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Neurodegenerative diseases are a diverse group of neurological disorders,

in which abnormal mitochondrial function is closely associated with their

development and progression. This has generated significant research interest

in the field. The proper functioning of mitochondria relies on the dynamic

regulation of the mitochondrial quality control system. Key processes

such as mitochondrial biogenesis, mitophagy, and mitochondrial dynamics

(division/fusion) are essential for maintaining this balance. These processes

collectively govern mitochondrial function and homeostasis. Therefore, the

mitochondrial quality control system plays a critical role in the onset and

progression of neurodegenerative diseases. This article provides a concise

overview of the molecular mechanisms involved in mitochondrial biogenesis,

mitophagy, and mitochondrial dynamics, explores their interactions, and

summarizes current research progress in understanding the mitochondrial

quality control system in the context of neurodegenerative diseases.

KEYWORDS

mitochondrial quality control, Alzheimer’s disease, Parkinson’s disease, Huntington’s
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1 Introduction

Mitochondria, as quintessential organelles in eukaryotic cells, serve dual roles as cellular
energy suppliers and key regulators of calcium homeostasis, oxidative stress responses, and
apoptotic signaling pathways (Kamer and Mootha, 2015; Mattson et al., 2008; Zhou and
Tian, 2018). Neurons, characterized by exceptionally high metabolic demands, critically
depend on mitochondrial bioenergetic output for both normal functioning and survival
(Zhou and Tian, 2018). Consequently, mitochondria are indispensable for the sustenance
of neuronal life, and their robust activity and functional integrity are crucial for the
preservation of neuronal structure and vitality.

Neurodegenerative diseases (NDDs), also known as neurodegenerative diseases, are
a class of disorders characterized by the progressive degeneration of neuronal structure
or function in the central or peripheral nervous systems (Wilson et al., 2023). Because
these diseases are incurable malignant diseases, they adversely affect the lives of millions
of people worldwide. Common clinical neurodegenerative diseases include Alzheimer’s
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disease (AD), Parkinson’s disease (PD), Huntington’s disease
(HD), amyotrophic lateral sclerosis (ALS), etc. More and
more researchers are committed to the related research of
neurodegenerative diseases. Although NDDs have been studied for
many years, its pathogenesis is still not fully elucidated due to
the complexity of pathogenic factors. At present, several studies
have shown that patients with neurodegenerative diseases have
some common pathological characteristics in the early stage of
the disease: pathological protein aggregation and mitochondrial
damage or mitochondrial dysfunction in vulnerable brain regions
(Klemmensen et al., 2024; Lin and Beal, 2006; Wang D. X.
et al., 2021), and the normal operation of mitochondrial function
depends on the dynamic regulation of the mitochondrial quality
control (MQC) system (Zheng et al., 2019). Emerging research
demonstrates that the mitochondrial quality control (MQC) system
maintains cellular homeostasis through coordinated processes
including mitochondrial biogenesis, mitophagy, and mitochondrial
dynamics (fission/fusion). Dysregulation in any of these regulatory
nodes may induce ultrastructural mitochondrial abnormalities
and functional impairments, ultimately precipitating axonal
degeneration and neuronal apoptosis—pathological hallmarks
that define neurodegenerative pathogenesis (Hong et al., 2024).
Therefore, maintaining the balance of the mitochondrial quality
control system is essential for neuronal activity in the brain of
neurodegenerative diseases.

In conclusion, in this review, we briefly describe the
mitochondrial structure, summarize the specific regulatory
mechanisms of the mitochondrial quality control system and the
interaction between various pathways, and finally elaborate the
research progress of mitochondrial biogenesis, mitophagy and
mitochondrial dynamics in several common neurodegenerative
diseases, in order to understand more about the mitochondrial
quality control system and provide new research targets and ideas
for the treatment of neurodegenerative diseases.

2 Mitochondrial structure

Mitochondria are double-membrane-bound organelles. The
membrane is primarily composed of lipids and proteins. Due
to the special characteristics of the membrane components, it
promotes the bending and flow of the membrane. The two-layer
membrane divides mitochondria into multiple cavities, which

Abbreviations: AD, Alzheimer’s disease; AMBRA1, Activating molecule in
BECN1-regulated autophagy protein 1; AMPK, AMP-activated protein kinase;
Aβ, Amyloid beta; ALS, Amyotrophic lateral sclerosis; ATP, Adenosine
triphosphate; BNIP3, BCL2 and adenovirus E1B 19-kDa-interacting protein
3; BNIP3L, BNIP3-like; Drp1, Dynamin-related protein 1; ER, Endoplasmic
reticulum; FUNDC1, FUN14 Domain Containing 1; HD, Huntington’s
disease; Htt, Huntington; IMM, Inner mitochondrial membrane; MDVs,
mitochondrial-derived vesicles; Mfn1, Mitofusin 1; Mfn2, Mitofusin2; mHtt,
mutant Huntingtin; mtDNA, mitochondrial DNA; NDDs, Neurodegenerative
diseases; MUL1, Mitochondrial ubiquitin ligase 1; NAD+, Nicotinamide
adenine dinucleotide; OMM, Outer mitochondrial membrane; OPA1,
Optical atrophy protein 1; PARL, Presenilin-associated rhomboid like; PD,
Parkinson’s disease; PGC-1a, Peroxisome proliferator-activated receptor
gamma coactivator 1a; PINK1, PTEN induced putative kinase 1; PKA, Protein
kinase A; ROS, Reactive oxygen species; SMURF1, Smad ubiquitylation
regulatory factor-1; TDP-43, Transactive response DNA-binding protein of
43 kDa; Ub, Ubiquitin; ULK1, Unc-51 like autophagy activating kinase 1; BBB,
Blood-brain barrier.

is known as “mitochondrial compartmentalized structure.” The
mitochondrial structure mainly includes four distinct regions,
including mitochondrial outer membrane (Outer Mitochondrial
Membrane—OMM), mitochondrial inner membrane (Inner
Mitochondrial Membrane—IMM), mitochondrial matrix, and
intermembrane space (Kramer and Bressan, 2018). The OMM
is permeable, mediates mitochondrial signal transmission, and
carries molecules involved in fusion and fission, playing a
crucial role in mitochondrial dynamics (Lin et al., 2022). IMM
is composed of inner boundary membrane and mitochondrial
cristae, and the inner boundary membrane is parallel to the outer
mitochondrial membrane. Mitochondrial cristae are formed by
multiple folds of the inner mitochondrial membrane extending
into the mitochondrial matrix (Pape et al., 2020), They include
crista junctions, which connect the cristae membranes to the
inner boundary membrane, and cristae tips at the distal ends of
the cristae membranes (Kondadi et al., 2020). The mitochondrial
matrix contains enzymes, proteins (including mtDNA, RNA),
ribosomes, and metabolites critical for the TCA cycle and fatty
acid oxidation (Kaasik et al., 2007; Yan et al., 2019). Alterations in
the structure and function of mitochondrial compartments affect
mitochondrial homeostasis and quality control (Iovine et al., 2021),
which are closely linked to neurological diseases (Figure 1).

3 Mitochondrial quality control

Mitochondrial quality control refers to the dynamic
and coordinated cycle of regulatory processes that maintain
mitochondrial function. It is an endogenous cellular protective
program essential for maintaining mitochondrial homeostasis
and function in eukaryotes (Gan et al., 2018; Sedlackova and
Korolchuk, 2019). MQC involves a variety of mechanisms
to regulate and initiate the corresponding repair mechanism
according to the degree of mitochondrial damage, which mainly
includes mitochondrial biogenesis, mitochondrial dynamics
(division/fusion), and mitophagy. The three interact with each
other to maintain mitochondrial homeostasis or balance of
mitochondrial quality control system.

3.1 Molecular mechanisms of
mitochondrial biogenesis

Mitochondrial biogenesis is a strictly regulated process. Under
the joint regulation of existing mitochondrial nuclear DNA
(nDNA) and mitochondrial DNA (mtDNA), new mitochondria
are synthesized to replace damaged mitochondria, so as to
repair mitochondrial structure, maintain mitochondrial function,
increase antioxidant effect, reduce pathological oxidative stress and
promote ATP production to meet the metabolic needs of eukaryotic
cells under physiological and pathological conditions (Ferreira
et al., 2019; Popov, 2020; Zhou et al., 2021).

Mitochondrial biogenesis (Mitochondrial biogenesis, MB),
as a way of mitochondrial self-renewal, regulates the number,
size, and quality of mitochondria (Ploumi et al., 2017). Different
stress stimuli regulate mitochondrial biogenesis. The synthesis
of mitochondrial membrane, mtDNA replication, transcription,
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FIGURE 1

Schematic diagram of the mitochondrial structure. Figure was created with BioRender software.

translation, and the synthesis and import of mitochondrial
proteins encoded by nuclear DNA are important factors in the
process of mitochondrial biogenesis (Golpich et al., 2017; Zhang
and Xu, 2016). Markers of mitochondrial biogenesis are mtDNA
copy number, elevated mtDNA/nDNA ratio, and mitochondrial
gene expression level (Andres et al., 2017). This section mainly
introduces the key regulator peroxisome proliferator-activated
receptor-gamma coactivator-1alpha (Peroxisome-proliferator-
activated receptorγcoactivator-1α, PGC-1α), nuclear respiratory
factor (Nuclear respiratory factors 1/2, NRF1/2), mitochondrial
transcription factor A (Mitochondrial transcription factor A,
TFAM) mediates the regulatory mechanism of mitochondrial
biogenesis (Figure 2).

As a key transcriptional coactivator, PGC-1α primarily
regulates mitochondrial biogenesis. It is highly expressed in
energy-demanding tissues (e.g., heart, brain, skeletal muscle)
(Cheng et al., 2018). PGC-1α is often referred to as “the main
regulator of metabolism” or “the initiator of metabolic molecules”
(Villena, 2015). It acts as a coactivator for a variety of nuclear
receptors and transcription factors, participating in the regulation
of glucose metabolism, oxidative phosphorylation, overall energy
homeostasis, and the genetic program of antioxidant production
(Austin and St-Pierre, 2012; Wang et al., 2019b). Research
has indicated that the AMPK-PGC-1α-Nrf-TFAM axis and the
AMPK-SIRT1-PGC-1α-Nrf-TFAM axis are two major pathways
that regulate mitochondrial biogenesis. The AMPK/SIRT1/PGC-
1α signaling pathway is crucial for controlling mitochondrial
biogenesis and plays a significant role in stabilizing cellular
energy metabolism (Yan et al., 2020). During mitochondrial
biogenesis, the upstream signal regulators, silent information
regulator 1 (SIRT1) and adenosine monophosphate-activated
protein kinase (AMPK), activate PGC-1α through phosphorylation
and deacetylation modifications. This activation then stimulates
PPARs, nuclear respiratory factors 1 and 2 (Nrf1/2), and estrogen
receptor-related receptors α (ERRα), enhancing the expression
and activity of TFAM (Fontecha-Barriuso et al., 2020; Peng
et al., 2022). TFAM subsequently binds to the promoter region
of the mitochondrial subunit, promoting mitochondrial mtDNA
replication and transcription.

