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White matter in the central nervous system comprises bundled nerve fibers 
myelinated by oligodendrocytes. White matter injury, characterized by the loss of 
oligodendrocytes and myelin, is common after ischemic brain injury, inflammatory 
demyelinating diseases including multiple sclerosis, and traumatic damage such 
as spinal cord injury. Currently, no therapies have been confirmed to promote 
remyelination in these diseases. Over the past decade, various reports have 
suggested that the anti-muscarinic drug clemastine can stimulate remyelination 
by oligodendrocytes. Consequently, the repurposing of clemastine as a potential 
treatment for a variety of neurological disorders has gained significant attention. 
The therapeutic effects of clemastine have been demonstrated in various animal 
models, and its mechanisms of action in various neurological disorders are currently 
being investigated. In this review, we summarize reports relating to clemastine 
administration for white matter injury and neurological disease and discuss the 
therapeutic potential of remyelination promotion.
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1 Introduction

Oligodendrocytes are a form of glial cell in the central nervous system (CNS) (Bercury 
and Macklin, 2015), which extend processes around nerve cell axons and generate myelin to 
enhance conduction velocity by saltatory conduction (Nave and Werner, 2014; Osanai et al., 
2022). To ensure the rapid transmission of information required to maintain brain function, 
white matter tracts of the CNS consist predominantly of myelinated fibers (Fields, 2010), 
critical for facilitating communication between different brain regions (Filley and Fields, 2016; 
Ribeiro et  al., 2024). White matter injury is brain damage characterized by the loss or 
demyelination of these fibers (Ohno and Ikenaka, 2019). Reduced blood flow to brain tissue 
also often results in white matter damage and the loss of oligodendrocytes (Wang et al., 2016; 
Youssef et al., 2021). Ischemic stroke is therefore a common cause, alongside demyelinating 
diseases such as multiple sclerosis (MS) (Compston and Coles, 2008; Wang et al., 2016; Reich 
et al., 2018). To study white matter injury, focal lesions have been generated in animal models, 
targeting tracts of the corpus callosum, internal capsule, and spinal cord (Blakemore and 
Franklin, 2008; Huang et al., 2011; Keough et al., 2015; Yamazaki et al., 2021). Therapies for 
diseases associated with white matter injury have focused on the induction of remyelination 
by oligodendrocytes (Ohtomo and Arai, 2020; Youssef et  al., 2021; Huang et  al., 2023). 
Pharmacological options that promote remyelination are important for functional recovery 
after white matter injury.
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High-throughput screening platforms using micropillar arrays 
have been used to identify candidate medications for demyelinating 
diseases that promote remyelination by oligodendrocytes; clemastine 
was first identified as a potential remyelinating agent in this way by 
Mei et al. (2014). Clemastine and its salt form, clemastine fumarate, 
are first-generation antihistamines used to treat allergy symptoms 
and relieve itching, with sedative and anticholinergic effects (Simons, 
2004). Clemastine fumarate has enhanced solubility and 
bioavailability, and so is the commonly used form for pharmaceutical 
purposes, basic research, and clinical settings. Because it is already 
widely used in the clinic, the potential repurposing of the drug for 
the treatment of white matter injury and other neurological diseases 
has recently gained attention (Jiang et al., 2023; Zhu et al., 2023).

In this review, we  summarize the therapeutic potential of 
clemastine in white matter injury and neurological diseases, including 
the latest findings and insights.

2 Therapeutic effects of clemastine in 
animal models and potential 
molecular mechanisms

Since being identified for potential repurposing, clemastine has 
been administered in various animal models associated with 
demyelination (Figure 1A).

FIGURE 1

Therapeutic effects of clemastine in a mouse model of white matter injury and molecular mechanisms of action in oligodendrocyte precursor cells. 
(A) The animal models of white matter injury are induced demyelination, oligodendrocyte loss, motor paralysis and sensory paralysis. Motor function 
and remyelination state of oligodendrocytes (OLs) are assessed by behavioral tests and histological analysis. Clemastine administration in these animal 
models promotes remyelination and functional recovery. (B) Clemastine administration activates the extracellular signal-regulated kinase (ERK) 
pathway to promote differentiation via inhibition of the M1 muscarinic acetylcholine receptor (CHRM1) in oligodendrocyte precursor cells (OPCs). 
Clemastine also induces the activation of H3K9 histone methyltransferases and the glutathione S-transferase 4α (Gsta4)/4-hydroxynonenal (4-HNE) 
pathway in OPCs. In addition, clemastine promotes the N-methyl-d-aspartate (NMDA) receptor-rich state in OPCs. Shown are the schematic diagram 
of oligodendrocyte (OL) differentiation and stage-specific markers.
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2.1 Summary of the effects of clemastine 
on remyelination in different animal 
models

