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A novel method for reliably 
measuring miniature and 
spontaneous postsynaptic events 
in whole-cell patch clamp 
recordings in the central nervous 
system
Martynas Dervinis * and Guy Major *

School of Biosciences, Cardiff University, Cardiff, United Kingdom

Measurements of miniature postsynaptic currents (mPSCs) or potentials (mPSPs) 
in the soma of neurons of the central nervous system (CNS) provide a way of 
quantifying the synaptic function at the network level and, therefore, are routine in 
the neurophysiology literature. These miniature responses (or minis) are thought 
to be elicited by the spontaneous release of a single neurotransmitter vesicle, also 
called a quantum. As such, their measurement at the soma can potentially offer a 
technically straightforward way of estimating “quantal sizes” of central synapses. 
However, popular methods for detecting minis in whole-cell recordings fall short 
of being able to reliably distinguish them from background physiological noise. 
This issue has received very limited attention in the literature, and its scope as 
well as the relative performance of existing algorithms have not been quantified. 
As a result, solutions for reliably measuring the quantal size in somatic recordings 
also do not exist. As the first step in proposing and testing a potential solution, 
we  developed and described a novel miniature postsynaptic event detection 
algorithm as part of our quantal analysis software called “minis”. We tested its 
performance in detecting real and simulated minis in whole-cell recordings from 
pyramidal neurons in rat neocortical slices and compared it to two of the most-
used mini detection algorithms. This benchmarking revealed superior detection 
by our algorithm. The release version of the algorithm also offers great flexibility 
via graphical and programming interfaces.
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Introduction

Miniature postsynaptic potentials (mPSPs; under voltage recording) or currents (mPSCs; 
under voltage clamp), often simply called minis, are thought to correspond to the postsynaptic 
response to a spontaneous release of a single neurotransmitter vesicle (Brown et al., 1979; del 
Castillo and Katz, 1954; Fatt and Katz, 1952; Isaacson and Walmsley, 1995; Wall and Usowicz, 
1998). Somatic measurements of their properties in the CNS provide a window onto the 
synaptic function at the network level and, therefore, are routine in the literature. Their kinetics 
(i.e., rise and decay times) are thought to reflect the underlying kinetics of individual ion 
channels (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, AMPARs (Sara 
et al., 2011), or γ-Aminobutyric acid type A receptors, GABAARs (El Khoueiry et al., 2022); 

OPEN ACCESS

EDITED BY

Benjamín Florán,  
Center for Research and Advanced Studies, 
National Polytechnic Institute of Mexico 
(CINVESTAV), Mexico

REVIEWED BY

Mikel Pérez-Rodríguez,  
MRC Laboratory of Molecular Biology (LMB), 
United Kingdom
Claudia Rangel-Barajas,  
Indiana University Bloomington, United States
Fatuel Tecuapetla,  
National Autonomous University of Mexico, 
Mexico

*CORRESPONDENCE

Martynas Dervinis  
 martynas.dervinis@gmail.com 

Guy Major  
 majorg@cardiff.ac.uk

RECEIVED 22 March 2025
ACCEPTED 29 May 2025
PUBLISHED 18 June 2025

CITATION

Dervinis M and Major G (2025) A novel 
method for reliably measuring miniature and 
spontaneous postsynaptic events in 
whole-cell patch clamp recordings in the 
central nervous system.
Front. Cell. Neurosci. 19:1598016.
doi: 10.3389/fncel.2025.1598016

COPYRIGHT

© 2025 Dervinis and Major. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 18 June 2025
DOI 10.3389/fncel.2025.1598016

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2025.1598016&domain=pdf&date_stamp=2025-06-18
https://www.frontiersin.org/articles/10.3389/fncel.2025.1598016/full
https://www.frontiersin.org/articles/10.3389/fncel.2025.1598016/full
https://www.frontiersin.org/articles/10.3389/fncel.2025.1598016/full
https://www.frontiersin.org/articles/10.3389/fncel.2025.1598016/full
https://www.frontiersin.org/articles/10.3389/fncel.2025.1598016/full
https://www.frontiersin.org/articles/10.3389/fncel.2025.1598016/full
mailto:martynas.dervinis@gmail.com
mailto:majorg@cardiff.ac.uk
https://doi.org/10.3389/fncel.2025.1598016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2025.1598016


Dervinis and Major 10.3389/fncel.2025.1598016

Frontiers in Cellular Neuroscience 02 frontiersin.org

i.e., their probabilities and timings of opening and staying open) (De 
Koninck and Mody, 1994), as well as the locations of the source 
synapses across the neuronal dendritic tree (proximal vs. distal) and 
the passive and other electric properties of neuronal membranes 
(Agmon-Snir and Segev, 1993; Major et al., 1994; Rinzel and Rall, 
1974). Their incidence rates (“frequencies”) are typically thought to 
reflect the overall number of active synapses on the dendritic tree 
(Isaac et  al., 1995; Liao et  al., 1995; Segal, 2010) but can also 
be  indicative of the rate at which presynaptic vesicles are fusing 
spontaneously with the neuronal membrane (Glasgow et al., 2019). 
Finally, the size of the mean amplitude of minis is often thought to 
reflect the overall strength of synapses across the dendritic tree (Segal, 
2010). Assuming that minis are postsynaptic responses to the release 
of a single neurotransmitter vesicle, their amplitude measurements at 
the soma can also be used as a straightforward method of estimating 
the quantal size of synapses onto a recorded neuron. These estimates 
should, however, be viewed with caution as minis amplitudes at the 
soma tend to be small and difficult to distinguish from noise in the 
CNS (Larkum et al., 2009; Major et al., 2013; Nevian et al., 2007; Stuart 
and Spruston, 1998; Williams and Mitchell, 2008; Williams and 
Stuart, 2002).

“Template matching” and “thresholded amplitude detection” have 
emerged as the two main approaches to detecting minis (Shi et al., 
2010). The first approach relies on the observation that minis often 
have a fast rise phase and a slower decay phase while noise fluctuation 
typically do not show such regularities (Liao et al., 1992; Rall, 1967). 
The somatic current or voltage recording trace is scanned with a 
sliding window and an average minis template is scaled and fitted to 
the traces to detect minis-like events of varying amplitudes (Clements 
and Bekkers, 1997). This approach has been implemented in a 
commercially available software suite pClamp (Clampfit application). 
The second approach detects peaks in the recording traces and applies 
an amplitude threshold combined with shape criteria like the fast rise 
time and often a limit on the area under the trace (“total charge”) 
(Clements and Bekkers, 1997; Shi et al., 2010). This approach has been 
implemented in a popular commercially available software 
application MiniAnalysis.

“Thresholded amplitude detection” algorithms are thought to 
suffer from a lack in selectivity (Clements and Bekkers, 1997). As a 
result, their performance can either inflate false positive detection 
rates and confuse noise fluctuations with the small amplitude minis if 
a low amplitude threshold is used, or inflate false negative rejection 
rates and bias the detection towards large amplitude events if a large 
amplitude detection threshold is used instead. Similarly, change in the 
signal to noise ratio due to changes in the noise level or the amplitude 
of minis would artifactually affect estimates of both amplitudes and 
incidence rates of minis. “Template matching” algorithms were 
introduced as a remedy to the selectivity problem (Clements and 
Bekkers, 1997), yet in practice they were found to bias detection 
towards unambiguous clearcut PSPs that often were also large, and, 
therefore, they suffer from the opposite problem of the lack in 
sensitivity (Hwang and Copenhagen, 1999). The lower popularity of 
“template matching” algorithms compared to their counterpart 
suggests this problem to be more severe than the one intended to 
be remedied.

Given these considerations and our goal of developing a reliable 
method for estimating quantal sizes of central synapses based on mini’ 
amplitudes via somatic measurements (presented in Dervinis and 

Major, 2025), we developed a novel algorithm, called “minis”, to detect 
miniature (and action potential (AP)-triggered) postsynaptic events. 
A novel algorithm was needed for several reasons. Firstly, existing 
algorithms have not been described in sufficient detail in the peer-
reviewed literature. Popular algorithms like MiniAnalysis and 
Clampfit are proprietary. Secondly, because existing algorithms are not 
open, they are not modifiable. Thus, they cannot be automated and 
integrated with other software. Lastly, existing algorithms have not yet, 
to our knowledge, been benchmarked in peer-reviewed articles. To fill 
these gaps, we developed an algorithm that is transparent, flexible, 
open-source, and objectively evaluated using standardised criteria.

Materials and methods

Published values for amplitudes and 
incidence rates of minis

We searched the neuroscience literature between January 1, 
2020  – January 31, 2022 for a representative sample of recently 
reported amplitudes and incidence rate of miniature excitatory 
postsynaptic currents (mEPSCs) and potentials (mEPSPs) in cortical 
pyramidal cells, and common data analysis practices in the 
CNS. We  also compared reported mEPSC rates per second to a 
predicted range of values. We limited our search to publications in 
English only that reported research results on synaptic function in the 
CNS. We examined the title and abstract fields of studies in MEDLINE 
database using the PubMed search engine with the following search 
keywords: (“spontaneous neurotransmission” OR “spontaneous 
neurotransmitter release” OR “spontaneous transmitter release” OR 
“spontaneous postsynaptic” OR “miniature postsynaptic” OR 
“mEPSP” OR “mEPSC” OR “mPSP” OR “mPSC” OR “mIPSP” OR 
“mIPSC” OR “sEPSP”[Title/Abstract] OR “sEPSC”[Title/Abstract] OR 
“sPSP”[Title/Abstract] OR “sPSC”[Title/Abstract] OR “sIPSP”[Title/
Abstract] OR “sIPSC”[Title/Abstract]) AND (“cortex”[Title/Abstract] 
OR “cortical”[Title/Abstract] OR “neocortex”[Title/Abstract] OR 
“neocortical”[Title/Abstract] OR “hippocampus”[Title/Abstract] OR 
“hippocampal”[Title/Abstract] OR “thalamus”[Title/Abstract] OR 
“thalamic”[Title/Abstract] OR “brain”[Title/Abstract] OR 
“cerebral”[Title/Abstract] OR “central nervous system”[Title/Abstract] 
OR “pyramidal”[Title/Abstract] OR “CNS”[Title/Abstract]). 
Abbreviations ending in PSP and PP stand for postsynaptic potentials, 
while PSC and PC stand for postsynaptic currents and should not 
be confused with end-plate potentials and currents.