The nuclear respiratory factor (Nrf1/2), functioning as a
conserved transcriptional activator, predominantly localizes within
skeletal muscle, brain tissue, and lung tissue (Gleyzer et al., 2005;
Kiyama et al., 2018; Klinge, 2017). Positioned downstream of
PGC-1α, a pivotal regulator coordinating mtDNA and nuclear

DNA, Nrf1/2 serves as the primary initiator of mitochondrial
biogenesis. It orchestrates mtDNA transcription and replication
by stimulating the transcription of TFAM (Wong-Riley, 2012).
These nuclear respiratory factors are primarily tasked with
governing the expression of mitochondrial respiratory genes
(proteins), key mitochondrial enzyme transcription, coding genes
for mitochondrial respiratory complex subunits, mitochondrial
translation components, and heme biosynthase (Dinkova-Kostova
and Abramov, 2015; Esteras and Abramov, 2022). Their absence
results in defects in mitochondrial biogenesis and mitochondrial
protein import, ultimately leading to cell death (Kiyama et al.,
2022; Klinge, 2017). Nrf1/2 maintains mitochondrial homeostasis
by modulating the nuclear gene expression of components
within the oxidative phosphorylation system (Scarpulla, 2002a,b).
Mitochondrial transcription factor A (TFAM) is a nuclear gene-
encoded mitochondrial transcription factor that binds upstream
of the transcription start site and plays an important role in
the replication, transcription, assembly, and maintenance of the
stability of mtDNA (Kang et al., 2018; Kukat et al., 2015).
TFAM binds to mtDNA in both specific and non-specific ways,
with specific binding to TFAM being essential for initiating
mitochondrial transcription. TFAM proteins bind to the light and
heavy chain promoter regions of DNA (Zorzano and Claret, 2015),
increasing the flexibility of DNA and promoting its compression
(Farge et al., 2012). This binding also recruits mitochondrial RNA
polymerase to initiate mtDNA transcription (Malarkey et al., 2016).
However, the mechanism of TFAM’s compression of mtDNA is
currently unclear. TFAM binds non-specifically to all sequences of
mtDNA, wrapping around the mtDNA structure to form stable
protein patches. Under pathological conditions, disruption of
TFAM can lead to mtDNA mispackaging, a massive release of
damaged mtDNA, and down-regulation of TFAM also reduces the
stability of the mtDNA mimetic nuclear structure (West et al.,
2015). TFAM is almost exclusively present in a DNA-bound form
(Takamatsu et al., 2002), and degradation of TFAM proteins
by mitochondrial matrix proteases directly affects mtDNA copy
number (Matsushima et al., 2010). In summary, TFAM protein
abundance is closely related to mtDNA content, and TFAM affects
mitochondrial biosynthesis by regulating mtDNA copy number
through its interaction with mtDNA (Picca and Lezza, 2015).

In conclusion, mitochondrial biogenesis plays an important
role in maintaining the health of the mitochondrial network
and rescuing mitochondrial dysfunction. Activating mitochondrial
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FIGURE 2

Schematic illustration of the mitochondrial biogenesis. PGC-1α serves as the primary modulator of mitochondrial biogenesis, with SIRT1 and AMPK
facilitating its activation through deacetylation and phosphorylation, respectively. This activation enhances the expression and functionality of TFAM
by stimulating the activity of PPARs, NRF1, NRF2, and ERR-α. Subsequently, TFAM binds to the promoter region of mitochondrial subunits, thereby
promoting the replication and transcription of mitochondrial mtDNA. Figure was created with BioRender software.
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biogenesis is a potential avenue for the treatment of mitochondrial-
related diseases.

3.2 Molecular mechanisms of mitophagy

Mitophagy, which may be described as a process of “eating
itself,” is the selective isolation of excess or damaged mitochondria
by autophagosomes, which are then degraded by lysosomes
(Pickles et al., 2018). Mitophagy is classified into three main
categories according to the physiological conditions under
which it occurs: basal mitochondrial autophagy, stress-induced
mitochondrial autophagy, and programmed mitophagy. The
process of mitochondrial autophagy can be broadly divided into
three stages: preparation, initiation and degradation (Yamashita
and Kanki, 2017). In the early stages, mitochondrial damage
leads to the depolarization of the membrane potential. This
triggers the activation of autophagy-associated proteins, which
form a bilayer membrane upon receiving initiation signals. The
bilayer membrane then wraps around the damaged mitochondria.
Once the bilayer membrane has been stretched, it begins
to close the loop at a slow rate, forming mitochondrial
autophagosomes. Autophagosomes fuse with lysosomes to form
mature autophagolysosomes. Lysosomal hydrolases degrade the
autophagosomal contents, completing the process of mitophagy
(Chen and Chan, 2009).

The scholarly exploration into the regulatory mechanisms
of mitophagy has garnered significant interest. Presently, the
identified pathways that facilitate mitophagy are predominantly
categorized into ubiquitin (Ub)-dependent and non-ubiquitin
(Ub)-dependent systems (Palikaras et al., 2018). The Ub-dependent
processes encompass PINK1/Parkin-mediated mitophagy and
ubiquitin-regulated mitophagy, while the non-Ub-dependent
processes involve receptor protein and lipid-mediated mitophagy
(Fritsch et al., 2020). The receptor proteins predominantly engaged
in mitophagy include BNIP3L/NIX, FUNDC1, FKBP8, PHB2, and
AMBRA1 (Yao et al., 2021). This section will examine the regulatory
mechanisms of PINK1/Parkin-dependent mitophagy, as well as
those of BNIP3L/NIX and FUNDC1-mediated mitophagy.

3.2.1 PINK1/Parkin mediated mitophagy
The pathway consisting of PINK1 and Parkin is a key

participant in mitophagy, as well as the most common and
classical pathway of autophagic mitochondria (Cai and Jeong, 2020;
Lazarou et al., 2015). PINK1 is a serine/threonine kinase located
in mitochondria as a highly conserved protein. Mitochondrial
protein associated with both outer and inner membranes
(Khaminets et al., 2016). Parkin is an E3 ubiquitin ligase, diffusely
distributed in cytoplasmic lysate in a state of self-repression (Wang
et al., 2023). Parkin plays an important role in mitochondrial
autophagy signaling as a downstream factor of the PINK1-mediated
mitophagy pathway. PINK1 and Parkin interact to mediate
mitophagy, thereby maintaining mitochondrial homeostasis. The
loss or reduced function of both proteins leads to mitochondrial
damage. The manner in which damaged mitochondria activate
mitophagy is determined by three major factors: PINK1, Parkin and
ubiquitin chain.

As a molecular sensor of mitochondrial damage, PINK1
accumulates on the outer mitochondrial membrane due to

impaired transmembrane translocation upon mitochondrial
membrane potential (19m) depolarization (Lu et al.,
2023). Mediated by the TOM complex, PINK1 undergoes
trans-autophosphorylation and subsequent conformational
rearrangement, thereby activating the E3 ubiquitin ligase
activity of Parkin through its transition from an autoinhibited
state to an active conformation (Riley et al., 2013). Activated
Parkin ubiquitinates outer mitochondrial membrane proteins
including Mfn1, Mfn2, Miro1, and VDAC1 (Birsa et al., 2014;
Geisler et al., 2010; Tanaka et al., 2010), followed by PINK1-
mediated phosphorylation of these ubiquitinated substrates
to amplify polyubiquitin chain signaling (Harper et al., 2018).
Autophagy receptors (P62, NBR1, NDP52, OPTN, TAX1BP1)
specifically recognize ubiquitin chains via their LC3-interacting
regions, binding to microtubule-associated protein 1A/1B-
light chain 3 (LC3) on autophagosomal membranes and
directing the engulfment of damaged mitochondria. Ultimately,
autophagosome-lysosome fusion generates autolysosomes,
enabling programmed mitochondrial degradation (Turco et al.,
2021).

3.2.2 BNIP3/NIX mediated mitophagy
NIX, a protein with 50% homology to BNIP3 (Matsushima

et al., 1998), binds to the mitochondrial outer membrane through
its carboxyl transmembrane domain, thereby initiating mitophagy
under ischemic or hypoxic conditions. BNIP3 and NIX engage
in this process through two distinct mechanisms. Firstly, the
N-terminus of BNIP3 interacts with LC3 or GABARAP, while
NIX promotes hypoxia-induced mitophagy via phosphorylation
at Ser81 (Yuan et al., 2017; Zhang et al., 2019). Secondly, the
BH3 domain of BNIP3 may trigger the release of Beclin-1,
thereby initiating mitophagy. Additionally, NIX has been identified
as a substrate for Parkin, facilitating Parkin/PINK1-dependent
mitophagy (Gao et al., 2015). Currently, the BNIP3/NIX complex
is recognized as a critical factor in the removal of damaged
mitochondria and the stimulation of mitophagy (Sandoval et al.,
2008; Zhang and Ney, 2010). However, the precise mechanisms
underlying their action remain to be elucidated.

3.2.3 FUNDC1 mediated mitophagy
The FUN14 domain-containing protein 1 (FUNDC1) is widely

present on the mitochondrial outer membrane and acts as a
regulator of mitochondrial autophagy in response to hypoxia,
inducing Parkin-independent mitophagy (Liu et al., 2012). In
physiological conditions, where FUNDC1 is phosphorylated by
tyrosine kinases, the induction of mitochondrial autophagy is
prevented. Conversely, following hypoxia or loss of mitochondrial
membrane potential, the inactivation or reduction of tyrosine
kinase activity through the activation of PGAM5 will contribute
to the downregulation of the phosphorylated FUNDC1 level.
Consequently, FUNDC1 phosphorylation at Tyr18 and Ser13
undergoes dephosphorylation, resulting in a conformational
change and elevation of the FUNDC1 affinity for LC3 or
GABARAP. This, in turn, triggers the onset of mitochondrial
autophagy (Zhang W. et al., 2017). In parallel, it has been
documented that the phosphorylation of the FUNDC1-Ser17
site, mediated by ULK1, also initiates mitophagy (Liu et al.,
2022; Zhou et al., 2017). These findings collectively indicate
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that FUNDC1 is a pivotal and indispensable receptor in the
regulation of mitophagy under hypoxic conditions, and its
function is modulated by phosphorylation during the mitophagy
process.

To encapsulate, mitophagy is an evolutionarily conserved
mechanism that identifies and degrades dysfunctional
mitochondria in a timely manner, thereby mitigating
oxidative stress and enhancing cellular energy. Mitophagy
adapts to various stress conditions and metabolic states,
presenting distinct profiles. This process is a multifaceted
and intricate regulatory mechanism, with multiple pathways
mediating mitophagy demonstrating parallelism or redundancy
to preserve the equilibrium between mitochondrial
homeostasis and the mitochondrial quality control system
(Figure 3).

3.3 Molecular mechanisms of
mitochondrial dynamics

Mitochondria, as highly dynamic organelles, adapt to the
extracellular and intracellular microenvironments by undergoing
fusion and division, thereby regulating their position, size,
and shape. These organelles not only provide energy for
cellular functions but also ensure the proper operation of
mitochondrial processes. Moreover, mitochondria play a crucial
role in removing damaged mitochondria and in regulating
mitochondrial respiration, calcium signaling, cell survival,
apoptosis, and other vital cellular processes. This intricate
physiological process is termed “mitochondrial dynamics” (Liesa
et al., 2009; Tilokani et al., 2018; Zhou et al., 2021). Mitochondrial
fusion is defined as the process of fusing the inner and outer
membranes of two different mitochondria to form a new
mitochondrion. This increases the resistance of the mitochondrial
network and facilitates complementary interactions between
damaged mitochondria (Gan et al., 2018; Szabo et al., 2018).
Mitochondrial division serves to isolate damaged mitochondria
and retain functionally intact mitochondria. The separated
damaged mitochondria are further cleared by mitochondrial
autophagy (Ni et al., 2015; Taguchi et al., 2007; Zheng et al., 2023).
The balance between mitochondrial division and fusion is an
important basis for normal cellular activity and the maintenance
of energy homeostasis, as well as for neurons to perform normal
functions (Flippo and Strack, 2017; Mishra and Chan, 2016).
In the physiological state, mitochondrial fission and fusion are
in dynamic equilibrium, with each process holding the other
in check. However, disruption of this equilibrium, for example
through the blockage of mitochondrial fusion and fission, may
lead to oxidative stress, mitochondrial dysfunction and metabolic
alterations, and ultimately to the development of mitochondria-
associated diseases (Archer, 2013; Xiao et al., 2021). The regulatory
mechanisms of mitochondrial dynamics are complex and involve
multiple proteins and signaling pathways. In this part, we
mainly summarize the regulatory mechanisms of mitochondrial
dynamics key proteins such as Mitofusin 1 (Mfn1), Mitofusin
2 (Mfn2), Optic atrophy 1 (OPA1), Dynamin-related protein 1
(Drp1), and Fission protein 1 (Fis1) in mitochondrial fusion and
fission.

