.7 μm2 SEM, n = 22 
OSNs; p = 0.0175 Mann–Whitney test). Scale bar 2 μm, data are presented as mean ± SEM.

https://doi.org/10.3389/fncel.2025.1579821
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
http://dx.doi.org/10.13140/RG.2.2.35928.67844
http://dx.doi.org/10.13140/RG.2.2.35928.67844


Acharya et al.� 10.3389/fncel.2025.1579821

Frontiers in Cellular Neuroscience 04 frontiersin.org

Next, we  shifted our focus from signal reception in the OSN 
dendrite to the site of signal transmission at the presynaptic 
AZ. We made use of the recently published Drosophila connectome 
made accessible via FlyWire Neuroglancer and Codex (Zheng et al., 
2018; Dorkenwald et al., 2022, 2024) and compared the ultrastructure 
of presynaptic sites of Or56a and Or22a neurons in DA2 and DM2 
glomeruli, respectively (Figure 2A). A total of 40 Or56a OSNs and 54 
Or22a OSNs have been annotated in the FlyWire Brain Dataset (FAFB 
v783). We identified an additional afferent neuron in the DA2 glomeruli, 
thus increasing the total number of Or56a OSNs to 41. The smaller 
number of OSNs innervating the DA2 glomerulus is consistent with its 
smaller volume compared to the DM2 glomerulus (Grabe et al., 2016). 
Subsequently, we  counted OSN AZs within the DA2 and DM2 
glomeruli of the right antennal lobe (Figure 2B). The DA2 glomerulus 
is innervated by 22 ipsilateral and 19 contralateral Or56a OSNs, while 
the DM2 glomerulus receives input from 25 ipsilateral and 29 
contralateral Or22a OSNs (Figure 2A). The AZ number per neuron was 
smaller in Or56a than in Or22a OSNs (Figure 2D). Consistent with the 
above results, the total number of AZs per glomerulus was also smaller 
for Or56a compared to Or22a OSNs (Figure 2E).

Following these ultrastructural findings, we asked whether Or56a 
and Or22a OSNs also display differences in the molecular composition 

of neurotransmitter release sites. The ELKS/Cast family member 
Bruchpilot (Brp) is a major structural component of the AZ 
cytomatrix, which appears as T-bars in electron micrographs 
[Figure  2C; (Kittel et  al., 2006; Wagh et  al., 2006)]. Transgenic 
expression of a photoprotein-tagged Brp fragment (Brpshort::mRFP) 
reliably reports endogenous AZ Brp levels without disrupting the 
presynaptic organisation (Fouquet et al., 2009; Kremer et al., 2010). In 
line with the EM data, confocal fluorescence images showed a smaller 
number of Brp-positive AZs in Or56a (DA2 glomerulus) than in 
Or22a (DM2 glomerulus) OSNs (Figures 3A,C). As expected, given 
the higher spatial resolution of the EM reconstructions, the total 
number of AZs was smaller in the confocal image stacks. Next, 
we imaged the release site marker Unc13A. Strikingly, Unc13A counts 
were strongly increased in DA2 glomeruli, innervated by Or56a OSNs 
(Figure 3B). This observation is particularly interesting given that high 
Unc13A levels correlate with a high neurotransmitter release 
probability at AZs (Böhme et  al., 2016; Fulterer et  al., 2018). 
Conversely, the AZ proteins Unc13B and Syd-1, which are both 
connected to low release probability were less abundant in Or56a-
expressing OSNs (Figure 3C).

Recent work demonstrated that OSNs can undergo 
homeostatic synaptic plasticity to compensate for a drop in 