Lysophosphatidylcholine (LPC)-induced demyelination is a 
representative animal model in which demyelination lesions are 
generated by focal injection; the model is highly informative for the 
assessment of remyelination (Blakemore and Franklin, 2008; Keough 
et al., 2015). Clemastine was shown to promote remyelination in an 
LPC-induced mouse model of spinal cord demyelination (Mei et al., 
2014; Jensen et  al., 2018). Recently, we  have developed a mouse 
model of internal capsule demyelination that allows the evaluation 
of remyelination-induced functional recovery (Yamazaki et al., 2021; 
Yamazaki and Ohno, 2024). In this model, an asymmetric motor 
deficit is induced by internal capsule demyelination; recovery is 
associated with subsequent remyelination (Yamazaki et al., 2021; 
Yamazaki and Ohno, 2024). Using this model, we have also shown 
that clemastine administration promotes remyelination and related 
functional recovery (Yamazaki et  al., 2023). A mouse model of 
demyelination induced by cuprizone (CPZ) diet intoxication has 
also been widely used to evaluate the efficacy of remyelination-
promoting treatments (Matsushima and Morell, 2001; Yamazaki 
et  al., 2018). In the CPZ-induced model, clemastine enhanced 
remyelination in the corpus callosum, cerebral cortex, and 
hippocampus (Li et al., 2015). Overall, clemastine has been reported 
to have therapeutic effects on multiple white matter regions, 
including the corpus callosum, spinal cord, and internal capsule. 
Another relevant mouse model is the experimental autoimmune 
encephalomyelitis (EAE) model, in which demyelination is mediated 
by the immune system (Constantinescu et al., 2011; Robinson et al., 
2014). Clemastine administration in the EAE model improved 
clinical scores and enhanced remyelination (Motawi et al., 2023; 
Ibrahim et al., 2024).

Different types of injury models have also been used to evaluate 
the therapeutic potential of clemastine. Spinal cord injury is a 
neurological disorder associated with traumatic damage to white 
matter tracts. In a rat model of spinal cord injury, clemastine was 
shown to improve functional recovery (Du et al., 2022; Tong et al., 
2022). Traumatic brain injury is also known to affect white matter and 
cognitive function (Huntemer-Silveira et al., 2020; Strogulski et al., 
2023). Clemastine was shown to enhance myelination of the cortex 
and hippocampus and improve cognitive function in a rat model of 
mild traumatic brain injury (Huang et al., 2024).

Stroke is a common cause of hypoxic brain injury (Wang et al., 
2016; Youssef et al., 2021). Hypoxic conditions are known to induce 
oligodendrocyte loss in white matter regions (Dewar et  al., 2003; 
Huang et al., 2023); promoting remyelination is therefore a potential 
therapeutic approach for resolving white matter damage associated 
with cerebral ischemia (Wang et al., 2016; Youssef et al., 2021; Huang 
et  al., 2023; Fernandes et  al., 2025). The middle cerebral artery 
occlusion (MCAO) model is one of the most widely used in stroke 
research (Ma et al., 2020; Li et al., 2023). Recently, it was reported that 
clemastine treatment preserved white matter integrity, promoted 
neuronal survival, and accelerated functional recovery after transient 
MCAO (Cheng et al., 2024). In models of neonatal and adult hypoxic 
brain injury, enhancing myelination with clemastine treatment led to 
functional recovery and improved motor coordination (Cree et al., 
2018; Wang et al., 2018; Chen et al., 2021).

White matter changes have also been reported in patients with 
depressive disorders, bringing attention to the potential role of 
oligodendrocytes in depression and the stress response (Wang et al., 
2014; van Velzen et al., 2020; He et al., 2022). Social isolation of 
adult mice impaired myelination in the prefrontal cortex (PFC) (Liu 
et al., 2012), while clemastine rescued the behavioral changes (Liu 
et al., 2016). The depressive-like behavior induced by social defeat 
stress in adolescent mice was also ameliorated by clemastine 
treatment (Shimizu et al., 2020). Chemotherapy is also reported to 
induce cognitive impairments, associated with the alteration of 
white matter integrity; clemastine was able to rescue such 
chemotherapy-induced abnormalities (Chen et  al., 2022). 
Interestingly, clemastine administration in a mouse model of 
glaucoma was reported to attenuate optic nerve and retinal 
neuropathy by promoting remyelination by enhancing the 
differentiation of oligodendrocyte precursor cells (OPCs) (Liu et al., 
2024). This suggests that promoting remyelination also has 
therapeutic potential for glaucoma. Finally, clemastine was reported 
to improve electrophysiological changes and promote peripheral 
myelin repair in a murine model of compression neuropathy (Lee 
et al., 2021). Overall, therapeutic effects of clemastine have been 
reported in various pathological animal models in preclinical 
studies (Table 1).