Animals and electrophysiology

All experimental procedures were carried out in accordance with 
the UK Animals (Scientific Procedures) Act 1986 at Cardiff University 
under Home Office personal and project licenses.

19 to 27-day old Wistar rats (RRID: RGD_13508588; n = 11) of 
either sex were anaesthetised with isoflurane and decapitated, and the 
brain removed under cold (0–2°C) artificial cerebrospinal fluid 
(aCSF), composed of (in mM) 125 NaCl, 26 NaHCO3, 2.3 KCl, 1.26 
KH2PO4, 1 MgSO4, 10 glucose, and 2 CaCl2 bubbled with 95% O2 
5%CO2. Coronal somatosensory cortical slices 350 μm thick were cut 
and held in an interface chamber with their surfaces kept moist for 1 
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to 3 h by aCSF at room temperature (21–23°C) under a 95% O2 5% 
CO2 atmosphere. Individual slices were then placed in the recording 
chamber and held at 35–37°C with aCSF flowing over both surfaces, 
with a rapid perfusion rate (to minimise wash-in times of blockers). 
For recording purposes at 35–37°C the aCSF solution contained (in 
mM) 125 NaCl, 24 NaHCO3, 2.3 KCl, 1.26 KH2PO4, 1 MgSO4, 10 
glucose, and 2 CaCl2.

Whole-cell recordings (n = 14 pyramidal neurons, from cortical 
layers 2/3 and 5, from 11 rats) were obtained under visual control 
using infrared scanning gradient contrast imaging with the imaging 
laser beam and a Dodt tube. Recordings were made with 4.5–9 MΩ 
borosilicate glass pipettes (Harvard Apparatus, 1.5 mm outside 
diameter and 0.86 mm, internal diameter, omega-dot filament; Sutter 
P2000 puller), filled with (mM): 140 KGluconate, 10 HEPES, 2 MgCl2, 
3 ATP-Na2, 0.3 GTP-Na, 0.1 Magnesium Green, 0.1 Alexa 594; 7.35 
pH, 273 mOsm/L osmolarity. Signals (sampled at 20 kHz) were 
amplified, low-pass filtered (5 KHz) and digitised (Axopatch-200B, 
custom amplifier/filters, Digidata 1,440, Clampex software; Molecular 
Devices). Pipettes and electrodes were positioned with Sutter MP265 
and 285 manipulators with a diagonal (axial) mode, using 
parallelogram trajectories.

The electrophysiological recordings consisted of two phases. 
During the first phase we recorded mEPSPs against the background 
of physiological noise (“noise with minis” condition) by applying aCSF 
with action potential (AP) and inhibitory postsynaptic potential 
(IPSP) blockers added: 0.5 or 1 μM tetrodotoxin (TTX; selective, 
potent Na+ channel blocker), and 12.5 μM gabazine (selective, potent 
GABAA receptor antagonist to block (fast components) of inhibitory 
synaptic inputs – IPSCs and resulting IPSPs). AP blockade by TTX 
was rapidly acting and was explicitly tested for with long current 
pulses pushing membrane potential (Vm) well above normal AP 
threshold levels, to around −20 mV. The average duration of this phase 
of the recordings was 21.8 (± s.d. 0.9) minutes. During a second phase, 
we recorded noise with mEPSPs blocked (“noise-alone” condition). 
This recording was carried out after further adding 40 μM 2,3-dioxo-
6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX) (selective, potent 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 
receptor antagonist) and 50 μM CPP (competitive, non-use dependent 
selective N-methyl-D-aspartate (NMDA) receptor antagonist) to the 
solution used in the “noise with minis” condition, to block all 
excitatory glutamatergic synaptic inputs (and thus EPSCs and 
resulting EPSPs), verified by inspecting and analysing the traces across 
a number of recordings with the same flow rates. The average duration 
of this phase of the recordings was 44.8 (± s.d. 2.9) minutes.

Experimental design

The goal of this benchmarking study was to compare mEPSP 
detection performance by three different detection algorithms, mainly 
in terms of standard signal detection theory measures. Two of them 
were the most popular software products used in the field of synaptic 
function research in the CNS, while the third one was our novel 
algorithm called “minis”.

Current clamp whole-cell patch recordings obtained during the 
initial recording phase (“noise + minis” condition) underwent mEPSP 
detection analysis using “minis”, MiniAnalysis (Bluecell; RRID: 
SCR_002184), and Clampfit (part of the pClamp software suite, 

Molecular Devices; RRID: SCR_011323). Detected mEPSPs were 
analysed in terms of their amplitude, 10–90% rise and decay times, 
and incidence rate.

The current clamp recordings obtained during the second 
recording phase (“noise-alone” condition) served as the background 
data in the mEPSP (“simulated minis”) computer simulations (n = 14 
cells). Computationally simulated mEPSPs (smEPSPs) were added 
onto segments of these Vm noise recordings (1 of them 200 s, 1 more 
of them 40 s, while the remaining 12 were 100 s long; starting on 
average 680 s after the infusion of NBQX and CPP blockers with the 
range of 340 to 2,180 s) and the resultant hybrid waveforms (noise 
with simulated minis) were then subjected to mEPSP detection 
analyses using “minis”, MiniAnalysis, and Clampfit software. 
Detection performance was quantified using signal detection theory 
measures and compared between the three algorithms.

Simulations

Simulating distributions of miniature excitatory 
postsynaptic potentials with a range of 
amplitudes and rise times

All simulations were carried out within the “minis” software 
environment which is based on Matlab (Mathworks; RRID: 
SCR_001622). Simulation of minis-like events was based on an 
analytical solution to the passive cable equation for a transient current 
(Rall, 1977) using 100 lumped terms with a double exponential 
synaptic current with τ1 = 0.1 ms and τ2 = 2 ms (Major et al., 1993).

For a given membrane time constant, an initial cable segment was 
constructed with an electrotonic length l/λ = 0.6, where l is the 
physical length of a dendrite (μm) and λ is the length (μm) constant 
(Rall, 1977). Charge (Q) was injected at a location (x μm) along this 
cable and the resulting simulated postsynaptic Vm was measured at 
one end of this cable segment. The precise location of the injected 
charge was varied systematically, depending on the desired shape of 
the simulated event. Increasing the distance of the injected charge 
along the cable away from the measurement site gradually increased 
the rise time of the simulated event. To further increase the rise time, 
electrotonic length was gradually increased until the required rise 
time was obtained. Increasing the amount of injected charge increased 
the amplitude of the simulated event. Therefore, one was able to 
construct a simulated postsynaptic potential of any rise time or 
amplitude, for the particular membrane time constant used. A pool of 
simulated events could be created having any kind of distribution of 
amplitudes and rise times, for a given decay time constant, with 
individual events’ onsets timed/placed pseudo-randomly along the 
time axis of the Vm recording.

Simulations used to construct full receiver 
operating characteristic (ROC)-like curves, using 
relatively fixed but realistic (“moderately-sized”) 
mini amplitudes

All simulated mEPSPs were drawn from a two-dimensional 
normal distribution (independent amplitude and rise time 
dimensions) with the following amplitude parameters: mean 
μ1 = 0.3 mV and standard deviation σ1 = 0.05 mV (i.e., amplitudes 
relatively constant, with a relatively small amount of variation). The 
following (independent) 10–90% rise time parameters were used: 
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μ2 = 0.05 ms and σ2 = 2.5 ms (with a minimum rise time of 0.05 ms; 
i.e., only upper half of normal distribution used). Simulated events 
were drawn pseudo-randomly from a distribution at one of the 
following incidence rates (minis/s): 640, 320, 160, 80, 40, 20, 10, 5, 2.5, 
2.5, 2.5, 2.5, 2.5, and 2.5. Corresponding noise amplitude scale factors 
for these 14 incidence rates conditions were as follows: 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1.2, 1.4, 1.8, 2.6, and 4.2. The simulated events were then 
positioned at pseudo-randomly determined times along the Vm noise 
recording epochs obtained during the second recording phase (“noise-
alone” condition). Two of the noise-alone epochs were 200 and 40 s 
long, while the remaining twelve were 100 s long. Four different 
simulation traces per recording, each of them having different pseudo-
random event timings, were generated for every incidence rate/noise 
scale condition, resulting in a total number of 14 × 4 × 14 = 784 traces.

Simulations of miniature excitatory postsynaptic 
potentials using a range of biologically realistic 
amplitudes at realistic incidence rates

The simulation parameters used to construct full ROC-like curves 
cover only a part of the likely biological range. In reality, in cortex, 
minis vary far more in their amplitudes, with large numbers of smaller 
minis, but a minority of bigger minis too—some much bigger. 
Therefore, we set out to compare all three algorithms using a range of 
plausible simulated mini amplitudes, within the restricted range of 
what we deemed to be realistic incidence rates based on our estimation 
(from recent peer-reviewed publications) in the first results subsection.

All simulated events were drawn from a two-dimensional 
distribution with the following parameters: amplitudes were chosen 
from ten discrete values (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 
0.5 mV) with equal probabilities, rise times were independently 

chosen from the upper half of a normal distribution with mean 
μ2 = 0.05 ms, and standard deviation σ2 = 2.5 ms (i.e., no rise time 
shorter than 0.05 ms). Three “realistic” minis’ incidence rates were 
used: either 61, 38, or 27 minis/s. The simulated events were positioned 
at pseudo-random times along the same noise recording epochs as 
used in the previous subsection. Four different simulation traces per 
recording, each of them with different random event timings, were 
generated for every incidence rate condition, resulting in a total 
number of 3 × 4 × 14 = 168 traces.

Detection of spontaneous and miniature 
postsynaptic potentials

“Minis” detection algorithm
We developed a new algorithm to detect postsynaptic potentials 

and currents, that we have incorporated into a data analysis software 
package called “minis”, coded in Matlab (Mathworks). It is distributed 
as an application programming interface (API) in the form of a 
packaged Matlab app or a Python (Python Software Foundation; 
RRID: SCR_008394) package or as a compiled standalone desktop 
application with a graphical user interface. In brief, the detection 
algorithm takes a filtered Vm or clamp current trace in the Axon 
Binary File (ABF) format and detects peaks and rising phases and 
estimates their amplitudes and rise and decay times after applying 
certain processing steps. These steps are outlined below (with 
parameter values tailored for detecting smEPSPs in cortical pyramidal 
neurons). A schematic illustration of the key steps is shown in 
Figure 1.