FIGURE 2

Presynaptic ultrastructure of OSNs. (A) 54 Or22a OSNs (magenta) and 41 Or56a OSNs (green) reconstructed with FlyWire. (B) Example arborisations of 
an Or22a OSN and an Or56a OSN within the DM2 and DA2 glomeruli, respectively. AZs labelled as black dots. (C) Ultrastructure of presynaptic sites 
within the respective glomerulus. Presynaptic T-bars (arrows) lie close to each other. (D) Quantification of AZs per OSN within the DM2 (Or22a) or DA2 
(Or56a) glomerulus (Or22a: 115 ± 2 SEM n = 54, Or56a: 86 ± 2 SEM n = 41 OSNs; p < 0.0001 unpaired t-test). (E) Total OSN AZ number within the DM2 
(Or22a) and DA2 (Or56a) glomerulus of the right antennal lobe [Or22a, DM2 glomerulus: 6183 AZs (54 cells); Or56a, DA2 glomerulus: 3513 AZs (41 
cells)]. Scale bars 300 nm, data are presented as mean ± SEM.
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presynaptic release probability. When the AZ calcium channel 
subunit Cacophony [Cac; (Kawasaki et  al., 2004)] is knocked 
down in all Orco-expressing neurons via RNAi, OSNs increase the 
number of Brp-positive AZs onto projection neurons following 
eclosion, thereby maintaining reliable neural coding and odour-
driven behaviour (Rozenfeld et  al., 2023). However, it is not 
known whether all OSN types have a similar capacity for 
homeostatic plasticity. Unlike food odour-detecting OSNs, Or56a-
expressing neurons appear non-tuneable at the level of odour 
reception in dendritic and somatic compartments (Halty-deLeon 
et al., 2024). We therefore examined whether Or56a OSNs are also 
characterized by differences in presynaptic plasticity. As reported 
for a broad population of OSNs (Rozenfeld et al., 2023), Or22a 
neurons with reduced Cac levels had a normal AZ count shortly 
after eclosion (Figures 4A,C) but compensated for Cac knockdown 
by increasing AZ numbers within several days, reflected by an 
increase in the number of both Brp and Unc13A puncta 
(Figures  4B–D). In contrast, Or56a neurons showed no such 
homeostatic compensation through AZ addition (Figures 4B,C), 
matching their lack of peripheral plasticity.

Discussion

OSNs detecting the alarm odour geosmin are two orders of 
magnitude more sensitive than the food odour-detecting OSNs 
expressing Or22a (Halty-deLeon et  al., 2024). The distribution of 
Or56a over a smaller area (Figure 1C) may imply a higher density of 
ORs, though this could not be resolved with STED microscopy. If this 
were the case, such a tightly packed arrangement could perhaps enable 
cooperativity as observed for bacterial chemoreceptors (Hazelbauer 
et al., 2008). E. coli chemoreceptors, for example, form arrays that 
allow high amplification of chemosignals. With densely packed 
receptors, one odour molecule may activate more than one receptor 
(Kaizu et al., 2014) and in the case of Or56a, which also passes Ca2+ 
ions, such an effect could lead to stronger Ca2+ signals. Or56a 
expressing OSNs possess small inner dendrites equipped with only a 
few mitochondria (Halty-deLeon et al., 2024). These OSNs can hardly 
buffer Ca2+ signals in their inner dendrites and the signals can 
propagate through the neuron without attenuation and initiate action 
potentials (Berridge, 1998). Such effects may in sum help to explain 
the high sensitivity of Or56a-expressing OSNs towards geosmin.

FIGURE 3

OSN AZ proteins. (A) Example images of Brpshort::mRFP illustrating spot detection in regions of interest (ROI) within GFP-labelled DM2 (or22a-
GAL4 > UAS-brpshort::mRFP, UAS-myr::GFP) or DA2 (or56a-GAL4 > UAS-brpshort::mRFP, UAS-myr::GFP) glomeruli. (B) Example images (maximal 
projections of 5 confocal stacks) of Unc13A, Unc13B, and Syd-1 antibody stainings in DM2 (or22a-GAL4 > UAS-mcd8::GFP or or22a-GAL4 > UAS-
gcamp6f) and DA2 (or56a-GAL4 > UAS-mcd8::GFP or or56a-GAL4 > UAS-gcamp6f) glomeruli (GFP-defined glomeruli indicated by dashed line). 
(C) Quantification of Brp (Or22a: 2620 ± 108, n = 10; Or56a: 2029 ± 183 SEM, n = 10 glomeruli; p = 0.0124 unpaired t-test), Unc13A (Or22a: 
2968 ± 146, n = 6; Or56a: 4701 ± 332 SEM, n = 6 glomeruli; p = 0.0007 unpaired t-test), Unc13B (Or22a: 4763 ± 378, n = 6; Or56a: 2710 ± 335 SEM, 
n = 6 glomeruli; p = 0.0023 unpaired t-test), and Syd-1 puncta (Or22a: 7430 ± 541, n = 6; Or56a: 3242 ± 260 SEM, n = 6 glomeruli; p < 0.0001 
unpaired t-test). Scale bars 5 μm, data are presented as mean ± SEM.
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Besides signal reception in the dendritic compartment, signal 
transmission at the presynaptic AZ is an important site of modulation. 
Here, activity-dependent presynaptic plasticity can mediate short-
term tuning and long-lasting changes of neuronal communication 
(Regehr, 2012; Monday et al., 2018). Our results describe fewer AZs 
in individual Or56a OSNs and a smaller total number of AZs 
belonging to Or56a-expressing neurons in DA2 glomeruli. However, 
the AZs of Or56a OSNs have higher levels of Unc13A than their 
counterparts in Or22a expressing neurons in DM2 glomeruli. Unc13 
plays an essential role in synaptic vesicle priming at the AZ membrane 
(Varoqueaux et  al., 2002). The Drosophila A isoform (Unc13A) 
positions vesicles close to voltage-gated calcium channels and thereby 
promotes neurotransmitter release. The B isoform (Unc13B) and the 