2.2 The potential molecular mechanisms 
underlying the therapeutic effects of 
clemastine

The M1 muscarinic acetylcholine receptor (CHRM1) was 
identified as the major target of clemastine by OPC culture studies; 
CHRM1 knockout mice exhibited accelerated remyelination and 
reduced axonal loss after EAE induction (Mei et al., 2016). In neonatal 
and adult hypoxic brain injury models, enhancing myelination with 
clemastine treatment led to functional recovery via CHRM1-mediated 
effects on OPCs (Cree et  al., 2018; Wang et  al., 2018). Therefore, 
CHRM1 is an important target receptor for clemastine administration. 
Recent reports have shown that clemastine administration in EAE 
mice activates F3/Contactin-1 through non-canonical Notch-1 
signaling, while inhibiting p38 mitogen-activated protein kinase 
(MAPK)/NOD-like receptor protein-3 (NLRP3) signaling (Motawi 
et  al., 2023; Ibrahim et  al., 2024). Evidence has also shown that 
clemastine-induced activation of the glutathione S-transferase 4α 
(Gsta4)/4-hydroxynonenal (4-HNE) pathway promotes remyelination 
by oligodendrocytes (Carlström et al., 2020). Overexpression of Gsta4 
has also been reported to contribute to the amelioration of the EAE 
phenotype (Carlström et al., 2020). Clemastine was shown to promote 
the differentiation of OPCs by activating extracellular signal-regulated 
kinase (ERK) signaling through the muscarinic receptor in the spinal 
cord injury model (Du et al., 2022; Tong et al., 2022). It has also been 
reported to reduce inflammation and induce the downregulation of 
NLRP3 and IL-1β, through the inhibition of the P38 signaling pathway 
in microglia (Xie et al., 2020). Clemastine enhanced the activity of 
H3K9 histone methyltransferases in PFC oligodendrocytes in a social 
isolation mouse model (Liu et al., 2016). Recently, Kamen et al. (2024) 
performed whole-cell patch-clamping and reported that clemastine 
induces an N-methyl-d-aspartate (NMDA) receptor-rich state in 
OPCs by altering membrane properties. Taken together, the molecular 
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mechanisms of clemastine action in OPCs are currently being 
elucidated (Figure 1B).

3 Clinical studies, remaining 
questions, and future directions

Clinical trials of clemastine began in multiple sclerosis patients in 
2014 (Green et al., 2017). In a double-blind, randomized, placebo-
controlled, crossover trial (ReBUILD) in patients with relapsing 
multiple sclerosis, clemastine delayed the decline in visual-evoked 
potentials (Green et al., 2017). MRI analysis from the ReBUILD trial 
showed that normal-appearing regions of corpus callosum white 
matter exhibited increased derived myelin water fraction values after 
clemastine administration (Caverzasi et al., 2023). Because clemastine 
is safe to use, with a relatively low incidence of side effects, the results 
suggest promising benefits for the treatment of multiple 
sclerosis patients.

However, several questions remain in terms of human 
application. Clemastine treatment impaired myelination in the 
developmental stages in mice, despite an increase in the number of 
oligodendrocytes (Palma et  al., 2022). A recent preprint clinical 
report also suggests that clemastine enhances pyroptosis and 
accelerates the advance of disability in progressive MS (Kocot et al., 
2024). In addition, in a rabbit model of LPC-induced demyelination, 
short-term administration of clemastine reduced the number of 

OPCs, while delayed administration resulted in the accumulation of 
OPCs expressing markers of senescence (Cooper et  al., 2024). 
However, long-term treatment increased the density of 
oligodendrocytes at the lesion site (Cooper et al., 2024). These results 
may reflect differences in oligodendrocyte numbers and the CNS 
environment between biological species. Optimization of the timing 
and duration of clemastine administration is therefore critical for 
achieving maximal therapeutic effects for different diseases. In 
addition, while clemastine may be more clinically effective when used 
in combination with existing treatments, such benefits are still 
unconfirmed. However, other muscarinic antagonists such as 
quetiapine and benztropine have also been identified as potential 
treatments in high-throughput screens (Deshmukh et al., 2013; Mei 
et al., 2014). Benztropine is currently used for Parkinson’s disease, 
while quetiapine is used as an atypical antipsychotic; both have been 
reported to promote OPC differentiation and myelin repair (Xiao 
et al., 2008; Zhang et al., 2012; Deshmukh et al., 2013; Wang et al., 
2021). Clinical trials in multiple sclerosis patients have not yet been 
initiated for benztropine, but results from those of quetiapine have 
been reported. A phase I/II dose-finding study (NCT02087631) in 
patients with relapsing–remitting and progressive multiple sclerosis 
reported adverse effects including sedation and paraparesis (Metz 
et  al., 2020). These results highlight the need to demonstrate the 
efficacy of low-dose quetiapine in preclinical studies. Recently, the 
selective muscarinic M1 receptor antagonists PIPE-359 and PIPE-307 
were reported to improve clinical scores in an EAE model (Schrader 

TABLE 1 Comparison of dose and route of clemastine administration in different animal models.