A. Steps to find minis:

FIGURE 1

A schematic representation of key steps in “minis” detection algorithm. An illustration of a step-by-step application of the mPSP/C detection algorithm 
using simulated data. Numbered steps dealing with mini peaks/amplitudes are shown in red, steps used to determine the baseline are shown in blue. 
Briefly, the steps are: 1. Bandstop filter (against mains). 2. Lowpass filter to remove high frequency noise. 3. Find peaks. 4. Discard smaller peaks with 
the peak integration period represented by the length of the bracket and the union symbol (∪). 5. Move to a higher peak (if exists) within the peak 
integration period discarding the earlier peak. 6. Position the baseline at a local minimum located within the time-to-peak period prior to the peak. 7. 
Position the baseline asymmetrically (80:20) around the minimum (color change at the inset). 8. Correct the start of the baseline if it overlaps with the 
previous peak. 9. Discard the peak if it falls outside the acceptable amplitude range (repeated three more times). 10. Compare rise time halves to 
correct the baseline (can be repeated once more). 11. Repeat Step 9. 12. Compare rise time halves to correct the peak. 13. Repeat Step 9. 14. Correct 
the baseline if it significantly deviates from the 10%/20% rise time mark. 15. Repeat Step 9.
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 1 The data can be band-stop filtered to remove mains noise (e.g., 
small integer multiples of 50 Hz frequency components: 
optional). For this, a Butterworth filter (Matlab’s “butter” 
function) is used with a stopband attenuation of 10 dB and a 
passband “ripple” of 0.05 dB. The stopband size is 1 Hz, and the 
passband is the entire remaining frequency range except for the 
±3 Hz window either side of the stopband frequency. Filtering 
effects are illustrated in Figure 2.

 2 The recording trace can be smoothed using a Gaussian window 
(optional). We use a 1.5-millisecond window (with standard 
deviation of the Gaussian of 0.53 ms). This step removes high 
frequency noise. Smoothing effects are illustrated in Figure 2.

 3 Peaks (local maxima) are identified in the filtered, smoothed 
recording trace. Each peak is then examined consecutively, 
starting with the initial peak.

 4 Going through all the peaks one by one, any peak within the 
“Peak Integration Period” (“duration”) following the current 
(“working”) peak of interest is discarded if it is smaller (lower) 
than the peak of interest. For the analysis in this paper, we use 
a Peak Integration Period of 2.5 ms; this can be matched to the 
different “sharpness” or “breadths” of peaks in different data.

 5 If there is a larger peak within the peak integration period, the 
“working” peak of interest is moved to this new peak, and the 
old peak and all intervening peaks between it and the new 
“working” peak of interest are discarded.

 6 The baseline of the peak is positioned asymmetrically around 
the lowest value (local minimum) before the peak. Because of 
the faster upstroke of minis, compared with their decays, 80% 
of the baseline period falls before the lowest voltage (local 
minimum) and the remaining 20% after it (see Figure 1, inset). 
The interval from the baseline to the peak is limited by the 
Maximum Time-to-Peak parameter (10 ms used here). The last 
20% of the baseline cannot start earlier than this.

 7 The length in time of the baseline is controlled by the baseline 
duration parameter. We used 2-ms (N. B. a baseline, or indeed 
an entire mini, can occur during the summated decay “tails” of 
previous minis, particularly when the minis incidence rate is 
high relative to their decay time, as often seen with mPSPs 
under voltage recording at body temperature – but also under 
voltage clamp).

 8 If the baseline overlaps with or falls before the previous peak, 
its start is delayed till immediately after the previous peak (to 

FIGURE 2

Filtering and smoothing effects. (A) A brief segment of Vm trace recording containing real minis and noise. The black trace is raw (unfiltered and 
unsmoothed), whereas the red trace is the same data after filtering and smoothing as described in materials and methods subsection called “minis” 
detection algorithm. (B) Same as (A) but containing varying amplitude smEPSPs with a 20 minis/s incidence rate instead of real minis.
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stop the baseline being pulled down by the previous rising 
phase), but the end time is kept the same.

 9 To reject any large artefactual “glitches”, or small events that are 
putative noise, if the amplitude of the peak is outside of the 
range of acceptable amplitudes, between a detection threshold 
and a maximum, the peak is discarded. We allowed a range of 
amplitudes of 0.1–10 mV in detection conditions used to 
construct full “virtual” receiver operating characteristic (ROC) 
curves. In other conditions we  applied a range of 
0.05–10 mV. To detect real minis, we  used a range of 
0.01–10 mV (N. B. 0.02 or 0.03 mV detection thresholds can 
also be  used for real whole-cell patch recording data from 
neocortical pyramidal neurons, under our experimental 
conditions, guided by the range of amplitudes of dendritically 
detected, somatically recorded mEPSPs in Nevian et al. (2007) 
from layer 5 pyramidal neurons from rat somatosensory 
cortex; in general, detection thresholds will need to be adjusted 
to the cell type and experimental conditions).

B. Steps against multiple small minis being erroneously lumped 
together (merged):

 10 Rising phase asymmetries: if the first half of the rise time 
(10–50% or 20–50%, depending on the rise time duration of 
choice) is longer than the second half (50–90% or 50–80%) by 
a factor of 5 or more (an asymmetry incompatible with typical 
single, non-summating EPSP rising phases), the end of the 
baseline is extended slightly into the “take-off ” of the rising 
phase (this correction can be repeated one more time).

 11 The amplitude range test is applied again (Step 9).
 12 If the second half of the rise time is longer than the first half by 

a factor of 5 or more, the peak is shifted to a previously 
discarded smaller peak, if exists (two minis could be summating 
on their rising phases, which is treated as a single mini, or the 
second mini could occur just after the peak of the first, which 
is treated as two minis, if two peaks are distinguishable).

 13 The amplitude range test is applied again (step 9).
 14 If the 10% or 20% rise time mark (depending on whether 

10–90% or 20–80% rise time is measured) is later than the end 
of the baseline by more than a half of the baseline duration 
(1 ms in our case), a new baseline is established closer to the 
peak (by moving the baseline to the next local minimum).

 15 Finally, the amplitude range test is applied again (step 9).
 16 A mini (mPSP) is established and its properties are estimated, 

including amplitudes, rise times (10–90% or 20–80% of the 
peak), effective and fitted decays, and other associated measures.

Detection using MiniAnalysis software
MiniAnalysis software version 6.0.7 was used to detect mEPSPs 

for a benchmarking purpose. We  used the following detection 
parameters: As with the “minis” program, an amplitude threshold 
of 0.1 mV (when constructing the full ROC-like curve) or 0.05 mV 
(all other simulated conditions), in both cases somewhat matched 
to the simulated data, or 0.01 mV when detecting real minis, a 
“Period to search for a Local maximum” of 12.5 ms, “Time before 
a peak for baseline” of 10 ms, a “Period to search a decay time” of 
30 ms, a “Fraction of peak to find a decay time” of 0.37 (one 
effective time constant for exponential decay), a “period to average 

a baseline” of 2 ms, an “area threshold” of 0 mV × ms (i.e., not 
used), a “Number of points to average for peak” of 1, and using the” 
Detect complex peak” option (to avoid missing close-together 
events). The chosen detection parameters closely resembled 
similarly named parameters in the “minis” detection algorithm 
with minor deviations to improve performance. Arrived by trial 
and error, these parameters were also found to give the most 
optimal detection performance of the MiniAnalysis software in 
comparison to other tested parameter sets. Event detection was 
carried out on the recording data that was filtered and smoothed in 
the same way as described in steps 1 and 2 of the previous 
sub-section (Figure 2).

Detection using Clampfit
Clampfit software, part of the pClamp 11.0.3.03 software suite, 

was used to detect real and simulated mEPSPs for a benchmarking 
purpose. Recordings were band-stop filtered as described in step 1 
of the “minis” detection algorithm. Data was not smoothed. A 
template search algorithm was used with 9 templates (the maximum 
allowed). The mEPSP template set was constructed based on the 
simulated events. Events having 0.5 ms, 1.5 ms, 3.5 ms, and 6.5 ms 
10–90% rise times were selected to produce four distinct mEPSP 
templates (with the correct decay time constants). An additional 
five single-peaked templates were constructed in a way that made 
them potentially a mix of multiple simulated waveforms. They were 
constructed to have extra-fast, fast, intermediate, slow, and extra-
slow rise times corresponding to 2 ms, 2.75 ms, 6 ms, 7 ms, and 
8 ms 0–100% rise times and 8 ms, 9.25 ms, 17 ms, 23 ms, and 37 ms 
duration full decays, respectively. Combining single and mixed 
waveforms gave better detection performance than having 
waveforms based only on any one of these types alone. Multiple 
categories were allowed per event. Template match threshold was 
set to the default of 4 noise standard deviations with the rest of the 
detection parameters being set to their default values as well. The 
decision of keeping default parameter values was based on them 
resulting the largest detection counts. The same set of templates was 
used to analyse all simulated current clamp data, as well as real 
data. Using the same templates with real data was justified, because 
they resulted in a superior detection performance compared to 
templates created directly from the real data. Finally, decay times 
were estimated by fitting the product of exponentials.

Detection algorithm response classification
At the outset we identified prominent noise events in the Vm noise 

recordings (the 2nd recording phase: “noise-alone” condition) that 
could potentially be confused for true minis (mEPSPs) by any of the 
algorithms (noise traces in Figures 3A,B). All noise recordings were 
filtered and smoothed as in Steps 1 and 2 of the “minis” detection 
algorithm (Figure 2). The data was further smoothed by a rectangular 
“box-car” moving average window of 20 ms. Then all peaks larger than 
0.01 mV and having a half-width of at least 0.5 ms were identified. 
These peaks were classed as (notional) noise “events” (for the purpose 
of generating “sensible” true negative rates, TNRs, which do not 
“swamp” false positive rates across the entire virtual ROC; see below). 
Subsequently we  simulated mEPSPs and added them at pseudo-
random times to a zero-trace having the same length as the noise 
recording of interest (simulation traces in Figures 3A,B). The peaks of 
these events were classed as signal events. The simulated trace was 
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FIGURE 3

Simulation and detection performance. (A) An example of simulated membrane potential recording with average simulated mEPSP incidence rate of 
20 minis/s. The top voltage trace shows a brief segment with randomly timed smEPSPs with random, normally-distributed amplitudes (μ1 = 0.3 mV, 
σ1 = 0.05 mV) and 10–90% rise times (drawn from the upper half of the distribution with μ2 = 0.05 ms, σ2 = 2.5 ms); see Methods. Dotted green vertical 
lines mark signal events corresponding to smEPSP peaks. The paler shaded color demarcates a 10-ms (± 5 ms) window for accepting the detection of 
a signal event. The second traces from the top are corresponding recordings of Vm noise fluctuations (the 2nd recording phase: “noise-alone” 
condition, in TTX and transmitter blockers), after initial filtering and smoothing (steps 1 and 2 of the “minis” detection algorithm; Figure 1). Dotted 
vertical cyan lines indicate noise events; the shaded color demarcates a window of exclusion for correctly rejecting these events (see Methods). The Vm 
third from the top trace is a hybrid one with smEPSPs added to the noise recording and with signal events and noise “events” indicated. The colored Vm 
traces below show detection performance for the three different algorithms. (B) An example of simulated Vm recording with mEPSP incidence rate of 
40 minis/s.
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then added to the noise recording (“Simulation + noise” traces in 
Figures 3A,B). Locations of signal and designated noise events formed 
the “ground truth” information.