AZ protein Syd-1, on the other hand, are associated with loose 
coupling and less efficient neurotransmitter release (Böhme et al., 
2016). Accordingly, strong expression of Unc13A and low levels of 
Unc13B and Syd-1 correlate with high release probability at 
peripheral and central AZs (Reddy-Alla et al., 2017; Fulterer et al., 
2018). This molecular signature suggests reliable synaptic 
neurotransmitter release at AZs of Or56a OSNs. This feature would 
nicely match the high detection sensitivity of these neurons and 
reflect their physiological role in sensing and transmitting an 
alarm signal.

Homeostatic plasticity serves to maintain stable chemical synaptic 
transmission by counterbalancing disruptions. Homeostatic 
mechanisms stabilize sensory tuning features and several neurological 

FIGURE 4

Homeostatic synaptic plasticity of OSNs. (A) Antibody stainings against Brp (monoclonal antibody nc82) in DM2 and DA2 glomeruli of 5-day-old 
controls (DM2: or22a-GAL4 > UAS-gcamp6f; DA2: or56a-GAL4 > UAS-gcamp6f) and (B) Cac knockdown flies (DM2: or22a-GAL4 > UAS-cacRNAi, UAS-
gcamp6f; DA2: or56a-GAL4 > UAS-cacRNAi, UAS-gcamp6f). Shown are maximal projections of 9 confocal stacks. (C) Quantification of Brp levels in 
newly eclosed (day 0; Or22a control: 2328 ± 98, n = 8, Or22a CacRNAi: 2537 ± 59 SEM, n = 8 glomeruli, p = 0.0893 unpaired t-test; Or56a control: 
1156 ± 71, n = 8, Or56a CacRNAi: 1210 ± 51 SEM, n = 8 glomeruli, p = 0.5521 unpaired t-test) and 5-day-old flies (day 5; Or22a control: 2983 ± 196, 
n = 8, Or22a CacRNAi: 3794 ± 87 SEM, n = 6 glomeruli, p = 0.0055 unpaired t-test; Or56a control: 2139 ± 117, n = 8, Or56a CacRNAi: 2093 ± 119 SEM, 
n = 8 glomeruli, p = 0.7854 unpaired t-test). (D) Antibody stainings show an increase in Unc13A levels upon Cac knockdown in Or22a-expressing 
OSNs (or22a-GAL4 > UAS-gcamp6f: 2427 ± 136, n = 6, or22a-GAL4 > UAS-cacRNAi, UAS-gcamp6f: 4121 ± 242, n = 12 glomeruli, p = 0.0002 unpaired 
t-test, 5-7-day-old flies). Scale bar 5 μm, n.s.: no significant difference, data are presented as mean ± SEM.
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and psychiatric diseases have been linked to dysregulated homeostatic 
synaptic plasticity (Wondolowski and Dickman, 2013; Davis and 
Müller, 2015; Frank et al., 2020; Wen and Turrigiano, 2024). Upon Cac 
knockdown, food odour-processing Or22a OSNs display such 
homeostatic regulation by increasing release site numbers within 
several days to compensate for a decrease in transmitter release 
probability. In contrast, we detected no compensatory addition of AZs 
in Or56a OSNs. Thus, these high-sensitivity neurons appear less 
plastic both at the dendritic level of signal detection (Halty-deLeon 
et al., 2024) and at the presynaptic site of signal transmission. These 
results point to an interesting similarity at the larval neuromuscular 
junction (NMJ). Here two glutamatergic motoneuron types possess 
AZs with low and high average release probabilities [type Ib and type 
Is, respectively; (Kurdyak et al., 1994; Lu et al., 2016)]. Intriguingly, at 
the NMJ long-term presynaptic homeostatic compensation also only 
operates at the low release probability motoneuron and matching our 
results for Or22a-expressing OSNs this plasticity involves an increase 
in Unc13A (Newman et al., 2017; Böhme et al., 2019; Chien et al., 
2025). Given this heterogeneity, it will be of great interest to identify 
the molecular features that bestow synapses with particular plasticity 
properties and to elucidate how this differentiation is adapted to 
specific physiological and ethological demands.
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