3.3.1 Mitochondrial fusion and regulatory
mechanisms

Mitochondrial fusion is a cellular self-repair mechanism
that combines healthy mitochondria with damaged or mutated
mitochondria to repair the damage or compensate for the
mitochondrial dysfunction caused by mutations through
complementary effects, thus ensuring normal mitochondrial
function and maintaining normal cellular physiological activities
(Twig and Shirihai, 2011). The process of mitochondrial fusion
involves the exchange of mtDNA, intermediates of the tricarboxylic
acid cycle (TCA cycle), and respiration-related proteins. As a result,
the new mitochondria formed after fusion have mtDNA pools,
differences in membrane potential, and a diversity of proteins
compared to the mitochondria before fusion (Zhou et al., 2021).
Mitochondria are a two-layer membrane organelle. The process
of mitochondrial fusion involves the fusion of the outer and inner
mitochondrial membranes. The entire process of mitochondrial
fusion can be briefly summarized as mitochondrial trans-bolus,
mitochondrial outer membrane fusion, and mitochondrial inner
membrane fusion (He and Maheshwari, 2023). Mitochondrial
fusion is regulated by several membrane-anchored proteins,
including Mfn1, Mfn2, and OPA1. Mfn1 and Mfn2 promote
the fusion of the outer mitochondrial membrane (OMM), while
OPA1 is the major mitochondrial DNA (mtDNA) in mammals
responsible for the fusion of the inner mitochondrial membrane
(IMM) and remodeling of the mitochondrial cristae (Cisneros
et al., 2022; Lee H. et al., 2017; Sai et al., 2013; Wang et al., 2019a).

As key mitochondrial GTPases, Mfn1 and Mfn2 mediate
the fusion of outer mitochondrial membranes (Tokuyama and
Yanagi, 2023). They consist of an amino-terminal GTPase
structural domain, two coiled-coil structural domains, and a double
transmembrane structural domain embedded in the mitochondrial
outer membrane (Chandhok et al., 2018). In mammals, Mfn1
and Mfn2 have analogous functions to a certain extent, with
Mfn1 being expressed predominantly in the liver, adrenal glands,
and heart, while Mfn2 is expressed primarily in the brain, heart,
bone, and brown adipose tissue. Mfn1/2 is primarily localized to
the outer mitochondrial membrane and endoplasmic reticulum
surface, where it serves to anchor mitochondria to the endoplasmic
reticulum and facilitate mitochondrial calcium uptake (Joaquim
and Escobar-Henriques, 2020). The control of mitochondrial
elongation is impacted by hypoxia, for instance. This process is
regulated by Mfn1 deacetylation. In contrast, Mfn2 participates
in mitochondrial fusion regulation. This is achieved through the
formation of mitochondrial and endoplasmic reticulum contact
sites (Basso et al., 2018; Oanh et al., 2017). Mfn2 exists in
two distinct functional forms, the compressed inactive form and
the expanded active form, which are associated with different
biological roles (Franco et al., 2016). The activity of Mfn2 is
also regulated by signal transducer molecule 2 (recombinant
mothers against decapentaplegic homolog 2, Smad2), which acts
as a scaffold to recruit Rab-Ras interacting factor 1 (RIN1) to
form the Smad2-RIN1-Mfn2 complex with Mfn2, which ultimately
promotes ATP synthesis and mitochondrial fusion (Kumar et al.,
2016). Beyond mediating outer mitochondrial membrane fusion,
Mfn1/2 participates in mitophagy regulation, mitochondrial cristae
remodeling, and facilitates stress-associated unfolded protein
response (UPR) (Hu et al., 2019; Tokuyama and Yanagi, 2023).
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FIGURE 3

Schematic illustration of the mitophagy. Mitochondrial phagocytosis is facilitated by a complex interplay of mechanisms, primarily categorized into
ubiquitin (Ub)-dependent and Ub-independent pathways. The Ub-dependent pathway is predominantly mediated by the PINK1/Parkin axis.
Furthermore, a distinct set of mitophagy receptors is capable of directly interacting with LC3, obviating the need for extensive ubiquitination and
thereby contributing to the Ub-independent pathway. The receptor proteins involved in mitochondrial autophagy include BNIP3L/NIX, FUNDC1,
FKBP8PHB2, and AMBRA1, among others. Figure was created with BioRender software.

In conclusion, Mfn1 and Mfn2 perform distinct functions during
mitochondrial fusion in conjunction with one another, thereby
influencing the pathogenesis of various diseases (Rosca et al., 2013).

OPA1 is a crucial protein involved in cristae remodeling. It is
hydrolyzed by proteases in mitochondria to produce two forms:
membrane-anchored L-Opa1 and processed S-Opa1 (Oma1, Yel1L,
Parl) (Fry et al., 2023). Both isoforms are found in nearly equal
amounts in physiological conditions (Annesley and Fisher, 2019;
Del et al., 2018). Studies have indicated that the oligomerization
of the long and short forms of OPA1 is responsible for the
fusion or fission of the inner mitochondrial membrane (Dirks-
Naylor et al., 2014). This process is initiated by the cleavage of
L-Opa1 in the transmembrane structural domain, which results
in the generation of S-Opa1. The soluble and cleaved form
of OPA1, known as S-Opa1, is present in the intermembrane
space (IMS). An excess of this form can result in mitochondrial
fission and dysfunction, as demonstrated in research (Duan
et al., 2023). In contrast, the L-Opa1 variant is anchored in the
inner mitochondrial membrane. This form of OPA1 is involved
in mitochondrial fusion, as evidenced by research (Civiletto
et al., 2015; MacVicar and Langer, 2016). OPA1 is involved
in mitochondrial cristae remodeling in addition to regulating
IMM fusion. Studies have reported that overexpression of OPA1
reduces cristae width and causes tightening of mitochondrial
cristae (Glytsou et al., 2016; Quintana-Cabrera et al., 2018). In
the absence of OPA1, the inner mitochondrial cristae structure
and inner membrane are damaged, which leads to the loss
of mitochondrial membrane potential and ultimately affects
mitochondrial function (Patten et al., 2014; Pernas and Scorrano,
2016).

3.3.2 Mitochondrial fission and regulatory
mechanisms

Mitochondrial fission refers to the process by which a
mitochondrion divides into two mitochondria. This allows
damaged or low-potential mitochondria to be separated from
the network by mitosis, ensuring the maintenance of a healthy
mitochondrial network (Zheng et al., 2020; Zhou et al., 2021).
Mitochondrial division does not appear to be dependent on
mitochondrial membrane potential. Abnormal mitochondrial
fission results in mitochondrial fragmentation, triggering
depolarization, oxidative stress, and ultimately severe neuronal
damage (Barsoum et al., 2006; Chan, 2006; Chiang et al., 2015;
Frank, 2006; Santos et al., 2015; Youle and van der Bliek, 2012).
As previously noted, the regulatory genes Drp1 and Fis1 are
essential for mitochondrial division. This process results in a
decline in mitochondrial membrane potential, ultimately leading
to mitochondrial dysfunction. This dysfunction can be achieved
either through the overexpression or repression of the expression
levels of proteins associated with mitochondrial division (Wang
et al., 2015; Xie et al., 2014).

Dynamin 1 (Drp1), also known as Drp1, is a key protein in
maintaining the mitochondrial dynamic network (Jin et al., 2021).
In the physiological state, it is localized in the cell cytosol and
is regulated by a variety of protein translational modifications
(PTMs) to adapt to different cellular environments, such as
phosphorylation, ubiquitination, S-nitrosylation, palmitoylation,
and SUMOylation (Jin et al., 2021). Drp1 is primarily composed
of four distinct structural domains: the amino-terminal GTPase
structural domain, the variable structural domain, the helical
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structural domain situated in the middle, and the carboxy-terminal
GTPase effector structural domain (Mishra and Chan, 2016).
The process of mitochondrial division encompasses the formation
of both meso-regional and peripheral divisions. Mitochondrial
division entails the formation of two spatially distinct types:
midzone division, which occurs in the central region of the
mitochondrion, and peripheral division, localized near its terminal
regions (Kleele et al., 2021). Mitochondrial fission can be roughly
divided into three steps, as follows: Drp1 protein is recruited
from the cytoplasm and transferred to the outer mitochondrial
membrane for oligomerization (Frohlich et al., 2013), which
depends on its GTPase activity; hydrolysis of ATP to provide energy
to allow Drp1 to form a ring structure; and the interplay between
the endoplasmic reticulum and actin to drive the contraction of
the Drp1 protein to reduce the molecular spacing, leading to
the rupture of the OMM and IMM and ultimately triggering
mitochondrial fission (Giacomello et al., 2020; Kalia et al., 2018).
Upon completion of mitochondrial fission, the Drp1 helix detaches
from the mitochondria and returns to the cytosol to undergo
another mitochondrial division (Itoh et al., 2013).

One of the most characteristic post-translational modifications
(PTMs) of the Drp1 is phosphorylation, which regulates
mitochondrial fission. Depending on the specific phosphorylation
site of the modification, Drp1 may exert either an activating
or inhibitory effect on mitochondrial fission (Jin et al., 2021).
Some of the phosphorylation sites that have been subjected to
the greatest degree of study are Ser40, Ser44, Ser579, Ser585,
Ser592, Ser616, Ser637, Ser656, Ser693, and other phosphorylation
sites (Qi et al., 2019). It has been shown that mitochondrial
fission is facilitated by the phosphorylation modifications of
Ser40, Ser44, Ser579, Ser585, Ser592, and Ser616 as well as
the dephosphorylation modifications of Ser637 and Ser656.
Conversely, the phosphorylation modifications of Ser637 and
Ser656 have been shown to inhibit mitochondrial fission.
Phosphorylation at distinct Drp1 residues differentially regulates
mitochondrial dynamics. While phosphorylation at Ser616
enhances fission activity, phosphorylation at Ser637 exerts an
inhibitory effect under physiological conditions (Longo et al.,
2021). Although Drp1-Ser637 phosphorylation predominantly
suppresses mitochondrial fission under most physiological
conditions, emerging evidence indicates its biological functions
exhibit cell type-specific dependency and are dynamically regulated
by microenvironmental signaling cues and upstream regulatory
networks (Serasinghe and Chipuk, 2017). In diabetic patients
and animal models, phosphorylation of the Drp1-Ser637 site in
podocytes and endothelial cells in a high-glucose environment
drives the translocation of Drp1 to mitochondria, which in
turn promotes mitochondrial fission (Wang W. et al., 2012). In
pathophysiological conditions, PKD-mediated phosphorylation
of Ser637 has been demonstrated to enhance mitochondrial
fragmentation (Jhun et al., 2018). A 2021 study revealed that
phosphorylation at the Drp1 Ser637 site influences mitochondrial
fission or fusion, contingent on the phosphorylation state of
Ser616. It was demonstrated that phosphorylation at the Ser637
site stimulates Ser616 phosphorylation and that only the inhibition
of downstream Ser616 phosphorylation results in mitochondrial
elongation (Gonzalez et al., 2021). Concurrently, accumulating
evidence demonstrates that Ser637 phosphorylation participates
in circadian regulation of mitochondrial fission (Serasinghe and

Chipuk, 2017), highlighting the need for systematic elucidation of
its spatiotemporal regulatory mechanisms and precise molecular
determinants governing mitochondrial fission dynamics.