Following the detection process, all detected events were 
associated with one of the signal and noise events depending on their 
proximity to these predefined “ground truth” events. A detected event 
was classed as a true positive (a “hit”) if it was the closest detection 
event within 5 ms of a signal (simulated mEPSP/mini) event. If no 
detection event occurred within the 10 ms symmetrical window 
surrounding a signal (simulated mini) event (−5 to 5 ms), the signal 
event was classed as a false negative (a “miss”). If no detection event 
(except correct detections) occurred within the same duration window 
surrounding a noise event, the noise event was classed as a true 
negative (“correct rejection”). Although in theory there could 
potentially be a much higher number of possible time points which 
could be  labelled as correct rejections, or true negatives, in this 
situation, because of their inherently somewhat arbitrary nature, 
we  wanted to keep the maximum number comparable to the 
maximum number of true positives (simulated minis), so the ROC 
plot had a reasonable chance of being relatively “square” (i.e., having 
a useful dynamic range). The remaining detection events were classed 
as false positives (“false alarms”). Examples of classified detection 
events are shown in Figure  3 separately for all three 
detection algorithms.

Detection response time to the nearest 
neighbour

The time to the peak of the nearest smEPSP was available for every 
classified response. Detection performance was then evaluated as a 
function of the time to the nearest neighbour.

Membrane potential “phase” (trend) 
classification

We attempted to address common detection errors, in 
particular missed minis on the decaying phase of a previous mini 
(causing second peak to drop relative to its baseline), or on the 
rising phase of another mini (so the rises of both minis get lumped 
together). Algorithm detection performance was assessed not only 
for full recordings but also separately for periods when the 
“underlying” simulated Vm (before adding the noise) was rising, 
decaying, or remained roughly stable (Figure 4). The “decaying 
phases” (downward trend) of the purely simulated Vm were set to 
be (a) the period from 0.0625 ms after the peak until the purely 
simulated Vm trace dropped to the ratio of 0.3/e mV (0.11 mV) 
(amplitudes of simulated minis were ~0.3 mV in the full 
virtual-ROC curve conditions, so this would be  about one 
membrane time constant after an “average” simulated mini) or (b) 
until the Vm started rising again to reach a new peak that was above 
the initial peak (at the start of this decay phase). If the new peak 
was lower than the initial one, the entire new peak was classified 
as part of the ongoing decay phase. Peaks occurring on the decay 
phase of the Vm were assigned the Vm decay rate of change that was 
present 0.25 ms (5 sample points) prior to the appearance of the 
Vm inflection points associated with the start of the rise of a new 
mini (indicated by the blue arrow in Figure 4A). The rising “phase” 
was treated essentially somewhat as a decay phase in reverse. The 

only difference was that the ratio of 0.3/e mV was replaced by the 
ratio of 0.3/10 mV (0.03 mV). Peaks occurring on a Vm rise phase 
(upward trend) were assigned a Vm rate of rise value that was 
present 0.125 ms after the appearance of an upward Vm inflection 
point following the initial decay of the previous peak (indicated by 
green arrows in Figure 4A). Periods that were already classified as 
decay phases could not be reclassified as rising phases. Periods of 
relatively slowly-changing simulated Vm, outside of the rise and 
decay phases were classed as “stable” (or a flattish phase). The 
classification of purely simulated membrane potentials into three 
different trend phases was used to assign phases to the combined 
noise recordings with simulated minis (Figure 4B). The detection 
performance during rise and decay trend phases was evaluated as 
a function of the Vm rate of change.

Data analyses

Performance of the three algorithms was compared using 
measures from signal detection theory. All detection responses were 
classified as described in the Detection algorithm response classification 
subsection. True positive (“hit”) rate (TPR) was calculated as follows:

 
=

+
  

    
True positive countTPR

True positive count False negative count

Throughout this text we  use TPR, detection probability, and 
sensitivity interchangeably. False positive (“false alarm”) rate (FPR) 
was calculated as follows:

FIGURE 4

Membrane potential rising, steady-ish and falling “trend phases”. 
(A) A short segment of a Vm trace showing five smEPSPs. Different Vm 
“trend phases”, based on the overall upward or downward trend in 
simulated voltage, are marked in color. Green arrows indicate Vm 
points where the Vm rate of increase is assigned to the preceding 
mEPSP peak. The blue arrow indicates a Vm point where the Vm rate 
of decay is assigned to the following mEPSP peak. (B) Simulated Vm 
trace in (A) added to a noise recording. Vm “trend phases” were 
determined in (A) and are used to classify detected events in (B).

https://doi.org/10.3389/fncel.2025.1598016
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Dervinis and Major 10.3389/fncel.2025.1598016

Frontiers in Cellular Neuroscience 09 frontiersin.org

 
=

+
  

    
False positive countFPR

False positive count True negative count

The true negative count we have used is perforce notional, as 
explained above, but still useful for standardised, non-subjective 
comparisons and benchmarking. Throughout we use FPR and “false 
alarm rate” interchangeably.

Calculation of TPR and (notional) FPR allowed us to produce 
ROC-like curves and to calculate area under the curve (AUC); area 
under the ROC curve, for each complete ROC curve, with 0.5 
indicating chance performance [the area of the triangle under the 
diagonal from (0,0) to (1,1) and 1 indicating perfect performance, i.e., 
the area of a right angle starting at (0,0), vertical to (0,1) then going 
horizontal to (1,1)] as detection performance indicators. These are the 
most commonly used performance indicators for classifiers, in 
addition to sensitivity (TPR), and d’ (discriminability or sensitivity 
index) which we often use in parallel throughout this text. The d’ 
statistic was calculated as follows:

 ( ) ( )−′ =d z TPR z FPR

where z is the z-score defined as the inverse of the normal 
cumulative distribution function, i.e., z(arg) is the number of sd’s 
from the mean giving the area equal to its argument arg under the 
standard unit normal distribution (mean 0, sd 1), starting from 
-∞. TPR and FPR values are essentially treated as cumulative 
probabilities as explained in Macmillan and Creelman (2005). So, 
d’ tells us how many standard deviations “apart” the TPR and FPR 
are, assuming they are cumulative probabilities (areas under curve) 
of a standard normal distribution. N. B. If FPR is 0, z(FPR) is -∞ 
so d’ is undefined, but arbitrarily large and positive (as occurs in 
some of our figures below). These plots are truncated for the 
detection method in question, but the performance is still superior 
to any plots with finite values.

The above detection performance indicators were calculated for 
full recordings, as well as separately for rising and decaying 
periods of Vm.

In addition, we also looked at cumulative (left-to-right over the 
x-axis) TPR and cumulative FPR. The cumulative TPR was defined as 
follows, for each detection algorithm and simulated waveform:
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Overall unbanded TPR

=
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Likewise, the cumulative FPR was defined as:
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Cumulative false positive countCumulative FPR
Total unbanded false positive count

Overall unbanded FPR

=

×

The latter two measures were not only useful for measuring 
cumulative hits and false alarms over a range of time intervals and Vm 

rates of change, but also provided overall estimates of TPR and FPR 
(the right side of the x-axis).

Statistical analyses

All inferential statistics were based on the assumption that 
distributions of all measures were normal. Only repeated samples or 
single-sample t-tests were used across the Results section (often when 
comparing with baseline true positive values in tables). All mean 
distribution values are stated/depicted with 95% confidence limits of 
the mean (if they exist).

Data accessibility

All data analysed in this study is publicly available (Dervinis, 
2024a). The available data include “noise with minis” and “noise-
alone” whole-cell patch membrane potential recordings that were used 
in minis detection procedures and computer simulations. The hybrid 
Vm traces containing smEPSPs added to noise recordings are also 
available. All electrophysiological recordings were stored in Axon 
Binary File (ABF) format.

mEPSP templates used for detecting real and simulated events via 
Clampfit are also in the same dataset in the form of Axon Template 
Files (ATFs).

Code accessibility

All analyses were carried out in Matlab and the analysis code is 
publicly available on GitHub (Dervinis, 2024b). The code is complete 
with instructions on how to reproduce all figures reported in 
this study.

Software accessibility

The present study reported the use of a novel miniature 
postsynaptic event detection algorithm that is part of “minis” software 
available on GitHub (Dervinis, 2024c).

Results

Research literature measuring minis in the 
central nervous system

The full results of the literature survey are reported in 
Supplementary Results. Here we only briefly report key findings. 
First, we  established that the two most popular software 
applications used to detect minis are MiniAnalysis followed by 
Clampfit with 48 and 26% of surveyed studies reporting to use 
these algorithms, respectively. Moreover, these studies reported a 
mean minis’ incidence rate of 3.6 ± s.d. 0.34 per second (range of 
1.0 to 8.0 per second). Meanwhile, we  suspect that true minis 
incidence rates range somewhere between ca. 10 minis/s and 100 
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minis/s based on research on synapse counts and release 
probabilities in the CNS (an order of magnitude higher than 
reported direct measurements using voltage clamp).