Model Dose Route References

Lysolecithin-induced spinal cord demyelination 

(mouse)

10 mg/kg/day for 7 days or 14 days Oral administration Mei et al. (2014)

10 mg/kg/day for 14 days Gastric gavage Jensen et al. (2018)

Lysolecithin-induced internal capsule 

demyelination (mouse)

10 mg/kg/day from 3 to 9 days post lesion (dpl) or 

3–12 dpl

Intraperitoneal injection Yamazaki et al. (2023)

Cuprizone model (mouse) 10 mg/kg/day for 3 weeks Oral administration Li et al. (2015)

EAE model (mouse) 10 mg/kg/day for 32 days Oral gavage Mei et al. (2016)

EAE model (rat) 5 mg/kg/day for 15 days Oral administration Motawi et al. (2023)

Ibrahim et al. (2024)

Spinal cord injury model (rat) 10 mg/kg/day for 28 days Oral gavage Du et al. (2022)

10 mg/kg/day for 7 or 14 days consecutively Tong et al. (2022)

Traumatic brain injury model (rat) 10 mg/kg/day for 14 days Oral gavage Huang et al. (2024)

Middle cerebral artery occlusion (MCAO) 

model (rat)

5 mg/kg/day for 8 weeks Oral administration Cheng et al. (2024)

Neonatal hypoxic brain injury (mouse) 10 mg/kg/day for 7 days Oral gavage Cree et al. (2018)

10 mg/kg/day from P3–P10 or P11–P18 for 8 days Wang et al. (2018)

Adult hypoxic brain injury (mouse) 10 mg/kg/day for 4 weeks Oral administration Chen et al. (2021)

Social isolation model (mouse) 10 mg/kg/day for the last 2 weeks of social isolation Gastric gavage Liu et al. (2016)

Social defeat stress model (mouse) 10 mg/kg/day for the last 5 consecutive days of social 

defeat stress

Oral gavage Shimizu et al. (2020)

Glaucoma (mouse) 10 mg/kg/day from the 7th day to 14th or 28th day 

after establishing glaucoma

Oral gavage Liu et al. (2024)

Chemotherapy-induced white matter damage 

(mouse)

10 mg/kg/day for 2 weeks Oral administration Chen et al. (2022)

Compression neuropathy model (mouse) 10 mg/kg/day for 6 weeks Intraperitoneal injection Lee et al. (2021)
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et al., 2021; Poon et al., 2024; Chen et al., 2025). These novel drug 
candidates may attenuate side effects through the selective blockade 
of the M1 receptor. PIPE-307 has completed Phase I trials in healthy 
volunteers (NCT04725175 and NCT04941781) and is currently in 
Phase II in MS patients (NCT06083753) (Poon et al., 2024; Chen 
et al., 2025).

Recently, ApTOLL—a single-stranded DNA aptamer—and alpha-
keto acids generated by the amino acid oxidase interleukin-4 induced 
1 (IL4I1) have been reported as new drug candidates for MS 
(Fernández-Gómez et al., 2024; Hu et al., 2024). Previously, creatine, 
a nitrogenous organic acid, has also been reported to promote 
remyelination (Chamberlain et al., 2017; Rosko et al., 2023). These 
drug candidates are being evaluated in several types of demyelinating 
mouse models and may have different potential molecular 
mechanisms. However, these drugs have not been directly compared 
in their efficacy in promoting remyelination. Therefore, it may 
be important to compare their relative strengths against the expected 
effects of clemastine.

Meanwhile, in hypoxic–ischemic rats, clemastine was shown to 
promote exercise-induced motor improvement (Goto et al., 2025). 
Interestingly, synthetic MRI measurements of acute stroke patients 
suggested that higher myelin content in the brain leads to better 
prognosis (Toko et al., 2025). Therefore, the combination of clemastine 
administration and exercise may have a synergistic effect on 
rehabilitation. In the near future, clinical trials may be conducted 
combining rehabilitation and clemastine administration in 
stroke patients.

4 Conclusion

Over the past decade, the efficacy of clemastine for treating 
neurological disorders has been reported in various preclinical 
models, and the possibility of repurposing clemastine has been 
discussed. In this review, we have summarized previous reports on 
clemastine administration in models of white matter injury and 
neurological disease, and discussed the therapeutic effects and 
potential mechanisms of action. Taken together, clemastine has the 
potential to be  repurposed for various neurological disorders. 
However, further investigation is needed to overcome outstanding 
questions, such as the optimization of the timing and duration 
of administration.
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