FIS1, the earliest identified mitochondrial junction protein,
resides on the outer mitochondrial membrane, where it facilitates
mitochondrial fission by engaging in a complex with Drp1. In
yeast, Fis1 interacts with the ligand protein Mdv1 to promote the
synthesis and assembly of Drp1-GTP oligomers, which are involved
in the regulation of mitochondrial asymmetric fission (Frieden
et al., 2004). However, Mdv1 has not been detected in mammalian
cells (Stojanovski et al., 2004), where FIS1 is required to interact
with additional outer membrane receptors, including Mff, MID49,
and MID51, to facilitate Drp1 polymerization and assembly into
a helical or ring structure surrounding the mitochondrial outer
membrane, thereby recruiting Drp1 to the division site, which
ultimately initiates fission (Takamura et al., 2012). Mff can recruit
Drp1 independently of Fis1 and is involved in the recruitment of
Drp1 to the mitochondrial and peroxisomal membranes. MiD49
and MiD51 are chordate-specific mitochondrial elongation factor
proteins, both of which can recruit Drp1 to the mitochondrial
fission site independently of Fis1 and Mff and can also coordinate
with Mff to regulate Drp1-mediated mitochondrial fission (Kraus
and Ryan, 2017). Consequently, the relative levels of FIS1, Mff,
MiD49, and MiD51 serve as crucial determinants of homeostatic
mitochondrial dynamics (Yu et al., 2017).

As a mechanoenzyme, dynamin 2 (Dyn2) specifically engages
in the terminal membrane scission phase of mitochondrial division
following Drp1-mediated recruitment and oligomeric assembly at
the OMM (Lee et al., 2016). Its functional execution strictly depends
on GTPase activity to drive constrictive severing of the OMM
(Mahecic et al., 2021). Concurrently, the mitochondrial signature
lipid cardiolipin facilitates Drp1 oligomerization, synergistically
enhancing coordinated constrictive remodeling of both OMM and
IMM (Adebayo et al., 2021), thereby mechanistically advancing
Drp1-dependent mitochondrial fission.

Recent breakthroughs have been made in the molecular
mechanisms surrounding mitochondrial dynamics. Related studies
have found that the endoplasmic reticulum is the initiating step
in mitochondrial division, that the endoplasmic reticulum serves
to mark the onset of mitochondrial contraction and division
(Friedman et al., 2011), and that the lysosome’s location of contact
with the mitochondrion is likely to be the site of initiation of
division (Wong et al., 2018). Furthermore, prior to division, Drp1,
Mff, and MiD49/51 bind specifically to endoplasmic reticulum-
mitochondrial contact sites, where they facilitate mitochondrial
membrane remodeling and division (Osellame et al., 2016;
Yamashita et al., 2016).

In conclusion, MQC is an integrated network that monitors
mitochondrial quality and works in concert to maintain
mitochondrial homeostasis by coordinating various processes,
including mitochondrial biogenesis, mitochondrial autophagic
degradation, and the balance of mitochondrial dynamics (fission,
fusion) (Zhou et al., 2023). The mitochondrial quality control
regulatory mechanism is intricate and encompasses multilevel,
multi-mechanism, and multipathway processes. Consequently,
a comprehensive and systematic understanding of the specific
molecular regulatory mechanisms of mitochondrial quality control
using novel technologies and methodologies is a pivotal objective
of future research (Figure 4).

Frontiers in Cellular Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fncel.2025.1588645
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-19-1588645 May 15, 2025 Time: 18:4 # 9

Liu et al. 10.3389/fncel.2025.1588645

FIGURE 4

Schematic illustration of the mechanism of mitochondrial dynamics. (A) Mitochondrial fusion is governed by a set of membrane-anchored proteins,
such as Mfn1, Mfn2, and Opa1. Mfn1 and Mfn2 facilitate the fusion of the outer mitochondrial membrane, while Opa1, the predominant
mitochondrial DNA (mtDNA) in mammals, is responsible for the fusion of the inner mitochondrial membrane and the reshaping of mitochondrial
cristae. (B) During mitochondrial division, Drp1 binds to its receptors (MFF, MID49, MID51, and FIS1) to form Drp1 oligomers, contracting the
mitochondria to facilitate division. Figure was created with BioRender software.

4 Crosstalk between mitochondrial
dynamics, biogenesis, and
mitophagy

MQC is a dynamic and coordinated process in which
mitochondrial biogenesis, mitophagy, and mitochondrial
fission/fusion interact and regulate each other to maintain
mitochondrial homeostasis. A growing body of evidence has
demonstrated that the degradation of mitochondrial fission and
fusion-related factors plays a pivotal role in regulating mitophagy
(Catanzaro et al., 2019; Yang et al., 2022; Zhang et al., 2020). The
equilibrium between mitochondrial dynamics and mitophagy
is essential for the continuous renewal of mitochondria and
the generation of new mitochondria (Gan et al., 2018). The
maintenance of a balance between mitophagy and mitochondrial
biogenesis is a prerequisite for cellular adaptation and resilience.
However, an imbalance between the two results in cellular
degradation and the initiation of cell death mechanisms (Palikaras
and Tavernarakis, 2014). Consequently, the optimal functioning
of mitochondria is maintained by orchestrating the intricate
equilibrium between mitochondrial biogenesis, autophagy, and
dynamics, including fission and fusion.

4.1 Co-regulation of mitochondrial
biogenesis and mitophagy

Mitochondrial-related pathways are intertwined, convergent,
and differentiated (Collier et al., 2023), and changes in
mitochondrial number are closely related to mitochondrial
biogenesis and mitophagy. Mitochondrial biogenesis renews or
replaces damaged mitochondria through growth, while mitophagy
is responsible for the removal of damaged or functionally
defective mitochondria. The process of inter-regulation and inter-
coordination of the two is an important pathway that influences the
balance of mitochondrial numbers in the organism, or homeostasis.
Mitophagy is responsible for the removal of damaged or defective
mitochondria. Damage to mitochondrial biogenesis resulting from
defective mitophagy may result in a decrease or increase in the
number of mitochondria (Palikaras et al., 2015). Several studies
have demonstrated that mitochondrial biogenesis is an important
indicator for assessing mitochondrial function and mitophagy
in disease states. Furthermore, these studies have shown that
mitochondrial biogenesis is accompanied by mitophagy and that
abnormal mitophagy inhibits mitochondrial biogenesis.

The PGC-1α-NRF1-FUNDC1 signaling pathway plays
an important role in the balance between mitophagy and
mitochondrial biogenesis (Liu L. et al., 2021). PGC-1α is a pivotal
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regulator of mitochondrial biogenesis and mitophagy (Palikaras
and Tavernarakis, 2014). On the one hand, PGC-1α stimulates
mitochondrial biogenesis by enhancing NRF1 transcriptional
activity and TFAM gene expression. On the other hand, PGC-
1α/NRF1 regulates FUNDC1-mediated mitophagy through
transcription, promoting mitochondrial biogenesis during the
process of mitochondrial autophagy, accelerating mitochondrial
turnover, and maintaining normal mitochondrial respiration and
mitochondrial population stability. Furthermore, mitochondrial
biogenesis, which is regulated by PGC-1α, positively influences
PINK1/Parkin-mediated mitophagy. In a cellular model of
dopamine neurotoxicity induced by fisetinone, silencing of PGC-
1α expression was found to significantly increase the protein
expression levels of PINK1, parkin, and their phosphorylated
proteins (Peng et al., 2019).

PINK1 and Parkin have been identified as regulators of
multiple structural domains of mitochondrial quality control, with
additional roles in mitochondrial biogenesis and mitophagy (Lee
H. et al., 2017). The deletion or inactivation of Parkin down-
regulates PGC-1α, which in turn leads to the selective degeneration
of dopamine neurons in the substantia nigra pars compacta (SNpc).
This process can be reversed by the overexpression of PGC-1α,
which in turn restores mitochondrial biogenesis (Siddiqui et al.,
2016; Stevens et al., 2015). The overexpression of Parkin in cortical
neurons has been demonstrated to increase the levels of PGC-1α

and mtDNA copy number (Zheng et al., 2017). A reduction in the
expression of PINK1 was demonstrated to result in a significant
decline in the function of the mitochondrial electron transport
chain (ETC) as well as the mtDNA copy number in hepatocellular
carcinoma cell lines, as evidenced in a study (Kung-Chun et al.,
2019). PINK1 and parkin can positively regulate mitochondrial
biogenesis through the PARIS/PGC-1α axis (Pirooznia et al., 2020).
It has been observed that PARIS (ZNF746) is a transcriptional
repressor of PGC-1α and NRF1, as well as a common substrate for
PINK1 and parkin. Furthermore, PINK1/Parkin mediates PARIS
degradation through ubiquitylation, which in turn is involved
in the regulation of mitochondrial biogenesis (Lee H. et al.,
2017). In neuronal cells, following the knockdown of PINK1
and Parkin, PINK1 is observed to promote PARIS ubiquitination
and Parkin proteasomal degradation through phosphorylation
of Parkin and PARIS. Consequently, this results in a reduction
in the expression of PGC-1α (Pirooznia et al., 2020). However,
some reports present an opposing view. Emerging evidence
reveals reciprocal antagonistic regulation between PINK1/Parkin-
mediated mitophagy and mitochondrial biogenesis in rotenone-
induced in vivo and in vitro models. PINK1 silencing upregulated
the mitochondrial biogenesis regulators PGC-1α and mtTFA
protein expression, concomitant with a significant increase
in mtDNA copy number. Conversely, PINK1 overexpression
suppressed these biogenic markers (PGC-1α, mTFM protein levels,
and mtDNA content) (Peng et al., 2019). These findings collectively
indicate that PINK1 and Parkin play a role in the generation of new
mitochondria by regulating PGC-1α levels.

The interaction between PINK1/Parkin and PGC-1α appears
to co-regulate mitochondrial biogenesis and mitophagy, thereby
maintaining mitochondrial homeostasis and mitochondrial
quality control. However, the relationship between the mutual
coordination of PINK1/Parkin and PGC-1α remains controversial.
The experimental results presented above indicate that mitophagy

and mitochondrial biogenesis are closely intertwined, with
the interaction between these two processes playing a pivotal
role in cellular adaptation and stress resistance (Palikaras and
Tavernarakis, 2014). This section aims to provide a detailed
account of the experimental study on the further investigation
is required to elucidate the crosstalk between PINK1/parkin-
mediated mitophagy and mitochondrial biogenesis, with the
involvement of PGC-1α. Additionally, the regulatory mechanisms
between other pathways or protein receptors mediating mitophagy
and mitochondrial biogenesis require further investigation.