Algorithm performance comparison for 
detecting moderately-sized (~0.3 mV) 
simulated miniature excitatory 
postsynaptic potentials

Detection under a wide range of incidence rate 
conditions: overall performance

In the Results subsection “Research literature measuring minis in 
the central nervous system”, we reported that detection of spontaneous 
postsynaptic events is typically carried out using an amplitude 
threshold. This approach implies that the range of amplitudes of 
spontaneous postsynaptic events is somewhat known and that, on the 
smaller end, the amplitudes are moderately-sized and sufficiently 
larger than pure noise fluctuations. Leaving aside the question of the 
empirical validity of this (somewhat dubious?) assumption, 
we  evaluated automated detection of moderately-sized (0.3 ± s.d. 
0.05 mV) smEPSPs added to whole-cell patch clamp noise recordings 
(the 2nd recording phase: “noise-alone” condition).

We compared our novel “minis” algorithm with MiniAnalysis and 
Clampfit. We created 14 simulation incidence rate conditions with 
different effective signal-to-noise ratios that loosely mimicked the 
effects of varying the signal detection threshold. On the one hand, 
increasing the incidence rate of smEPSPs tended to decrease TPR as 
simulated events started to merge. On the other hand, increasing the 
noise amplitude (scaling up the noise that was added to the simulated 
minis) tended primarily to increase the FPR.

We plotted the detection performance in terms of TPRs against 
FPRs, as “virtual” (notional) Receiver Operator Characteristic 
(v-ROC) curves, for all 14 conditions and all three algorithms in 
Figure  5A. We  found that in the first six conditions (high minis 
incidence rates), the v-ROC curve for “minis” had minimal overlap 
with any other curve and was positioned furthest away from the 
diagonal (starting from left to right; 640, 320, 160, 80, 40, and 20 
minis/s with x1 noise scaling), indicative of a superior performance in 
this (relatively high) incidence rate range (the highest incidence rates 
were used to create the full v-ROC; higher incidence rates increase 
overlaps, i.e., temporal summation, between minis, which are 
particularly challenging to detect). The same observation was 
supported by another measure, the sensitivity index d’, shown in 
Figure 5B. Detection performance in the remaining 8 conditions (10, 
5, 2.5, 2.5, 2.5, 2.5, 2.5, and 2.5 minis/s with noise scaling factors of x 
1, 1, 1, 1.2, 1.4, 1.8, 2.6, and 4.2, respectively) was very similar for both 
“minis” and MiniAnalysis: neither of the two showed a clear 
superiority on both performance measures simultaneously: v-ROC 
and d’ curves overlapped. In contrast, Clampfit consistently performed 
worst across all 14 conditions, particularly with high amplitude noise. 
Clampfit becomes progressively “confused” as noise increases, placing 
templates on noise events, but ignoring “swamped” smEPSPs.

When overall performance was assessed averaging across individual 
incidence rate and signal-to-noise ratio conditions, we  found that 
“minis” showed the best performance with the mean Area Under the 
(v-ROC) Curve (AUC) value of 0.960 ± 0.002 (95% confidence interval 
here onwards; Figure  5C). A paired samples t-test comparing to 

MiniAnalysis which had a mean AUC value of 0.937 ± 0.0022 gave 
t(13) = 12.4 and p = 1.37 × 10−8. Clampfit showed the poorest overall 
performance with the mean AUC value of 0.706 ± 0.0043, t(13) = 33.1, 
and p = 6.14 × 10−14 when compared to the MiniAnalysis mean AUC 
value in a paired samples t-test. These differences in detection 
performance were further corroborated by the d’ measure averaged 
across all signal-to-noise ratio conditions (Figure 5D). A paired samples 
t-test comparing mean d’ values from “minis” (2.45 ± 0.045) versus 
MiniAnalysis (2.11 ± 0.04) gave t(13) = 14.0 and p = 3.24 × 10−9. The 
same test comparing the mean d’ from MiniAnalysis and Clampfit 
(1.23 ± 0.024) gave t(13) = 13.3 and p = 6.07 × 10−9. In summary, these 
findings clearly demonstrated that our “minis” detection algorithm 
outperformed the other two algorithms, for ~0.3 mV simulated minis 
added to real recording noise, at incidence rates above 10 minis/s, while 
Clampfit consistently showed the poorest detection performance across 
the entire incidence rate and signal-to-noise range examined, for these 
mPSP shapes and templates.

Detection under a wide range of incidence rate 
conditions: common errors

Both “minis” and MiniAnalysis were fairly good at detecting 
moderately-sized (0.3 ± s.d. 0.05 mV) smEPSPs added to our noise-
alone recordings. Yet all three algorithms, including “minis”, missed a 
sizeable proportion. Figure 6 shows examples of common mistakes. One 
type of mistake was missing simulated events that occurred very close 
to other events (Figures  6A–G). Unsurprisingly, none of the three 
algorithms could deal with events that overlapped nearly perfectly, 
always lumping them together. Detecting peaks in the data using 
thresholds or fitting templates to the data cannot offer a way of 
identifying overlaps. Another common error type was missing events 
with peaks on the rising phase of another mEPSP (Figures 6A–F; green 
arrowheads). Unlike perfect or near-perfect overlaps, these events had 
a clear but brief decay period that was quickly upended by the rising 
phase of the next mini. Because these decays were brief, they were often 
lumped with a subsequent mEPSP or they could not be adequately fit 
with a template by Clampfit and, therefore, were discarded. The “minis” 
program (but not MiniAnalysis) does offer a way to minimise these 
errors by reducing the peak integration period, but this comes at the 
expense of noise fluctuations on the rising phase increasingly passing as 
postsynaptic potentials (a type of false positive; Figure  6H, red 
arrowheads). An effective solution to this problem would, therefore, 
require isolating and measuring the noise component in whole-cell 
patch clamp recordings—which currently is not implemented in either 
MiniAnalysis or Clampfit (but is in “minis”).

An even more common error type was to miss (smaller) mEPSPs 
that occurred on the decay phase of another, often larger, earlier 
mEPSP (Figures 6D,G; blue arrowheads). The amplitude of mEPSPs 
occurring on decays is effectively reduced (as the peak drops relative 
to the baseline, due to the underlying decay of Vm) and the steeper the 
decay, the more the amplitude is reduced. The amplitude of such a 
reduced mini may fall below the detection threshold and/or shape 
distortions may prevent fitting a template. As a result, such mEPSPs 
were occasionally discarded (this turns out to be a significant problem 
with real minis recorded from cortical pyramidal neurons, which 
exhibit significant temporal summation, because of their relatively 
high incidence rates and slow decays). There is no easy way of 
correcting these errors, as it would (for example) require estimating 
the underlying decaying potential and subtracting it from the overall 
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Vm or estimating the fall in the peak and adding it back to the 
amplitude before deciding whether to accept that candidate putative 
mini. mEPSPs that neither occurred during the rise nor decay phases 
were also occasionally missed (Figures 6A,D–F; black arrowheads). 
This could have happened due to a failure to fit a template (Clampfit) 
or due to the amplitude being reduced below threshold by downward 
background noise fluctuations. In recordings of real mEPSPs, these 
errors would mainly affect small amplitude mEPSPs. Again, an 
effective solution to this problem would require isolating and 
measuring the noise component in whole-cell patch clamp recordings 
similarly to previously discussed errors occurring on the Vm rise phase.

A whole other class of detection errors appeared in the form 
of false alarms (false positives) occurring on the rising (Figure 6E; 
red arrowhead) or decaying phases (Figures  6A,B,H; red 
arrowheads) of underlying mEPSPs or in the absence of any other 
minis in the vicinity (Figures  6B,H; red arrowheads). These 
mistakes were often caused by upward background noise 
fluctuations passing as real minis and might have been “enabled” 
by low amplitude detection thresholds or an inability to discern 
shapes of real minis from mini-like noise. Just like the previously 
discussed error type, a solution would require isolating and 
measuring properties of the noise component. In addition, there 

FIGURE 5

Overall performance for detecting “moderately”-sized smEPSPs (~0.3 mV). (A) “virtual” ROC (Receiver Operator Characteristic)-like curve showing 
performance for detecting “moderately”-sized smEPSPs in terms of True Positive Rate TPR (sensitivity) and False Positive Rate FPR (1 – specificity) for all 
three algorithms, averaged across all 14 cells. In each case, dataset varies from point to point, as opposed to detection threshold itself (which is varied 
systematically in a traditional ROC, using one dataset). Ideal performance would be a right-angle plot going vertically up TPR-axis at FPR = 0, then 
horizontally along the top of the plot at TPR = 1; “minis” is close to ideal, and superior to MiniAnalysis, which is not too far from ideal (despite its 
“missed minis” problems). Clampfit is far from ideal. Different points represent 14 different incidence rate/signal-to-noise ratio conditions, averaged 
across all 14 cells. Moving (generally) from bottom to top/left to right, simulated minis rates and signal-to-noise ratio are decreasing. Vertical and 
horizontal bars indicate 95% confidence interval around each mean. The dotted diagonal line indicates chance performance. The hollow circles mark 
three realistic smEPSP incidence rates (80, 40, and 20 minis/s). (B) Sensitivity (discriminability) index (d’) in the same 14 conditions as in (A) for all three 
algorithms, averaged across all 14 cells. (C) “Violin” plots for Area under the virtual-ROC curve in (A) for all three algorithms. Individual data points 
represent the 14 individual recordings (cells), horizontally “swarmed” to avoid overlaps. AUC (Area Under Curve) is averaged across all 14 incidence 
rate/signal-to-noise conditions for each cell for each detection algorithm. The mean is marked by a solid line over the “violin” centre. The dashed line 
indicates the 95% confidence limits of the mean, and colored shapes indicate the approximate (smoothed) probability densities (wider = higher 
probability of those values). **** indicates (highly) significantly different at p ≤ 10−5 level, paired t-test. (D) Similar plot for sensitivity index d’ averaged 
across all 14 incidence rate/signal-to-noise conditions for each cell and each detection algorithm.
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were errors that uniquely affected only one of the algorithms, like 
the misplacement of detected events (peaks) by MiniAnalysis 
(Figure 6C; green arrowheads).

We saw that distinct detection errors could be made depending 
on how close they were to neighbouring mEPSPs and whether they 
occurred on the rise or decay phases of other nearby mEPSPs or in the 

FIGURE 6

Moderately-sized (~0.3 mV) smEPSPs (40 minis/s): detection errors made by the three algorithms. (A–H) Examples of smEPSP detection errors 
commonly committed by the three algorithms. Traces in blue, red, and magenta represent detection performance for “minis”, MiniAnalysis, and 
Clampfit, respectively. The top black trace shows actual smEPSPs. Vertical green dotted lines mark actual individual (i.e., non-summated) smEPSP peak 
locations with the fainter shaded color demarcating a 10-ms window for accepting the detection of an mEPSP. Arrowheads indicate common 
detection errors made by the three algorithms (details in text).
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absence of any other mEPSPs in the background. All three algorithms 
occasionally committed these errors, but their incidence was uneven.