4.2 Co-regulation of mitochondrial
biogenesis and mitochondrial dynamics

A crosstalk exists between mitochondrial biogenesis and
mitochondrial fission/fusion. Studies have reported that PGC-
1α not only regulates mitochondrial biogenesis, mitochondrial
transcription and replication, and antioxidant systems but also
participates in regulating mitochondrial fission and fusion and
maintaining mitochondrial homeostasis (Zarch et al., 2009).
The mitochondrial fusion/fission-associated proteins Mfn2 and
Drp1 have been proposed to function as downstream nuclear
transcription factors in the PGC-1α-mediated mitochondrial
biogenesis process (Peng et al., 2017). Related studies have
demonstrated that PGC-1α exerts a dual regulatory effect on
mitochondrial dynamics. On the one hand, it positively regulates
the mitochondrial fusion protein Mfn2, while on the other, it
negatively regulates the expression of mitochondrial splitting-
related proteins. Inhibition of PGC-1α expression has been shown
to result in decreased expression of the mitochondrial fusion
protein Mfn2, increased expression of p-Drp1, and increased
mitochondrial fragmentation (Guo et al., 2015). An increase in
PGC-1α expression was accompanied by a corresponding increase
in the level of the fusion protein Mfn2, while the level of splitting
protein levels was significantly reduced (Wang et al., 2019d). These
results suggest that positive PGC-1α-Mfn2 regulation and negative
PGC-1α-Drp1 regulation maintain the balance of mitochondrial
dynamics. In a separate study, Ding et al. (2018) demonstrated
that PGC-1α directly regulates Drp1 expression by binding to
the upstream promoter, activates the SIRT1-PGC-1α signaling
pathway, and markedly inhibits Drp1-mediated mitochondrial
fission. Furthermore, it was demonstrated that PGC-1α has the
capacity to repair damage to axonal mitochondrial transport
and enhance mitochondrial swelling morphology. This may be
attributed to the stimulation of the activity of the Mfn2 promoter
(Soriano et al., 2006; Wang et al., 2022).

During the mitochondrial life cycle, mitochondrial fission
and fusion can regulate both the equilibrium of mitochondrial
dynamics and mitochondrial biogenesis. Peng et al. (2017)
demonstrated that the application of a mitochondrial fusion
promoter (M1) and an inhibitor of mitochondrial fission (Mdivi-
1) resulted in a significant increase in the copy number of mtDNA.
The findings suggest that mitochondrial fission and fusion may play
a role in the regulation of mitochondrial biogenesis.

In conclusion, the above results collectively demonstrate that
there is a crosstalk between mitochondrial division/fusion and
transcriptional regulation of mitochondrial biogenesis, which

Frontiers in Cellular Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fncel.2025.1588645
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-19-1588645 May 15, 2025 Time: 18:4 # 11

Liu et al. 10.3389/fncel.2025.1588645

is essential for maintaining mitochondrial homeostasis. In
conclusion, the above results collectively demonstrate that
there is a crosstalk between mitochondrial division/fusion and
transcriptional regulation of mitochondrial biogenesis, which is
essential for maintaining mitochondrial homeostasis.

4.3 The interaction between mitophagy
and mitochondrial dynamics

A number of studies have demonstrated a correlation
between mitochondrial dynamics and mitophagy (Zhou et al.,
2015). In pathological conditions, an imbalance or abnormality
of mitochondrial dynamics leads to morphological changes
and dysfunction of mitochondria, which in turn triggers
mitophagy. Mitophagy maintains the normal number and
function of mitochondria by removing damaged mitochondria.
The interaction between the two coordinates the balance of
energy metabolism in cells (Wai and Langer, 2016; Yoo and
Jung, 2018). Mitochondrial fission and fusion represent a
pivotal step in the initiation of mitochondrial autophagy (Zhang
et al., 2020). Mitochondrial fission results in the separation of
damaged mitochondria, increases mitochondrial fragmentation,
initiates the process of mitophagy, and provides the content for
mitophagy (Otera and Mihara, 2011). Fusion between healthy
and damaged mitochondria dilutes the damaged mitochondria
into the healthy mitochondrial lattice, which in turn maintains
overall mitochondrial health (Twig et al., 2008). The inhibition
of mitochondrial fusion affects mitochondrial fission, which
in turn enables the indirect regulation of mitochondrial
autophagy.

A relationship exists between proteins that regulate
mitochondrial fission and fusion and the PINK1/Parkin pathway,
which is involved in the regulation of mitophagy. Additionally,
Pink1 may be involved in the regulation of mitochondrial fission
and fusion homeostasis independently of mitophagy. It has been
demonstrated that PINK1 plays a regulatory role in the expression
of key fission proteins, including Drp1, Fis1 and fusion protein
Mfn2. These findings indicate that PINK1 affects the balance
of mitochondrial fission/fusion processes (Peng et al., 2019).
Furthermore, it has been shown that PINK1 mediates Drp1-Ser616
phosphorylation, promotes mitochondrial division and increases
mitochondrial density, while simultaneously participating in the
regulation of mitochondrial dynamics (Han et al., 2020). Drp1, a
critical factor in mitochondrial fragmentation, plays a central role
in the regulation of PINK1/Parkin-mediated mitophagy (Li et al.,
2019). Inhibition of Drp1 expression or reduction of Drp1 activity
significantly reduces the number of mature autophagosomes
and inhibits the formation of autophagic microsomes, and
mitochondrial fragmentation and Parkin translocation are
significantly suppressed. Conversely, Drp1 overexpression was
found to promote mitochondrial fragmentation and mitophagy.
In addition, phosphorylation of Drp1 has been shown to play
a role in the regulation of mitophagy (Chen et al., 2023; Ikeda
et al., 2015). Pathological studies in degenerating neurons have
demonstrated that S-nitrosylation of Drp1 specifically mediates
aberrant mitochondrial recruitment, thereby triggering cascade
activation of PINK1/PARKIN pathway-mediated mitophagy (Li

et al., 2019). Furthermore, the autophagy receptor FUNDC1 has
been shown to induce mitochondrial fragmentation, in addition
to its involvement in the essential role of mitophagy (Dirks-
Naylor et al., 2014). Research has indicated a correlation between
mitochondrial fission protein Drp1 and the promotion of excessive
mitophagy. This process involves Drp1 binding to the mitophagy
receptor protein FUNDC1 (Yang et al., 2022), which subsequently
results in ATP depletion and a significant decline in mitochondrial
mass (Wang and Zhou, 2020). In addition to the observed
increase in mitochondrial fragmentation, the overexpression
of FIS1 has also been demonstrated to result in mitochondrial
dysfunction and an increase in autophagosome formation (Gomes
and Scorrano, 2008). In addition, mitochondrial fusion proteins
play a pivotal role in the regulation of mitochondrial autophagy.
Mfn2, a mitochondrial fusion protein, is phosphorylated by
PINK1, which promotes the recruitment of Parkin to the
outer mitochondrial membrane and initiates Parkin-dependent
mitophagy (Chen and Dorn, 2013). It was observed that the
inhibition of OPA1 expression and the subsequent reduction in
mitochondrial fusion facilitated the isolation of dysfunctional
mitochondria, which proved to be a more beneficial approach
for the timely triggering of mitophagy and the removal of
functionally impaired mitochondria (Twig et al., 2008). Research
demonstrates that BNIP3/NIX-mediated mitophagy orchestrates
mitochondrial dynamics homeostasis through dual regulatory
mechanisms: by suppressing the activity of fusion protein Opa1
while enhancing fission protein Drp1 functionality to induce
mitochondrial network fragmentation, thereby facilitating
segregation of damaged organelles; concurrently, BNIP3 recruits
Parkin to mitochondria to initiate autophagic flux, whereas
NIX—as a ubiquitination substrate of Parkin—undergoes
conformational remodeling post-modification to specifically
engage adaptor protein NBR1, ultimately enabling targeted
autophagic degradation of compromised mitochondria (Wang
et al., 2023).

Taken together, mitochondrial biogenesis, fission/fusion, and
mitophagy do not function independently; instead, they crosstalk
to regulate mitochondrial network homeostasis and the quality
control system. Furthermore, the crosstalk between the three in
different organizations or cells, the manner in which this crosstalk
occurs, and the specific molecular mechanisms involved require
further in-depth study.

5 Abnormal mitochondrial quality
control in neurodegenerative
diseases

Neurodegenerative diseases are chronic neurological disorders
that are characterized by selective neuronal degeneration and
neuronal loss or death. The clinical symptoms of these diseases
manifest as cognitive decline, memory loss, and impairment
of limb movement. Emerging evidence strongly implicates
mitochondrial dysfunction as a central pathogenic mechanism
in neurodegenerative disorders (Nguyen et al., 2019; Park et al.,
2018; Wang et al., 2019d). Mitochondrial functional homeostasis
serves as the molecular cornerstone for sustaining neuronal
physiological activities (Li J. et al., 2023). As high-energy-demand
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cells, cerebral neurons require continuous bioenergetic supply
to power neurotransmitter biosynthesis and vesicular secretion,
action potential propagation, and synaptic plasticity modulation.
Operating as neuronal bioenergetic hubs, mitochondria sustain
neuronal excitability and synaptic transmission through ATP
generated via oxidative phosphorylation, thereby providing
obligatory energy substrates for these electrophysiological
processes (Carinci et al., 2021). The mitochondrial quality
control system achieves precision maintenance of neuronal
metabolic homeostasis through spatiotemporal orchestration of
mitochondrial network distribution and stringent preservation
of functional fidelity. The relationship between mitochondrial
quality control and neurodegeneration is currently a subject of
intense research interest in the field. Several clinical studies have
demonstrated that abnormalities in mitochondrial biogenesis,
autophagy, fission, and fusion are observed in a range of
inherited neurodegenerative diseases (Ashleigh et al., 2023; Pritam
et al., 2022; Whitley et al., 2019). However, under pathological
conditions, mitochondrial dysfunction and protein aggregation
(e.g., Aβ, α-synuclein) engage in a mutually reinforcing vicious
cycle, distinct from a unidirectional causal relationship. This study
specifically focuses on delineating how mitochondrial quality
control system dysregulation or functional deficits drive neuronal
degeneration, rather than interrogating bidirectional regulatory
mechanisms. This section summarizes current research progress
on mitochondrial biogenesis, mitophagy, and mitochondrial
dynamics in common neurodegenerative diseases (AD, PD, HD,
and ALS) (Figure 5).

5.1 Alzheimer’s disease

Alzheimer’s disease is a common neurodegenerative disease
with clinical symptoms including cortical degeneration with severe
memory loss, cognitive impairment, and behavioral abnormalities.
The pathological features of Alzheimer’s disease include the
abnormal deposition and accumulation of β-amyloid (Aβ) and
phosphorylated tau (p-tau) in neurons, which induce neurogenic
fiber tangles, leading to impaired synaptic and cholinergic
neuronal function (Ashleigh et al., 2023; Pritam et al., 2022).
The pathogenesis of Alzheimer’s disease is complex and not
yet fully defined. It has been reported that mitochondria are
one of the central players in the pathogenesis of AD and that
mitochondrial dysfunction is a driver or predisposing factor in the
onset or progression of AD (Sharma C. et al., 2021; Swerdlow,
2018). Furthermore, it has been identified as an early metabolic
change and a prominent feature of the disease (Swerdlow, 2018).
The aberrant accumulation of Aβ and hyperphosphorylated Tau
proteins on mitochondria results in mitochondrial respiratory
chain complex I activity, impaired mitochondrial membrane
potential (MMP), and massive production of reactive oxygen
species (ROS), which in turn affects mitochondrial function
(Guha et al., 2020). It has also been proposed that impaired
mitochondrial function acts in an inverse manner on ROS, resulting
in inadequate bioenergy provision and oxidative stress. This,
in turn, further exacerbates the accumulation of Aβ and tau,
ultimately leading to impaired synaptic plasticity and cognitive
impairment (Chakravorty et al., 2019). Consequently, impaired

mitochondria play a pivotal role in the pathogenesis of AD. Further
investigation into the mechanisms of mitochondrial dysfunction
and impaired mitochondrial quality control may facilitate the
identification of novel molecular targets for the development of
new drugs for AD.

A number of studies have demonstrated that there are extensive
mitochondrial abnormalities in the brains of AD patients and
animal models (Swerdlow, 2018). Furthermore, significant changes
have been observed in the content of various proteins involved in
mitophagy, mitochondrial dynamics, and mitochondrial biogenesis
(Quinn et al., 2020). Furthermore, the expression of genes
associated with mitochondrial biogenesis, including PGC-1α, Nrf1,
NRF2, and TFAM, was observed to have decreased in brain tissue
samples from AD patients (Kerr et al., 2017). β site-APP cleaving
enzyme 1 (BACE1) is a transmembrane aspartic protease and a rate-
limiting enzyme for Aβ production. PGC-1α, as a key regulator of
mitochondrial biogenesis and transcriptional regulator, is involved
in the regulation of BACE1 transcription. It has been demonstrated
that the production of PGC-1α protein is inversely proportional
to the concentration of Aβ (Qin et al., 2009; Yang et al., 2023).
The overexpression of PGC-1α adeno-associated virus in the brain
region of APP23 model mice was observed to result in increased
transcription of growth factors, reduced levels of BACE1, and
diminished Aβ-mediated neuroinflammation, which collectively
led to reduced β-amyloid production and neuronal loss (Katsouri
et al., 2016). Furthermore, PGC-1α suppresses the transport of NF-
κB p65 from the cytoplasm to the nucleus and the degradation of
IκBα by regulating NF-κB, thereby reducing Aβ-induced neuronal
death and inhibiting neuroinflammation, which in turn reduces
mitochondrial damage and restores AD cognitive deficits (Zhang
Y. et al., 2017). TFAM functions as a downstream effector of PGC-
1α, regulating mitochondrial biogenesisx. TFAM binds to mtDNA
and forms a nuclear-like structure, thereby protecting mtDNA from
the adverse effects of Aβ toxicity and oxidative stress, inhibiting
the vicious cycle of neuronal mitochondrial dysfunction, and thus
improving the pathophysiology of Alzheimer’s disease (Oka et al.,
2016).

Mitophagy, as an essential mitochondrial quality control
mechanism, plays a pivotal role in maintaining neuronal health
and function. Studies have demonstrated that defective mitophagy
is responsible for the excessive accumulation of damaged
mitochondria observed in the brain regions of AD patients.
Furthermore, it was found that the basal level of mitochondrial
phagocytosis was lower than 50% in the brain tissues of AD patients
compared to the healthy population. Additionally, a 60% lower
mitophagy ratio and a significant increase in the accumulation of
damaged mitochondria were observed in the hippocampal brain
region of APP/PS1 model mice (Fang et al., 2019). Moreover,
the overexpression of the mitophagy proteins PINK1 and parkin
in microglia was demonstrated to significantly inhibit STING-
induced inflammation, reduce the levels of insoluble Aβ 1−42 and
Aβ 1−40 content, and ameliorate the cognitive deficits in the AD
mouse model (Fang et al., 2019). The restoration of mitophagy
has been demonstrated to facilitate the reduction of Aβ plaques,
the elimination of tau hyperphosphorylation, and the improvement
of cognitive dysfunction. Xie et al. (2022) demonstrated that
the activation of neuronal activity and the elimination of Aβ

and tau proteopathies by oral administration of drugs promoting
mitophagy were effective in improving the cognitive deficits in
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FIGURE 5

Schematic illustration of abnormal mitochondrial quality control in neurodegenerative diseases. Figure was created with BioRender software.

both the nematode and rodent models of AD. Impaired mitophagy
may also be attributed to impaired autophagosome-lysosome
fusion. It has been demonstrated that the amyloid precursor
protein-derived C-terminal fragment (APP-CTF) may act as a
trigger for AD pathology, with its overaccumulation resulting
in impaired mitochondrial structure and defective mitophagy.
This is evidenced by inconsistent recruitment of PINK1/Parkin
to the mitochondria, overaccumulation of LC3-I and/or LC3-
II, and insufficient fusion of mitochondria with lysosomes
(Vaillant-Beuchot et al., 2021). Under pathological conditions,
FUNDC1 persists in a phosphorylated state that specifically
impedes its molecular interaction with the autophagosomal marker
protein LC3-II, consequently suppressing mitophagy initiation
and ultimately inducing neuronal dysfunction (Biswal et al.,
2018).

Mitochondrial fragmentation has also been demonstrated
in AD patients and model animals. Excessive mitochondrial
fission has been shown to reduce ATP synthesis by interfering
with oxidative phosphorylation complex assembly and disrupting
the integrity of mitochondrial cristae, ultimately resulting in
impaired neuronal function (Blagov et al., 2022). Wang et al.
(2017) the researchers observed mitochondrial fragmentation and
ultrastructural damage in the brains of APP transgenic mice
using confocal microscopy and electron microscopy. Additionally,
they found that mitochondrial dynamics abnormalities were
present in the early stages of AD development. Biochemical
assessments of peripheral blood from AD patients demonstrated
significantly elevated levels of the mitochondrial fission factor Fis1,
with postmortem brain specimens further revealing upregulated
Drp1 expression in AD cases (Bera et al., 2022; Pakpian et al.,
2020). Leveraging the GEO dataset GSE173955 (containing RNA-
sequencing [RNA-seq] data derived from hippocampal tissues),
Han et al. (2024) conducted bioinformatic analyses revealing
marked downregulation of mitochondrial fusion regulators OPA1

and Mfn2 in AD groups compared to non-AD controls.
Studies further elucidate pathological interactions between the
mitochondrial fission regulator Drp1, phosphorylated tau (p-
tau), and Aβ. Aβ accumulation induces excessive free radical
generation, which activates Drp1 and its cofactor Fis1, resulting
in impaired mitochondrial trafficking to synapses and significantly
reduced synaptic ATP production. These alterations ultimately
cause synaptic dysfunction in AD rat models. Concurrently,
elevated p-tau levels induce reactive ROS overproduction and
enhance GTPase activity of Drp1, directly driving pathological
mitochondrial hyperfission and functional collapse in neurons
(Bhatti et al., 2023; Pradeepkiran and Reddy, 2020).

Dysregulated mitochondrial dynamics compromise neuronal
function via neuroinflammatory pathways (Zhang M. et al., 2021).
In AD animal models, Drp1 orchestrates early inflammatory
responses in oligodendrocytes and microglia. Aberrant activation
of Drp1 disrupts mitochondrial homeostasis, thereby triggering
NLRP3 inflammasome activation and caspase-3 cleavage, which
in turn amplify neuroinflammatory cascades (Elsherbini
et al., 2020; Sbai et al., 2023). These pathological processes
exacerbate Aβ deposition and tau-mediated neurodegeneration,
ultimately leading to neuronal death or functional deficits.
Mechanistically, hyperactivation of Drp1 suppresses hexokinase
1 (HK1), a glycolytic enzyme localized to the mitochondria,
inducing metabolic reprogramming that promotes NLRP3-driven
inflammation and oligodendrocyte pyroptosis (Pradeepkiran and
Reddy, 2020; Zhang M. et al., 2021). Concurrently, Drp1-mediated
mitochondrial fragmentation significantly reduces synaptic ATP
production, directly impairing synaptic transmission efficacy.

To conclude, both AD populations and animal models
have been demonstrated to exhibit abnormalities in relevant
proteins that regulate mitochondrial biogenesis, mitophagy, and
mitochondrial dynamics. Furthermore, these interactions between
these proteins and Aβ, p-tau, and other related factors ultimately
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influence neuronal function and lead to cognitive deficits,
as observed in AD.

5.2 Parkinson’s disease

Parkinson’s disease is the second most common chronic and
late-onset neurodegenerative disease after Alzheimer’s disease, with
clinical features including slowness of facial expression, increased
muscle tension throughout the body, bradykinesia, progressive
resting tremor, and dementia (Heusinkveld et al., 2018). The
pathological process can be defined as the depletion of dopamine-
producing neurons located in the substantia nigra pars compacta
(SNpc), a region within the midbrain (Bloem et al., 2021).
Nevertheless, the intricacies of its pathogenesis remain to be fully
elucidated, necessitating further research. It has been demonstrated
that the abnormal accumulation of Lewy bodies containing
α-synuclein (α-Syn) is a significant pathological hallmark of PD
(Dorsey et al., 2018). Furthermore, patients with advanced PD are at
risk of developing dementia as a result of the accumulation of α-Syn
in Lewy bodies. A number of studies have demonstrated that α-Syn
is a presynaptic protSein that is highly enriched in presynaptic
nerve endings. It is located in mitochondria or other organelles in
the majority of neurons and is involved in the regulation of synaptic
vesicle transport and endocytosis in neurons. Furthermore, α-Syn
plays a key role in the causative factors of familial and sporadic
PD (Del and Braak, 2016; Nishioka and Hattori, 2020). A growing
number of studies now indicate that mitochondrial dysfunction
is an important factor in the pathogenesis of PD and a causative
element at the core of familial and sporadic PD. It has been
observed that mtDNA loss, mitochondrial damage, or defective
mitochondrial function affect dopaminergic neurons in patients
with PD (Zhang L. et al., 2021). In the meantime, studies have
confirmed that there is a bidirectional regulatory interaction
between α-Syn and mitochondrial dysfunction, which leads to
structural alterations and functional defects in mitochondria (Li
H. Y. et al., 2023).

PGC-1α, a pivotal regulator of mitochondrial biogenesis
and cellular resistance to oxidative stress, plays a pivotal role
in the function and survival of dopaminergic neurons in the
substantia nigra (Halling and Pilegaard, 2020). In response to
stress, low expression of PGC-1α results in a reduction in ATP
synthesis and an increase in ROS production, which in turn
leads to dopamine neuron loss or damage. The current body
of research has demonstrated a potential correlation between
mitochondrial production and PD. Furthermore, a deficiency of
PGC-1α has been identified as a factor that inhibits the activity
and function of dopaminergic neurons and causes behavioral
dysfunction in the mouse central nervous system (Kuczynska
et al., 2021). Zhou et al. (2019) demonstrated that activating
PGC-1α-dependent signaling cascades enhances mitochondrial
biogenesis, which confers dopaminergic neuroprotection
through upregulation of tyrosine hydroxylase (TH) expression.
Neuropathological investigations in the substantia nigra pars
compacta of Parkinson’s disease patients demonstrate that deficient
PGC-1α expression compromises mitochondrial biogenesis
and disrupts the coordinated transcriptional activation of
antioxidant stress-responsive gene networks, thereby precipitating

dopaminergic neuronal degeneration (Piccinin et al., 2021).
Intervention studies employing dopaminergic neuron-targeted
PGC-1α overexpression via adeno-associated viral vectors reveal
enhanced redox homeostasis in striatal neurons and marked
attenuation of programmed dopaminergic cell death, establishing
this transcriptional coactivator’s neuroprotective capacity in
PD pathophysiology (Wang et al., 2019c). Furthermore, it has
been reported that PGC-1α may also inhibit rotenone-induced
dopaminergic neurotoxicity by regulating the dynamic balance
of mitochondrial fission and fusion proteins and determining
the structure of the mitochondrial network (Peng et al., 2017).
Alternatively, PGC-1α may mediate the expression of motor
proteins in spinal cord motoneurons and thus modulate movement
disorders in an animal model of PD through the stimulation of
the upstream promoter of the mitochondrial fusion-associated
protein Mfn2 (Mou et al., 2021; Soriano et al., 2006). Consequently,
PGC-1α exerts a regulatory influence on mitochondrial biogenesis,
which in turn affects the function of PD dopamine neurons. It is
possible that this process may modulate PD pathophysiological
factors by participating in multiple pathways (Guo B. et al., 2024).