Detection under a wide range of incidence rate 
conditions: the membrane potential “slope trend” 
effect

In order to quantify the detection performance in different 
circumstances, for the same ~0.3 mV smEPSPs, we  evaluated the 
probability of making errors in relation to the proximity to 
neighbouring minis and the phase (trend) of the background Vm: 
rising or decaying. We looked at TPR as a function of time interval to 
the nearest-neighbour mini (Figure 7A) taken together for all minis 
incidence rate conditions used above (but excluding conditions where 
noise was scaled): i.e., 640, 320, 160, 80, 40, 20, 10, 5, and 2.5 minis/s 
conditions (9 in total). We found that detection was superior for our 
“minis” program across the entire inter-mini interval range. 
MiniAnalysis came second, with Clampfit consistently worst. These 
differences in detection performance were also reflected in the 
cumulative TPR (Figure 7D). As for the FPR (Figure 7B), “minis” was 
superior at detecting ~0.3 mV smEPSPs that were within 10 ms of the 
nearest neighbour (peak-to-peak). This performance edge over 
MiniAnalysis was not maintained for larger inter-mini peak intervals, 
while Clampfit again showed consistently the worst performance 

across the entire interval range. These performance differences were 
also reflected in the cumulative FPR (Figure 7E). Taken together, true 
and false positive rates allowed as to calculate a combined performance 
indicator, sensitivity index d’, as a function of time to the nearest 
neighbour (Figure 7C). The combined measure indicated that “minis” 
had the superior detection performance within 10 ms of the nearest 
neighbour while Clampfit showed the worst performance across the 
entire inter-mini interval range.

During the Vm rise phase performance differences were 
unequivocal. There were very few events and, therefore, positive 
detections when the background Vm was rising at 200 μV/s or faster 
(Figure 8D). Most of the detected events coinciding with the rise 
phase actually occurred when Vm was changing at the rate of 10 to 
100 μV/s. In this range “minis” showed the best detection performance 
with d’ between 1 and 2 (Figure 8C). MiniAnalysis was the second 
best, while Clampfit showed the worst performance. This order of 
performance was maintained for rates below 10 μV/s with overall 
performance improving for all algorithms. The performance edge of 
“minis” over the other algorithms was primarily due to low FPR 
(Figure 8B). The TPR of “minis” was also superior to the other two 
algorithms but, in terms of sensitivity, MiniAnalysis was not far 
behind (Figure 8A). In the range between 15 and 35 μV/s “minis” 
actually fell slightly behind MiniAnalysis. The cumulative rates clearly 

FIGURE 7

Performance when detecting moderately-sized (~0.3 mV) smEPSPs as a function of time to the nearest neighbour (mean inter-mini peak-to-peak 
interval). Pale shaded colors indicate 95% confidence intervals. (A) True positive rate (TPR). (B) False positive rate (FPR). (C) Sensitivity index d’ 
(undefined but arbitrarily high for TPR > 0 and FPR = 0, e.g., for inter-mini intervals below 1 ms, for “minis” algorithm). (D) Cumulative true positive rate 
(TPR) (cumulative true positives normalised by the total unbanded true positive count and scaled by the overall unbanded TPR; see text for details). 
(E) Cumulative FPR (cumulative false positives normalised by the total unbanded false positive count and scaled by the overall unbanded FPR).
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supported the observation that “minis” was superior to the other two 
algorithms with MiniAnalysis coming second and Clampfit having the 
worst performance (Figures 8D,E).

The same behavior of the three algorithms was also observed for 
detecting ~0.3 mV smEPSPs occurring on the decay phase of the 
background Vm (caused by summation of other smEPSPs). Most of the 
detected simulated events were associated with rates of Vm change in 
the range of −100 and −10 μV/s (Figure 9D). In this range and above, 
“minis” demonstrated the best performance relative to the other two 
algorithms with d’ ranging between 1.5 and 2.5 (Figure  9C). 
MiniAnalysis again came second, while Clampfit showed very poor 
performance. Clampfit often had a d’ that was close to 0, meaning that 
its performance was often not different from chance level when 
background Vm was decaying. This was mainly due to the large FPR 
for this algorithm (Figure 9B); “minis” had unequivocally the highest 
TPR and the lowest FPR (Figures 9A,B) with cumulative rates very 
clearly reflecting this (Figures 9D,E). The overall performance of the 
runner-up, MiniAnalysis, was substantially poorer.

There are only 3 conditions with realistic incidence rates (20, 40, 
and 80 minis/s). Although, higher or lower incidence rates were useful 
in constructing the full v-ROC curve, it can be argued that they are 
artificial and experimental electrophysiologists may not be concerned 
with them. Therefore, we  also examined the membrane potential 
“slope trend” effect separately for the three realistic incidence rate 

conditions in the Supplementary Results section demonstrating 
similar findings to the overall results.

Algorithm performance comparison for detecting 
simulated excitatory postsynaptic potentials with 
a wide set of discrete amplitudes, at realistic 
incidence rates

So far, we have only tested performance of the three algorithms 
when detecting moderately-sized (0.3 mV ± s.d. 0.05 mV) mEPSPs 
with a relatively narrow range of amplitudes. The existing evidence 
does not indicate that mPSPs form a distinct amplitude distribution 
that can be  separated from the amplitude distribution of noise 
fluctuations. Therefore, here we  aimed to test the performance of 
detecting smEPSPs of a wide range of amplitudes, to evaluate the three 
algorithms in more realistic settings.

We used three incidence rate conditions: 27, 38, and 61 minis/s. 
Within each of these conditions smEPSPs were drawn pseudo-
randomly from a uniform distribution of the following ten discrete 
amplitudes: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 mV (4 
different simulations per noise trace per incidence rate conditions; see 
Methods for shapes). Just like in previous simulations, we positioned 
these smEPSPs pseudo-randomly over noise recordings and detected 
them using the three algorithms. The overall performance of these 
algorithms is shown in terms of true and false positive rates in 

FIGURE 8

Performance when detecting moderately-sized (~0.3 mV) smEPSPs on a rising trend Vm as a function of the Vm rate of change. Paler shaded colors 
indicate 95% confidence intervals. (A) True positive rate (TPR). (B) False positive rate (FPR). (C) Sensitivity index d’. (D) Cumulative TPR. (E) Cumulative 
FPR.

https://doi.org/10.3389/fncel.2025.1598016
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Dervinis and Major 10.3389/fncel.2025.1598016

Frontiers in Cellular Neuroscience 15 frontiersin.org

Figure 10A and d’ in Figure 10B. A few things are prominent in these 
graphs. First of all, the detection performance of all algorithms was 
considerably worse than when detecting moderately-sized (~0.3 mV) 
mEPSPs. Secondly, “minis” again had the edge over two other 
algorithms, especially at higher minis’ incidence rates. Third, 
Clampfit’s performance was consistently the poorest, in our hands.

Performance was also assessed pooling the incidence rate 
conditions. We found “minis” to have the best performance with the 
mean AUC value of 0.827 ± 0.003 (95% confidence interval from here 
on; Figure 10C). A paired samples t-test comparing to MiniAnalysis 
with the mean AUC value of 0.809 ± 0.003 gave p = 1.0 × 10−6. 
Clampfit showed the poorest performance, with the mean AUC value 
of 0.665 ± 0.004, p = 2.2 × 10−10 when compared to the MiniAnalysis 
mean AUC value in a paired samples t-test. These differences in 
detection performance were further corroborated by the d’ measure 
averaged across all incidence rate conditions (Figure 10D). The d’ 
discriminability index scores of “minis” (1.5 ± 0.05) and MiniAnalysis 
(1.33 ± 0.04) were significantly different (p < 10−5), as were the d’ from 
MiniAnalysis and Clampfit (0.61 ± 0.02) (p < 4 × 10−6) The conclusion 
based on combined measures was in line with the assessment based 
on Individual incidence rate conditions.

Other measures like true positive and false positive rates as 
functions of the interval to the nearest neighbour and Vm rate of 
change during the rise or decay phases using more realistic settings 

pointed to a very similar conclusion to that made with the full 
virtual ROC curve. First, we found that “minis” performed better 
than the other algorithms at detecting mEPSPs that were within 
10 ms of other mEPSPs, and that at larger intervals, MiniAnalysis 
performed just as well (Supplementary Figure 1). Meanwhile, 
Clampfit performed consistently the worst across the range of inter-
mini intervals whether in terms of d’ (Supplementary Figure 1C) or 
true and false positive rates (Supplementary Figures 1A,B,D,E). 
When it came to Vm rate of change, “minis” performed better than 
MiniAnalysis, which in turn performed better than Clampfit when 
detecting smEPSPs occurring during rise and decay phases of 
background simulated Vm (Supplementary Figures 2, 3). One 
difference compared to the full virtual ROC curve analysis was that 
the detection performance of “minis” and MiniAnalysis overlapped 
in the range of 15–25 μV/s when detecting smEPSPs occurring on 
the rise phase of the background Vm (Supplementary Figure 2C). 
This is largely caused by an increased FPR of “minis” in this rate 
range (Supplementary Figure 2B). The overall performance of all 
algorithms was better (Supplementary Figures 2C, 3C) compared 
to the full virtual ROC curve analysis (Figures 8C, 9C), but still 
worse when compared to detecting moderately-sized (~0.3 mV) 
smEPSPs with realistic incidence rates 
(Supplementary Figures  2C, 3C), as described in the previous 
subsection and in the Supplementary Results. In summary, “minis” 

FIGURE 9

Performance when detecting moderately-sized (~0.3 mV) smEPSPs on the membrane potential decaying trend phase as a function of the membrane 
potential rate of change. Paler shaded colors indicate 95% confidence intervals. (A) True positive rate (TPR). (B) False positive rate (FPR). (C) Sensitivity 
Index d’. (D) Cumulative TPR. (E) Cumulative FPR.
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had a substantial advantage when detecting minis in close proximity 
to neighbouring minis, as well as during rising or falling background 
Vm, with Clampfit severely underperforming.