A number of studies have demonstrated a close association
between PD-related genes and mitochondrial integrity. Mutations
in genes such as PINK1 (PARK6) and PARKIN (PARK2) are the
most common cause of a form of Parkinson’s disease that is difficult
to diagnose and one of the earliest mutation-associated genes in
familial autosomal recessive inheritance of PD (Cooper et al., 2017;
Kitada et al., 1998). It has been demonstrated that both Parkin and
PINK1 are involved in the regulation of mitophagy. Several studies
have demonstrated that defective mitophagy is accompanied in
the amygdala of patients with Parkinson’s disease (Cai and Jeong,
2020; Chan, 2020). PINK1 may interact reciprocally with α-Syn,
and studies have reported that overexpression of PINK1 in cells
removes excess α-Syn, which in turn prevents mitochondrial
defects and apoptosis and reduces neurotoxicity induced by α-Syn
(Liu Z. Q. et al., 2021). The accumulation of α-Syn in excess also
activates the autophagy-lysosomal pathway (Gu et al., 2024; Zhang
et al., 2018), mutations in α-Syn proteins undergo misfolding
in transcription-translation to produce toxicity, and defective
mitophagy further exacerbates neurotoxicity, leading to neuronal
loss or damage (Ciron et al., 2015). Mutations in the Parkin gene
have been shown to inhibit the ubiquitination of synaptic binding
protein 11 (Synaptotagmin-11, Syt11), which in turn inhibits the
endocytosis of dopamine neurons. This ultimately leads to a
progressive loss of dopamine neuron function and neurotoxicity
(Wang et al., 2018).

In addition to PARK6 (encoding PINK1) and PARK2 (encoding
Parkin), other genes associated with Parkinson’s disease, such as
PARK7 (encoding the DJ-1 protein) and PARK8 (encoding the
LRRK2 protein), are also thought to be mutated in patients with
Parkinson’s disease (Walter et al., 2019). Both the DJ-1 and LRRK2
proteins are associated with the autophagy-lysosome pathway,
maintaining a role in mitochondrial and lysosomal function while
being essential for maintaining normal cellular function and
survival (Lizama and Chu, 2021). Genetic mutation or deficiency
of PARK7/DJ-1 disrupts dopamine metabolism, induces ROS
accumulation, and impairs mitochondrial function in neuronal
cells. Mechanistically, this results from compromised regulation of
mitochondrial homeostasis by DJ-1. Restoration of DJ-1 expression
ameliorates these defects by enhancing mitochondrial electron
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transport chain activity and reducing ROS overproduction, thereby
attenuating oxidative stress-mediated neuronal damage (Bonifati
et al., 2003; McCoy and Cookson, 2011). Furthermore, the DJ-1-
encoded proteins act downstream of the PINK1/Parkin pathway
or possibly in a parallel pathway to the PINK1/Parkin pathway
to maintain mitochondrial function (Kinnart et al., 2024; Thomas
et al., 2011; van der Merwe et al., 2015). LRRK2 is a protein
kinase that is predominantly located in the mitochondrial outer
membrane (Biskup et al., 2006; West et al., 2005). The GTP-
binding protein RAB10 (RAB10) serves as a substrate for LRRK2,
which may represent a pivotal link between PINK1/Parkin and
LRRK2 (Wauters et al., 2020). It was observed that the G2019S
mutation in LRRK2 results in delayed mitochondrial arrest
and increased phosphorylation of the RAB10 protein (at the
threonine 73 site), which in turn leads to impaired PINK1/Parkin-
mediated mitophagy (Wauters et al., 2020). Wang D. X. et al.
(2021) demonstrated that activation of BNIP3-mediated mitophagy
attenuates dopaminergic neuronal damage in both MPP+-tinduced
cells and MPTP-induced Parkinson’s disease mouse models.

Mitochondria are highly dynamic organelles that undergo
fusion and fission processes. Imbalance in mitochondrial fission
and fusion is a key trigger for Parkinson’s disease, and defects in
mitochondrial dynamics limit mitochondrial movement, leading
to a reduction in ATP, excessive oxidative stress, and mtDNA
deficiency, which ultimately leads to cell death (Geng et al., 2019).
The role of Drp1 has been identified as a contributing factor in
the pathogenesis of Parkinson’s disease (Wu et al., 2017), with
a substantial body of evidence demonstrating the involvement
of α-Syn, DJ-1, LRRK2, PINK1, and Parkin in the regulation
of mitochondrial dynamics and homeostasis through the Drp1
pathway (Irrcher et al., 2010; Kamp et al., 2010). The accumulation
of α-Syn in excess is known to interact with the mitochondrial outer
membrane, resulting in mitochondrial fragmentation (O’Donnell
et al., 2014; Pozo et al., 2017). On the one hand, α-Syn is
involved in mediating mitochondrial fragmentation independently
of Drp1. This is evidenced by the fact that endogenous α-Syn
levels lead to mitochondrial fragmentation (Kamp et al., 2010),
and α-Syn is forcibly delivered to the mitochondrial membrane,
leading to mitochondrial fragmentation (Pozo et al., 2017). On
the other hand, α-Syn and Drp1 play interdependent and co-
ordinated roles in the process of mitochondrial fission. Krzystek
et al. (2021) identified the N-terminus of α-Syn as a potential
mediator of mitochondrial fragmentation via the mitochondrial
fission factor Drp1. It is noteworthy that α-Syn is also localized
in mitochondria-associated endoplasmic reticulum membranes
(MAMs), which are contact sites between two organelles, the
mitochondria and the endoplasmic reticulum (Guardia-Laguarta
et al., 2014). Furthermore, they are involved in the regulation of
calcium homeostasis, mitochondrial morphology and function, and
autophagy, among other pathophysiological processes. Mutations
in α-Syn cause imbalances in mitochondrial dynamics, particularly
Drp1-mediated mitochondrial fission (Friedman et al., 2011).

It was observed that DJ-1 exerts a regulatory effect on Drp1,
thereby facilitating mitochondrial division and protecting neurons
from oxidative stress-induced damage (Qin et al., 2017; Wang X.
et al., 2012). LRRK2 is a large multi-structural domain protein
kinase present in the cytoplasm and associated with mitochondrial
membranes (Mata et al., 2006). Studies have suggested that the
leucine-rich repeat kinase 2 (LRRK2) protein may be specifically

involved in regulating Drp1-mediated mitochondrial fission. Su
and Qi (2013) demonstrated that the LRRK2 G2019S mutant in PD
induces excessive mitochondrial fragmentation. Inhibition of Drp1
with the aid of P110 was found to reduce LRRK2 G2019S-induced
mitochondrial fragmentation, excessive autophagy, and neuronal
toxicity (Niu et al., 2012; Su and Qi, 2013).

In conclusion, the pathological features and pathogenic factors
of PD include the excessive accumulation of α-Syn in the
substantia nigra pars compacta or its gene mutation. Furthermore,
the PGC-1α, PINK1, Parkin, and Drp1 proteins interact with
α-Syn and other mutant genes to affect the morphology and
function of dopamine neurons in the PD brain. Consequently,
the neuroprotective effects of PGC-1α, PINK1, Parkin, and Drp1
on the substantia nigra pars compacta may represent promising
targets for the development of drugs to treat PD. The prevention
of α-Syn localization to mitochondria and the regulation of
mitochondrial quality control represent potential strategies for
the prevention of PD neurodegeneration (Di Maio et al., 2016;
Pickrell and Youle, 2015).

5.3 Huntington’s disease

Huntington’s disease is a rare autosomal dominant hereditary
neurodegenerative disease. Given that HD affects different regions
of the brain, its typical clinical manifestations include motor
and cognitive disorders, as well as mental and behavioral
abnormalities. Additionally, motor abnormalities resulting from
striatum dysfunction, which is characterized by progressive, dance-
like movements, are also observed (Hu et al., 2021). The disease is
caused by the amplification of the CAG trinucleotide repeat in the
first exon of the Huntingtin gene on chromosome 4 (Stoker et al.,
2022). The mutated protein mHtt is progressively accumulated
in cells, with a particularly high concentration in the brain.
This accumulation results in mitochondrial dysfunction, impaired
synaptic structure and function, and an imbalance of protein
homeostasis. This, in turn, leads to neuronal loss and damage to
nerve cell function (Guedes-Dias et al., 2016). A number of studies
have indicated that mHtt-induced mitochondrial dysfunction plays
a significant role in the pathogenesis of HD (Yan et al., 2018).
The neurotoxic effects of mHtt are mediated by the induction
of mitochondrial defects, which in turn result in aberrant energy
metabolism and HD-related neuronal dysfunction (Costa and
Scorrano, 2012).

Studies have demonstrated that mHTT interacts with the PGC-
1α promoter, directly impairs the activity of PGC-1α, and impedes
the capacity of PGC-1α to open downstream target genes (Cui et al.,
2006; Hu et al., 2025). This results in a decrease in mitochondrial
transcription factor TFAM and impaired mitochondrial function,
which ultimately leads to increased vulnerability to oxidative stress
and neuronal deterioration (Sharma A. et al., 2021). Thau et al.
(2012) demonstrated that the accompanying progressive muscle
atrophy and morphological abnormalities of the neuromuscular
junction in HD mice may be associated with impaired expression of
PGC-1 and its target genes. This was evidenced by in vivo studies,
which revealed a markedly reduced expression of PGC-1α and its
target genes in the striatum and muscle of HD mice (Chaturvedi
et al., 2009). The aforementioned results indicate that PGC-1α,
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a co-regulator of mitochondrial biogenesis, energy homeostasis,
and antioxidant defenses, may be a potential target for therapeutic
intervention in HD (Di Cristo et al., 2019).

A number of in vivo studies have demonstrated that mHtt is
involved in the process of mitophagy or regulates intermediately
important aspects in animal models of HD. For example, it has
been demonstrated that mHtt inhibits the delivery of the mitophagy
receptor to autophagosomes, while simultaneously blocking
autophagosome formation, disrupting mitophagy initiation, and
affecting autophagosome translocation to lysosomes (Franco-
Iborra et al., 2021). This results in defects in mitophagy, whereas
a large number of dysfunctional mitochondria are not removed
in time and excessively accumulate in neuronal cells, which
induces a vicious circle-chain reaction (Wong and Holzbaur,
2014). It was observed that the overexpression of PINK1 in
a Drosophila model of HD resulted in the amelioration of
Parkin-mediated mitophagy defects and the attenuation of mHtt-
induced neurotoxicity. Furthermore, it was demonstrated that the
overexpression of PINK1 promoted neuronal activity and protected
neuronal integrity (Khalil et al., 2015). Consequently, mitophagy
serves to protect neurons from damage in HD, and a deficiency in
this process contributes to further malignant deterioration of HD
pathology.

A substantial body of evidence indicates the presence of
mitochondrial fragmentation in neuronal cells in the brains of
HD patients, in which the expression levels of the mitochondrial
fission/fusion proteins Drp1, Fis1, and Mfn are significantly altered
(Davies et al., 1997; Shirendeb et al., 2012). The presence of mHtt
in neuronal cells in the brains of HD patients has been shown
to induce mitochondrial hyperfragmentation and to affect the
mitochondrial respiratory chain complex by disrupting the balance
of mitochondrial dynamics, which in turn induces impairment
of mitochondrial function (Cherubini et al., 2020). Sawant et al.
(2021) demonstrated that mHtt binds to the proteins Mfn and
Drp1, which are involved in mitochondrial fusion and fission.
This binding enhances the activity of GTPase Drp1, resulting
in mitochondrial fusion and fission imbalances, mitochondrial
distribution abnormalities, and mitochondrial axonal transport
defects. These defects ultimately lead to impaired synaptic plasticity
(Sawant et al., 2021). Inhibition of Drp1 has been demonstrated to
restore mitochondrial and neuronal dysfunction in mHtt-induced
HD models.

Taken together, mHtt can impede the dynamic alterations
of mitophagy, mitochondrial biogenesis, and mitochondrial
fission/fusion, resulting in the disruption of mitochondrial
structure and function. This process may be a significant
contributor to the pathogenesis of HD.

5.4 Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis is a progressive and fatal
neurodegenerative disease that is also known as motor
neuron disease. From a pathological perspective, the disease
is characterized by the progressive degeneration of both upper
motor neurons (UMN) in the cerebral cortex and lower motor
neurons (LMN) in the brain stem and spinal cord. The clinical
symptoms that result from this process include progressive

muscle weakness, atrophy, speech and swallowing difficulties,
as well as respiratory complications (Mejzini et al., 2019; van
Eijk et al., 2022). Amyotrophic lateral sclerosis is a progressive
and fatal neurodegenerative disease that has been classified by
the World Health Organization (WHO) as one of the top five
terminal diseases. The pathogenesis of ALS is approximately
90% uncertain. Studies have reported that more than 210 gene
mutations contribute to the progression of ALS, with mutations
in superoxide dismutase 1 (SOD1), fusion sarcoma gene (FUS),
TAR DNA binding protein 43 (TDP-43), and other genes being
recognized as risk factors for the development of ALS (Alami et al.,
2014). It is becoming increasingly evident that mitochondria may
play a significant role in the pathophysiology of amyotrophic lateral
sclerosis (ALS). Mitochondrial dysfunction has been proposed
as a major determinant of the onset or progression of ALS and
the prevalence of familial and sporadic cases of ALS. In addition,
mutations in ALS-specific genes may further exacerbate ALS
progression by impairing mitochondrial function through a variety
of pathways (Smith et al., 2019).

It has been suggested that PGC-1α may be a male-specific
disease-modifying factor in amyotrophic lateral sclerosis (Eschbach
et al., 2013). In the ALS rodent model, the mitochondrial biogenesis
regulator PGC-1α has been demonstrated to protect upper
motor neurons, participate in the production of neuromuscular
junctions in lower motor neurons, and regulate oxidative stress
in sensory neurons (Kuczynska et al., 2021). The study revealed
that the expression levels of PGC-1α and PGC-1α regulators were
diminished in the brain and spinal cord of ALS patients and the
spinal cord of ALS model mice. PGC-1α and its downstream
regulatory factors (NRF-1, NRF-2, and TFAM) play a pivotal role
in the regulation of the spinal cord, muscle, and adipose tissue
of SOD1-G93A ALS model mice. Studies demonstrate that PGC-
1α overexpression activates the NRF2/HO-1 signaling pathway,
thereby enhancing mitochondrial antioxidant capacity to prevent
spinal motor neuron loss. This mechanism concurrently suppresses
skeletal muscle atrophy with secondary fibrosis and facilitates
mutant SOD1 aggregate clearance, ultimately delaying disease
progression and extending survival in ALS animal models (Wen
et al., 2021).

Abnormalities in mitochondrial structure and defects in
mitophagy have been identified in the neurons of patients with
sporadic ALS (Rodriguez et al., 2012; Sasaki and Iwata, 2007).
It has been demonstrated that mutant SOD1 accumulates in the
mitochondrial membrane gap, thereby reducing the activity of
the electron transport chain (ETC) complex. Consequently, this
results in mitochondrial damage and the accumulation of damaged
mitochondria at the axon terminals of neurons. This, in turn,
results in a reduction in neuronal activity. It was demonstrated
that in the spinal cord of the SOD1-G93A ALS mouse model,
the mitochondrial receptor SQSTM1/p62 is recruited to the
mitochondrial surface, where it activates mitophagy, whereas
knockdown of the Parkin gene reduces the loss of motor neurons,
thereby delaying the progression of disease in SOD1-G93A mice
(Palomo et al., 2018). A reduction in mitochondrial activity
was observed in a mouse model of the TDP-43 mutation,
and PINK1 and Parkin-mediated mitophagy were found to be
impaired following the overexpression of TDP-43 (Sun et al., 2018).
Conversely, the overexpression of Parkin resulted in a reduction in
the number of neurons lost in the motor cortex of TDP-43 model
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animals while also inhibiting the degenerative phenotype observed
in hTDP-43 model animals (Hebron et al., 2014). Recent studies
have demonstrated that FUNDC1 exerts critical neuroprotective
effects in ALS mouse models. Activation of FUNDC1-mediated
mitophagy facilitates the clearance of damaged mitochondria and
enhances mitochondrial function, thereby reducing motor neuron
apoptosis and ameliorating motor performance in experimental
subjects (Guo X. et al., 2024).

It has been demonstrated that excessive mitochondrial fission
or fragmentation is a factor in the pathology of amyotrophic
lateral sclerosis (ALS). Furthermore, mitochondrial dynamics
play an important role in the onset and progression of ALS
(Liu et al., 2013). A number of studies have indicated that
there may be an imbalanced state of mitochondrial dynamics
in animals that have been genetically modified to develop ALS.
This is thought to be due to the presence of SOD1 in the
mitochondrial membrane gap (Ehinger et al., 2015; Sharma
et al., 2016). SOD1-mutant mice exhibited mitochondrial
ultrastructural pathologies in spinal cord and skeletal muscle
tissues, manifesting as reduced mitochondrial length, cristae
disorganization, and increased spherical fragmented mitochondria
(Mendez-Lopez et al., 2021). The results of the study by Joshi
et al. (2018) indicate that the administration of the selective
peptide inhibitor P110 to SOD1-G93A model mice resulted
in the inhibition of Drp1/Fis1 expression, which in turn led
to a reduction in mitochondrial structural defects in motor
neurons, an improvement in motor function and a reduction
in muscle atrophy, and an increase in the survival rate of
the model mice. Furthermore, models of SOD1 and TDP-43
mutation exhibited inhibitory properties against neurotoxicity
through dephosphorylation of Drp1. It was demonstrated that
the inhibition of Drp1 activity resulted in a reduction of cell
death, as observed in studies where mutant SOD1 or TDP-43
were introduced into the system (Choi et al., 2020). Nemtsova
et al. (2023) demonstrated that moderate Drp1 upregulation in
ALS Drosophila models restores physiological mitochondrial
distribution within axons, enabling efficient mitochondrial
trafficking to nerve terminals and thereby meeting axonal
energy demands. Notably, Drp1 expression modulation enhances
mitophagic clearance of dysfunctional mitochondria, which
improves mitochondrial bioenergetic capacity and attenuates
motor neuron degeneration. These findings delineate Drp1’s
dual regulatory role in mitochondrial dynamics and quality
control, providing novel therapeutic avenues for ALS targeting
mitochondrial proteostasis.

As with other neurodegenerative diseases such as Alzheimer’s
disease, Parkinson’s disease, and Huntington’s disease, a significant
number of fundamental studies have demonstrated that energy
metabolism disorders resulting from mitochondrial dysfunction
represent the primary pathophysiological phenotypes of
amyotrophic lateral sclerosis (Sassani et al., 2020; Vandoorne et al.,
2018). Mutations in specific genes associated with ALS interact
with key regulators of mitochondrial biogenesis, mitophagy, and
mitochondrial dynamics in a direct or indirect manner, affecting
the activity or number of motor neurons and the susceptibility of
neuromuscular junctions.

Taken together, the progressive elucidation and investigation of
ALS-related disease-causing genes, the successful construction of
disease models through the utilization of technologies such as exon

sequencing and gene editing, and the further investigation of the
potential molecular regulatory mechanisms between ALS mutant
genes and mitochondria will facilitate the opening of a new avenue
for the study of targeted therapy for ALS disease.

6 Conclusion and perspective

In recent years, the role of mitochondria as a specific
therapeutic target for neurodegenerative diseases has attracted
significant scholarly interest, emerging as a prominent research
direction and marking substantial advancements. While significant
breakthroughs have been achieved in multimodal modulation of
mitochondrial biogenesis, mitophagy, and dynamics, persisting
challenges include incomplete elucidation of molecular regulatory
networks and genetic foundations, limitations of single-pathway
intervention strategies in achieving multi-target coordination,
and technical barriers imposed by the selective permeability of
the blood-brain barrier (BBB) that hinder clinical translation of
mitochondrial-targeted therapies (Meng et al., 2024).

By summarizing the molecular mechanisms of the regulatory
pathways of the mitochondrial quality control system, it has
been found that there are a large number of pathways mediating
mitophagy. However, issues such as the relationship between the
pathways, the existence of reciprocal regulatory roles of different
pathways, and the rules of mitophagy receptor regulation under
different physiological conditions remain to be resolved. It has also
been observed that there are numerous studies on the mechanism
of PINK1/Parkin-mediated mitophagy in vitro. However, there is
still a lack of evidence that PINK1/Parkin mediates mitophagy
in vivo. Furthermore, the relevance of this to the pathogenesis of
disease is controversial (Li J. et al., 2023).

In the meantime, the majority of research on mitophagy
in the nervous system has concentrated on the molecular
pathogenesis and potential therapeutic targets, while there is
considerable debate surrounding the targets of mitophagy, the exact
mechanism of receptor-mediated mitophagy, and how to address
it. With regard to mitochondrial dynamics, Ser637 is an inhibitory
phosphorylation site for the mitochondrial dynamics-associated
protein Drp1, which exhibits opposing effects in different cells.
For example, Galvan et al. (2017) demonstrated that in podocytes,
phosphorylation of Drp1 at the Ser637/656 (human/rat) site
promotes mitochondrial fission. The mitochondrial fusion protein
OPA1 exists in different forms, each of which plays a distinct role in
mitochondrial dynamics. L-OPA1 is associated with mitochondrial
fusion, whereas S-OPA1 is linked to mitochondrial fission. This
suggests that there is still scope for further investigation into
the roles of Drp1 and OPA1 in disease (Ayanga et al., 2016).
The relationship between the mutual regulation of mitophagy,
mitochondrial dynamics, and mitochondrial biogenesis is also
controversial. It is yet to be determined whether the balance of
mitochondrial biogenesis regulated by PGC-1α and mitochondrial
dynamics involved in Drp1 positively regulates PINK1/PARKIN-
mediated mitophagy. Furthermore, in studies of ALS, mitophagy
has been demonstrated to protect neurons from damage during
the initial stages of disease progression. However, if it persists
for a long period of time, causing excessive mitophagy, it can
exacerbate neuronal damage (Jetto et al., 2022). The pathogenesis
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of PD and AD may be a feedback loop in which apoptosis
of neuronal cells leads to mitochondrial dysfunction, which in
turn exacerbates apoptosis. It is not yet clear whether impaired
mitochondrial structure or function is the causative factor or the
outcome. Therefore, further research is needed to address these
questions (Killackey et al., 2020).

In view of the significant heterogeneity observed in
mitochondria, it is essential to employ comprehensive
methodologies, encompassing both domestic and international
gene technology, multi-omics technology, single-cell sequencing,
and other techniques. In the future, the overall regulatory network
of mitochondrial homeostasis in this disease will be elucidated
on a macroscopic scale, while the physiological and pathological
regulatory mechanisms of mitochondria under various factors will
be further elucidated on a microscopic scale. It is also necessary
to clarify the interconnectivity between disparate pathways
within the internal milieu of the mitochondrial quality control
system, to analyze the role of mitochondria and neurons in
modulating the functionality of the brain and central nervous
system, and to propose novel concepts and methodologies for the
early diagnosis, prevention, and treatment of neurodegenerative
diseases. Moreover, the identification of novel therapeutic targets
is crucial for the development of innovative and effective
treatment modalities.

Furthermore, although the topic of this review is mitochondria,
dysregulation of other organelles such as autophagosome,
lysosomes and UPS commonly make contributions for the
pathological progress of neurodegenerative diseases. For
example, mitophagy mediated MQC heavily depends on efficient
lysosome degradation, whose dysregulation reversely suppresses
mitochondrial function, so they all interplay by each other
to form a vicious cycle, participating in the pathogenesis of
neurodegenerative diseases. Therefore, any therapeutic strategies
to break the vicious is supposed to benefit for slowing down
pathological progress, even curing diseases. Exploring the interplay
between mitochondria and other organelles is a critical area for
future research, which could inform therapeutic strategies and
interventions for neurodegenerative diseases.
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