Comparison of amplitudes, time course, and 
incidence rates of detected real and simulated 
excitatory postsynaptic potentials by different 
algorithms

In the final section we looked at how the three tested algorithms 
fare across all simulation conditions in terms of their minis’ amplitude, 
time course, and incidence rate estimates. We  also carried out 
detection of real minis in the same recorded cells prior to blocking 
minis (“noise with minis” condition) and compared the same 
estimates for the three algorithms. A large number of estimates and 

inferential statistics was compiled into several tables providing a 
thorough performance overview.

Table  1 shows the compiled mean amplitude estimates for 
simulated and real minis detected by the three algorithms while 
Supplementary Table 1 shows repeated samples t-test p-values for 
comparisons of mean amplitude values for the three different 
algorithms with respect to ground truth values. Mean amplitude 
values of simulated and real mPSPs detected by “minis” were 
consistently lower than mean amplitude values of events detected by 
both MiniAnalysis and Clampfit and were closest to ground truth 
values. Detection of simulated events by the “minis” algorithm in 
conditions with realistic smPSP incidence rates (i.e., Type 1 RI and 
Type 2 rows in the tables) were extremely close to the ground truth 
values (0.3 mV vs. 0.31 mV and 0.275 mV vs. 0.29 mV, respectively; 

FIGURE 10

Overall performance for detecting smEPSPs of various (realistic) discrete amplitudes at “realistic” minis’ rates (details in text). (A) Partial virtual “ROC” 
curve showing performance for detecting small-to-large-sized smEPSPs (0.05 to 0.5 mV in increments of 0.05 mV selected and added at random to a 
noise trace from each of the 14 cells) in terms of TPR (sensitivity) and FPR (1 – specificity) for all three algorithms. Moving from left to right different 
data points represent 3 different biologically realistic incidence rate conditions: 61, 38, and 27 minis/s. Vertical and horizontal bars indicate 95% 
confidence interval around the mean. The dotted diagonal line indicates chance performance. (B) Sensitivity index (d’) when detecting smEPSPs in the 
same 3 conditions as in (A) for all three algorithms. (C) Area under the virtual-ROC curve in (A) for all three algorithms. Individual data points represent 
individual recordings (n = 14 cells), averaged over the three simulated minis incidence rates. The mean is marked by a solid line over the violin centre. 
The dashed line indicates the 95% confidence limits. **** indicates (highly) significantly different at p ≤ 10−5 level, paired t-test. (D) Sensitivity index d’ 
averaged across all three simulated minis incidence rates, for each cell (n = 14), separately for each detection algorithm.
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Table 1). These observations further confirm that “minis” detection 
algorithm is exceptionally good at picking up small PSPs. The 
tendency to overestimate amplitudes of detected smPSPs in high 
incidence conditions (i.e., Type 1 HI row in the tables) by all three 
algorithms reflects the increased probability of major overlap between 
simulated events in these conditions.

Table 1 shows the compiled mean 10–90% rise time estimates 
for simulated and real minis detected by the three algorithms while 
Supplementary Table 1 shows repeated samples t-test p-values for 
comparisons of mean 10–90% rise time values for the three 
different algorithms with respect to ground truth values. All three 
algorithms tended to significantly overestimate the rise times of 
detected minis in all simulated conditions. This can be explained 
by the fact that noise fluctuations affect the baseline positioning by 
shifting it to the lowest trough some time prior to the real start of 
the event. The rise times of detected events are also more likely to 
be overlaps of more than a single event and, therefore, would tend 
to be longer if lumped together. This was especially true for events 
detected by Clampfit which had a pronounced tendency to lump 
smaller events into fewer bigger ones. Both MiniAnalysis and 
Clampfit had large range values. For example, MiniAnalysis had a 
range of 0.02–18 ms and Clampfit had a range of 0.09–37 ms when 
detecting real mPSPs, while “minis” had a range of 0.35–9.4 ms 
when detecting the same type of events (Table 1). This observation 
is indicative of the fact that MiniAnalysis and Clampfit occasionally 
failed to accurately position the baseline of a detected event and 
failed to reject “wildly” inaccurate estimates.

Table 1 shows the compiled mean 1/e decay time estimates for 
simulated and real minis detected by the three algorithms while 
Supplementary Table 1 shows repeated samples t-test p-values for 
comparisons of mean decay time values for the three different 
algorithms with respect to ground truth values. Decay times of 
smPSPs detected by “minis” were the closest to the ground truth 
values when compared to the other two algorithms. For simulated 
realistic incidence rate conditions (i.e., Type 1 RI and Type 2 rows in 
the tables) p-values were not significant for the “minis” vs. the ground 
truth comparison (Table  1), i.e., the detected values were not 
significantly different from the ground truth. Unfortunately, the same 
cannot be said of MiniAnalysis and pClamp which consistently over- 
and underestimated mean decay times, respectively (Table  1; 
Supplementary Table 1). These differences between the algorithms 
may stem from differences in how decays are being estimated: 
Whether effective decays are measured or detected events are fitted 
with exponential decay functions. “Minis” reduce these discrepancies 
by averaging the two methods to obtain a single estimate.

Table 1 shows the compiled mean incidence rates for simulated 
and real minis detected by the three algorithms while 
Supplementary Table 1 shows repeated samples t-test p-values for 
comparisons of mean incidence rates for the three different algorithms 
with respect to ground truth. Values produced by “minis” and 
MiniAnalysis were close to each other as well as ground truth values 
(albeit less so for MiniAnalysis) as indicated by corresponding 
p-values of the t-test statistic (Table  1; Supplementary Table  1). 
Incidence rate values produced by Clampfit were considerably lower 

TABLE 1 Mean amplitudes, 10–90% rise times, decay times, and incidence rates of detected simulated and real minis by the three different algorithms.

Measures Condition Truth Minis ± 95% 
CI

Range MiniAnalysis ± 
95% CI

Range Clampfit ± 
95% CI

Range

Amplitudes 

(mV)

Type 1 All 0.3 0.36 ± 0.003 0.1–4.49 0.43 ± 0.003 0.1–5.78 0.45 ± 0.005 0.005–8.32

Type 1 HI 0.3 0.44 ± 0.003 0.1–4.49 0.53 ± 0.002 0.1–4.32 0.49 ± 0.004 0.005–8.32

Type 1 RI 0.3 0.31 ± 0.004 0.1–2.46 0.36 ± 0.004 0.1–2.48 0.35 ± 0.006 0.005–2.73

Type 2 0.275 0.29 ± 0.002 0.06–2.48 0.32 ± 0.002 0.06–2.35 0.34 ± 0.004 0.05–1.2

Real data - 0.05 ± 0.001 0.02–3.97 0.09 ± 0.002 0.02–4.87 0.21 ± 0.006 0.07–2.67

10–90% rise 

times (ms)

Type 1 All 2.6 3.31 ± 0.018 0.55–9.15 3.7 ± 0.015 0.01–22.3 5.05 ± 0.022 0.05–39.4

Type 1 HI 2.6 3.05 ± 0.005 0.55–8.8 3.37 ± 0.004 0.01–20.8 5.12 ± 0.018 0.05–39.4

Type 1 RI 2.6 3.97 ± 0.037 0.75–9.1 3.9 ± 0.041 0.01–22.3 4.8 ± 0.032 0.05–39.4

Type 2 2.6 3.69 ± 0.014 0.65–9 3.29 ± 0.022 0.02–57.5 4.77 ± 0.013 0.06–35.9

Real data - 3.37 ± 0.044 0.35–9.4 3.42 ± 0.051 0.02–18 4.72 ± 0.052 0.09–37

Decay times 

(ms)

Type 1 All 10.9 ± 0.33 11.2 ± 0.22 0.65–30.1 13.2 ± 0.1 0.05–30.1 7.75 ± 0.03 0.18–30.1

Type 1 HI 10.9 ± 0.33 9.8 ± 0.16 0.65–30.1 12.7 ± 0.078 0.05–30.1 7.73 ± 0.02 0.18–30.1

Type 1 RI 10.9 ± 0.33 10.9 ± 0.19 0.8–30.1 14.1 ± 0.14 0.05–30.1 7.63 ± 0.05 0.2–29.7

Type 2 10.9 ± 0.33 10.9 ± 0.19 0.75–30.1 13.9 ± 0.13 0.05–30.1 7.37 ± 0.04 0.16–28.2

Real data - 11.2 ± 0.44 0.45–30.1 12.3 ± 0.24 0.05–30.1 7.02 ± 0.06 0.28–28.9

Incidence rates 

(minis/s)

Type 1 All 93.6 40.8 ± 4.54 29.3–146.5 34.7 ± 0.43 30.4–41.8 12.3 ± 0.13 10.5–13.9

Type 1 HI 379.2 64.1 ± 6.04 41–205.1 53.9 ± 0.3 48.5–55.5 21.5 ± 0.1 20.4–22.4

Type 1 RI 47.4 50 ± 6.85 32.9–209.4 39 ± 0.81 33.2–52.3 20.2 ± 0.39 15.9–24.4

Type 2 39 40.1 ± 5.66 28.5–172.9 32.7 ± 0.41 29.9–37.5 17.9 ± 0.08 17–18.8

Real data - 94.7 ± 2.67 63.1–124.5 74.3 ± 1.38 55.7–89.7 8.19 ± 0.34 4.34–12.4

Confidence interval (CI), all conditions with 0.3 mV amplitude simulated minis used to construct the virtual ROC curve (Type 1 All), high incidence rate conditions (640, 320, and 160 
minis/s) with 0.3 mV amplitude simulated minis used to construct the virtual ROC curve (Type 1 HI), realistic incidence rate conditions (80, 40, and 20 minis/s) with 0.3 mV amplitude 
simulated minis used to construct the virtual ROC curve (Type 1 RI), all realistic incidence rate conditions with varying amplitude simulated minis (Type 2). Statistically non-significant 
differences to ground truth values are emphasised in bold (p-values are provided in Supplementary Table 1).
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than the other two algorithms or the ground truth values indicating 
that Clampfit missed many events, as well as tended to lump events 
together. A distinct ability by “minis” algorithm to pick up smaller 
events was further supported by a considerably larger incidence 
estimate for real data [comparable to the range of incidence rates 
reported in our companion article (Dervinis and Major, 2025)] when 
compared with the other two algorithms. Clampfit values for real data 
were smaller by almost an order of magnitude, revealing a really poor 
performance by this algorithm.

Discussion

Our analysis suggests that mini (mEPSC/P) incidence rates 
typically reported in neocortical slices in the CNS synaptic function 
literature may be underestimated, by up to an order of magnitude. 
Discrepancy of this size indicates that signal-to-noise ratio is a severe 
issue preventing accurate detection of minis irrespective of the 
detection method used: That is, both “template matching” and 
“thresholded amplitude detection” approaches are significantly flawed 
in distinguishing real minis from the background physiological noise. 
Having stated that, however, we  also demonstrated that the two 
approaches are not equally flawed and that “thresholded amplitude 
detection” performs reasonably well and is further improved by our 
novel miniature postsynaptic event detection algorithm called “minis”.

We quantified the performance of “minis” using standard 
measures from signal detection theory  – namely, ROC (receiver 
operating characteristic) curves and sensitivity index d’, alongside 
measures of sensitivity – true positive rate (TPR) and false positive 
rate (FPR = 1 – specificity) – and demonstrated superior performance 
of our algorithm relative to the other two most popular algorithms in 
the field of minis research: MiniAnalysis and Clampfit. Our algorithm 
had a performance edge over the other two algorithms not only for 
detecting moderately-sized (~0.3 mV) mEPSPs, but also across a wide 
range of realistic mEPSP amplitudes, shapes and incidence rates. 
Crucially, the latter included the higher minis’ incidence rates 
observed in neocortical slice experiments at body temperature, 13–80 
minis/s, where temporal summation becomes an increasing challenge 
for detection. As a necessary step in building a reliable quantal size 
estimation method, we  succeeded in developing an algorithm for 
detecting postsynaptic events that is transparent, systematically 
evaluated, and flexible.

We succeeded in developing an open-source algorithm that is “not 
just another” minis detection algorithm but is a demonstrably more 
accurate than its popular alternatives. One aspect where the algorithm 
is still lagging behind some of these alternatives is the user-
friendliness, handling of various data formats, integration with other 
analysis tools, and the quality of data visualisations. This is, we believe, 
an opportunity for other research individuals and teams to step in and 
develop the software further and integrate it with other research tools. 
We would thoroughly encourage and support such efforts.

We also take care not to overstate the applicability of the “minis” 
detection algorithm. Throughout the text we call it a detection algorithm 
for “postsynaptic events” rather than mPSP/Cs, although it is equally 
applicable to both postsynaptic potentials and currents. We chose to test 
it using mPSPs because we view them as a more robust measure of 
synaptic function than measuring mPSCs. We  did not test it for 

detecting both types of events because that would have required longer 
recordings that could have potentially compromised the recording 
quality. We also did not see this as sufficiently necessary as the detection 
of the two types is not qualitatively different. Postsynaptic currents have 
somewhat faster kinetics than postsynaptic potentials, meaning that the 
effects we describe here should approximately translate to somewhat 
higher incidence rates/frequencies affecting all three detection 
algorithms proportionally equally. We, however, invite other researchers 
in the field of synaptic function to test the usefulness of this algorithm 
for detecting mPSCs. We also invite other colleagues to contribute to the 
further development of “minis”.

Notwithstanding its good performance, the “minis” algorithm has 
important limitations. First, the “minis” algorithm, just like the other 
two detection algorithms, cannot by itself alone be used to estimate 
quantal sizes. Due to amplitude attenuation of spontaneous postsynaptic 
events and the need to use amplitude detection thresholds, the estimated 
amplitude will typically only be an upper limit on the actual population 
mean amplitude (unless a very low threshold is used in which case FPR 
would increase). We have also demonstrated that mini detection is 
impaired on rising and decaying trends of Vm. The severity of this 
problem worsens with the rate of change of Vm. The problem is 
exacerbated as the time between neighbouring minis gets shorter. 
Therefore, the mean amplitude estimate is not only affected by the 
presence of noise and by amplitude attenuation, but also by the presence 
of other miniature postsynaptic events. All the above limitations also 
apply to estimating the incidence rate of postsynaptic events. All the 
mentioned factors reduce event detectability and, therefore, result in an 
underestimated incidence rate. However, “detecting” noise events as 
false minis can cause errors in the other direction if too low a detection 
threshold is set. Despite these limitations, our program “minis” fares 
better on this front compared to the other two algorithms: “minis” 
performance is also superior on rising and decaying trends in Vm, and 
for closely-spaced events. To our knowledge, this is the first time these 
problems have been addressed, and their impact quantified in a 
systematic manner, and their implications discussed.

Other caveats concern the method for assessing the performance 
of detection algorithms. We did not use the full plausible range of 
realistic distributions for simulating mEPSPs in terms of their 
incidence rates, amplitudes, and their rise and decay times. However, 
the shapes of these distributions are not entirely known, and this is an 
empirical question that remains unanswered. Because of this reason, 
we refrained from trying to address this question here and avoided 
making empirically dubious assumptions. Instead, we  explored a 
range of scenarios where simulation incidence rates ranged from more 
to less realistic. We explored the effects of varying signal/noise ratios. 
We believe that the large size of the parameter space we have explored 
does allow us to conclude that the three algorithms differ systematically 
in their performance, with our algorithm – “minis” – being superior 
to the other two (in our hands at least).

We have not constructed ROC curves in the usual fashion by 
varying a detection threshold of each algorithm. Unfortunately, 
we were limited by the nature of the algorithms, specifically Clampfit 
which does not use a pure amplitude detection threshold but uses 
convolution of the data trace with each of the templates. However, our 
manipulations of varying the incidence rate of simulated events, as 
well as varying the amplitude of noise, allowed us to mimic effects of 
varying the detection threshold. We are also aware of one particular 
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issue regarding the classification of correct rejections (true negatives). 
One could argue that a proper definition of correct rejections would 
require treating every data sample point as a potential noise event that 
could either be falsely detected as a signal event or correctly rejected 
as a noise event. Unfortunately, such a definition would result in large 
numbers of correct rejections (true negatives) swamping the number 
of other detection measures [true positives, false alarms (false 
positives), and misses (false negatives)] and, therefore, would make 
the detection performance analysis essentially meaningless. 
Alternatively, treating every 10 ms noise window as a basis for correct 
rejection would still produce a relatively large number of correct 
rejections, as would similar, more complicated schemes. There is also 
no reason why a single noise event should be limited to a single 10 ms 
window. Therefore, we thought that a reasonably practical definition 
of correct rejections which rejected prominent noise fluctuations fared 
better than the alternatives. Having explicit, transparent, and 
reproducible methods to benchmark the performance is better than 
relying on subjective examination of recording traces.

Finally, we  would like to address the question of whether 
we used optimal detection settings for each algorithm. MiniAnalysis 
settings were similar to those of “minis”. The two algorithms are 
somewhat similar and chosen settings were observed to give the 
best performance for both algorithms when detecting simulated 
mPSPs, after considerable exploration. In case there is any doubt 
about our method, we have made our recorded and simulated data 
and Matlab analysis code publicly available. With regards to using 
Clampfit to analyse simulated data, we  used 9 templates (the 
maximum allowed) constructed in a typical fashion by averaging a 
number of waveforms with similar shapes but separating 
qualitatively different shapes. These templates have also been made 
available publicly. We  tested different detection regimes with 
templates based on both smoothed or unsmoothed traces and 
comparing detection of smoothed and unsmoothed recording 
traces and chose the best regime. However, we did not construct 
new templates for every new recording or every new simulation 
condition, because this is extremely time-consuming and is not an 
efficient way to conduct this type of analysis, although Clampfit 
detection performance might have improved marginally. Clampfit 
might perform better if the number of templates was not limited to 
9, and if a wide range of inbuilt templates was available. These issues 
are, however, outside the scope of this study. Given these 
considerations, we are confident in the validity of our approach.

We defer the discussion of possible reasons why there is such a 
big discrepancy between reported and expected minis’ incidence 
rates in the synaptic physiology literature and how they can 
be  effectively addressed to our companion article (Dervinis and 
Major, 2025). It is worth noting, however, that “minis” or another 
similar algorithm can be used to objectively measure the properties 
of pure noise fluctuations (with minis blocked). This would allow 
one, in principle, to separate “signal” (minis) from noise components 
in traces of minis recorded in the presence of noise. Noise events 
could potentially be “removed” from the combined signal and noise 
event distribution by direct histogram subtraction, although in 
practice it turns out one needs to compensate for the decay of the 
underlying waveform, following minis, and noise peaks coinciding 

with minis peaks: noise and pure noise-free minis histograms do not 
simply summate (Dervinis and Major, 2025). Alternatively, noise 
traces can be used to more accurately “reverse-engineer” the signal 
distribution via simulations, by iteratively adjusting the shapes, 
amplitudes, and incidence rates of simulated minis, and adding these 
to real noise, under the control of an optimisation algorithm to match 
up the distributions of simulated minis plus real noise to real minis 
plus real noise. The companion article (Dervinis and Major, 2025) 
explores this and presents a “quantal analysis” method based on the 
“minis” spontaneous postsynaptic event detection algorithm.
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Glossary

aCSF - artificial cerebrospinal fluid

AMPA - α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AP - action potential

API - application programming interface

AUC - area under the curve

CNS - central nervous system

CPP - (RS)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid

d’ - sensitivity index “d-prime” (defined in Methods)

EPSC - excitatory postsynaptic current

EPSP - excitatory postsynaptic potential

FNR - false negative rate (“miss” rate)

FPR - false positive rate (“false alarm” rate)

GABA - gamma-aminobutyric acid

IPSC - inhibitory post-synaptic current

IPSP - inhibitory post-synaptic potential

mEPSC - miniature excitatory post-synaptic current

mEPSP - miniature excitatory post-synaptic potential

mIPSC - miniature inhibitory post-synaptic current

mIPSP - miniature inhibitory post-synaptic potential

mPSC - miniature post-synaptic current

mPSP - miniature post-synaptic potential

NBQX - 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]
quinoxaline-7-sulfonamide

NMDA - N-methyl-D-aspartate

ROC - receiver operator characteristic

sEPSC - spontaneous excitatory post-synaptic current

sEPSP - spontaneous excitatory post-synaptic potential

sIPSC - spontaneous inhibitory post-synaptic current

sIPSP - spontaneous inhibitory post-synaptic potential

smEPSC - simulated mEPSC

smEPSP - simulated mEPSP

smPSC - simulated mPSC

smPSP - simulated mPSP

sPSC - spontaneous post-synaptic current

sPSP - spontaneous post-synaptic potential

TNR - true negative rate

TPR - true positive rate (“hit” rate, sensitivity)

TTX - tetrodotoxin

Vm - membrane potential

v-ROC - virtual ROC (ROC-like plot)
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